Impacts of Climate Change and Population Growth on River Nutrient Loads in a Data Scarce Region: The Upper Awash River (Ethiopia)
Abstract
:1. Introduction
2. Methods
2.1. The INCA Model
2.2. The Awash River Catchment
2.3. Sources of Data
2.4. Modelling Approach
2.5. Mitigation Measures and Scenario Analysis
- (1)
- Baseline (1986–2016 observed precipitation and temperature as input, current population, current wastewater treatment levels);
- (2)
- Climate change 2031–2055 (1986–2016 precipitation and temperature altered with 2031–2055 change factors as input, current population, current wastewater treatment levels);
- (3)
- Climate change 2056–2080 (1986–2016 precipitation and temperature altered with 2056–2080 change factors as input, current population, current wastewater treatment levels);
- (4)
- Climate change 2031–2055 plus population growth (1986–2016 precipitation and temperature altered with 2031–2055 change factors as input, 2031–2055 population, current wastewater treatment levels);
- (5)
- Climate change 2056–2080 plus population growth (1986–2016 precipitation and temperature altered with 2056–2080 change factors as input, 2056–2080 population, current wastewater treatment levels);
- (6)
- Climate change 2031–2055 plus population growth plus mitigation (1986–2016 precipitation and temperature altered with 2031–2055 change factors as input, 2031–2055 population, improved wastewater treatment);
- (7)
- Climate change 2056–2080 plus population growth plus mitigation (1986–2016 precipitation and temperature altered with 2056–2080 change factors as input, 2056–2080 population, improved wastewater treatment).
3. Results
3.1. Model Implementation
3.2. Future Scenarios
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects; Department of Economics and Social Affairs, United Nations: New York, NY, USA, 2019. [Google Scholar]
- Arsiso, B.K.; Mengistu Tsidu, G.; Stoffberg, G.H.; Tadesse, T. Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Phys. Chem. Earth 2018, 105. [Google Scholar] [CrossRef]
- Van Rooijen, D.J.; Biggs, T.W.; Smout, I.; Drechsel, P. Urban growth, wastewater production and use in irrigated agriculture: A comparative study of Accra, Addis Ababa and Hyderabad. Irrig. Drain. Syst. 2010, 24. [Google Scholar] [CrossRef] [Green Version]
- Degefu, F.; Lakew, A.; Tigabu, Y.; Teshome, K. The water quality degradation of upper Awash River, Ethiopia. Ethiop. J. Environ. Stud. Manag. 2013, 6. [Google Scholar] [CrossRef]
- Prabu, P.C. Impact of heavy metal contamination of Akaki river of Ethiopia on soil and metal toxicity on cultivated vegetable crops. Electron. J. Environ. Agric. Food Chem. 2009, 8, 818–827. [Google Scholar]
- Yimer, Y.A.; Jin, L. Impact of Lake Beseka on the Water Quality of Awash River, Ethiopia. Am. J. Water Resour. 2020, 8, 21–30. [Google Scholar] [CrossRef]
- Alemayehu, T. The impact of uncontrolled waste disposal on surface water quality in Addis Ababa, Ethiopia. SINET Ethiop. J. Sci. 2001, 24. [Google Scholar] [CrossRef]
- Yimer, Y.A.; Geberkidan, A. The Pollution Status of Awash River Basin (Ethiopia) Using Descriptive Statistical Techniques. Am. J. Water Resour. 2020, 8, 56–68. [Google Scholar]
- Awoke, A.; Beyene, A.; Kloos, H.; Goethals, P.L.M.; Triest, L. River Water Pollution Status and Water Policy Scenario in Ethiopia: Raising Awareness for Better Implementation in Developing Countries. Environ. Manag. 2016, 58. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wade, A.J.; Butterfield, D. Potential impacts of climate change on water quality and ecology in six UK rivers. Hydrol. Res. 2009, 40, 113–122. [Google Scholar] [CrossRef]
- Kumssa, A.; Jones, J.F. Climate change and human security in Africa. Int. J. Sustain. Dev. World Ecol. 2010, 17. [Google Scholar] [CrossRef]
- Hope, K.R. Climate change and poverty in Africa. Int. J. Sustain. Dev. World Ecol. 2009, 16, 451–461. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Kala, N.; Mendelsohn, R. Adaptation and Climate Change Impacts: A Structural Ricardian Model of Irrigation and Farm Income in Africa. Clim. Chang. Econ. 2011, 2. [Google Scholar] [CrossRef]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12. [Google Scholar] [CrossRef]
- Minale, A.; Rao, K. Hydrological Dynamics and Human Impact on Ecosystems of Lake Tana, Northwestern Ethiopia. Ethiop. J. Environ. Stud. Manag. 2011, 4. [Google Scholar] [CrossRef] [Green Version]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19. [Google Scholar] [CrossRef] [Green Version]
- Bussi, G.; Whitehead, P.G.; Bowes, M.J.; Read, D.S.; Prudhomme, C.; Dadson, S.J. Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Sci. Total Environ. 2016, 572, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Taye, M.T.; Dyer, E.; Hirpa, F.A.; Charles, K. Climate Change Impact on Water Resources in the Awash Basin, Ethiopia. Water 2018, 10, 1560. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, P.G.; Wilson, E.; Butterfield, D. A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): Part I—model structure and process equations. Sci. Total Environ. 1998, 210–211, 547–558. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilson, E.; Butterfield, D.; Seed, K. A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): Part II—application to large river basins in south Wales and eastern England. Sci. Total Environ. 1998, 210–211, 559–583. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Dolk, M.; Peters, R.; Leckie, H. Water Quality Modelling, Monitoring, and Management. In Water Science, Policy, and Management; Wiley: Hoboken, NJ, USA, 2019; pp. 55–73. [Google Scholar]
- Fu, B.; Merritt, W.S.; Croke, B.F.W.; Weber, T.R.; Jakeman, A.J. A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environ. Model. Softw. 2019, 114, 75–97. [Google Scholar] [CrossRef]
- Wade, A.J.; Whitehead, P.G.; Butterfield, D. The Integrated Catchments model of Phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: Model structure and equations. Hydrol. Earth Syst. Sci. 2002, 6, 583–606. [Google Scholar] [CrossRef] [Green Version]
- Wade, A.J.; Durand, P.; Beaujouan, V.; Wessel, W.; Raat, K.J.; Whitehead, P.G.; Butterfield, D.; Rankinen, K.; Lepisto, A. A nitrogen model for European catchments: INCA, new model structure and equations. Hydrol. Earth Syst. Sci. 2002, 6, 559–582. [Google Scholar] [CrossRef]
- Bussi, G.; Whitehead, P.G. Impacts of droughts on low flows and water quality near power stations. Hydrol. Sci. J. 2020, 65, 898–913. [Google Scholar] [CrossRef]
- Bussi, G.; Janes, V.; Whitehead, P.G.; Dadson, S.J.; Holman, I.P. Dynamic response of land use and river nutrient concentration to long-term climatic changes. Sci. Total Environ. 2017, 590–591, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi-Naeini, M.; Bussi, G.; Elliott, J.A.; Hall, J.W.; Whitehead, P.G. Assessment of Risks to Public Water Supply From Low Flows and Harmful Water Quality in a Changing Climate. Water Resour. Res. 2019, 55, 10386–10404. [Google Scholar] [CrossRef] [Green Version]
- Bussi, G.; Darby, S.E.; Whitehead, P.G.; Jin, L.; Dadson, S.J.S.J.; Voepel, H.E.H.E.; Vasilopoulos, G.; Hackney, C.R.; Hutton, C.; Berchoux, T.; et al. Impact of dams and climate change on suspended sediment flux to the Mekong delta. Sci. Total Environ. 2021, 755, 142468. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Barbour, E.; Futter, M.N.; Sarkar, S.; Rodda, H.; Caesar, J.; Butterfield, D.; Jin, L.; Sinha, R.; Nicholls, R.; et al. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: Low flow and flood statistics. Environ. Sci. Process. Impacts 2015, 17, 1057–1069. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Jin, L.; Bussi, G.; Voepel, H.E.; Darby, S.E.; Vasilopoulos, G.; Manley, R.; Rodda, H.; Hutton, C.; Hackney, C.; et al. Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the Mekong Delta. Sci. Total Environ. 2019, 673, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Whitehead, P.G.; Appeaning Addo, K.; Amisigo, B.; Macadam, I.; Janes, T.; Crossman, J.; Nicholls, R.J.; McCartney, M.; Rodda, H.J.E. Modeling future flows of the Volta River system: Impacts of climate change and socio-economic changes. Sci. Total Environ. 2018, 637–638, 1069–1080. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Bussi, G.; Hossain, M.A.; Dolk, M.; Das, P.; Comber, S.; Peters, R.; Charles, K.J.; Hope, R.; Hossain, S. Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies. Sci. Total Environ. 2018, 631–632, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P.G.; Bussi, G.; Peters, R.; Hossain, M.A.; Softley, L.; Shawal, S.; Jin, L.; Rampley, C.P.N.; Holdship, P.; Hope, R.; et al. Modelling heavy metals in the Buriganga River System, Dhaka, Bangladesh: Impacts of tannery pollution control. Sci. Total Environ. 2019, 697, 134090. [Google Scholar] [CrossRef] [PubMed]
- Futter, M.N.; Erlandsson, M.A.; Butterfield, D.; Whitehead, P.G.; Oni, S.K.; Wade, A.J. PERSiST: A flexible rainfall-runoff modelling toolkit for use with the INCA family of models. Hydrol. Earth Syst. Sci. 2014, 18, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Jackson-Blake, L.; Wade, A.J.; Futter, M.; Butterfield, D.; Couture, R.M.; Cox, R.M.; Crossman, J.; Ekholm, P.; Halliday, S.; Jin, L.; et al. The INtegrated CAtchment model of Phosphorus dynamics (INCA-P): Description and demonstration of new model structure and equations. Environ. Model. Softw. 2016, 83, 356–386. [Google Scholar] [CrossRef] [Green Version]
- Hailemariam, K. Impact of climate change on the water resources of Awash River Basin, Ethiopia. Clim. Res. 1999, 12, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bontemps, S.; Defourny, P.; Bogaert, E.V.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009-Products Description and Validation Report; European Space Agency: Paris, France, 2009. [Google Scholar]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 2 May 2019).
- Dentener, F.J. Global Maps of Atmospheric Nitrogen Deposition 1860, 1993, and 2050, Data Set; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2006. [Google Scholar]
- CIESIN. University, Center for International Earth Science Information Network—CIESIN—Columbia. In Documentation for the Gridded Population of the World, Version 4 (GPWv4); NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2016. [Google Scholar]
- Awash River Basin Authority. Awash River Basin Water Allocation Modeling and Conflict Resolution Study Project, WP3 Water Demand; Awash River Basin Authority: Melka Werer, Ethiopia, 2017. [Google Scholar]
- Bussi, G.; Dadson, S.J.; Prudhomme, C.; Whitehead, P.G.; Prudhomme, C. Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK). J. Hydrol. 2016, 542, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Nieto, J.; Wilby, R.L. A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. Clim. Chang. 2005, 69, 245–268. [Google Scholar] [CrossRef]
- Dyer, E.; Washington, R.; Teferi Taye, M. Evaluating the CMIP5 ensemble in Ethiopia: Creating a reduced ensemble for rainfall and temperature in Northwest Ethiopia and the Awash basin. Int. J. Climatol. 2020, 40, 2964–2985. [Google Scholar] [CrossRef] [Green Version]
- Chapra, S.C. Surface Water Quality Modeling; Waveland Pr Inc.: Boston, MA, USA, 2008; ISBN 0-07-011364-5. [Google Scholar]
- Whitehead, P.G.; Bussi, G.; Bowes, M.J.; Read, D.S.; Hutchins, M.G.; Elliott, J.A.; Dadson, S.J. Dynamic modelling of multiple phytoplankton groups in rivers with an application to the Thames river system in the UK. Environ. Model. Softw. 2015, 74, 75–91. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Alfieri, L.; Lees, T.; Peng, J.; Dyer, E.; Dadson, S.J. Streamflow response to climate change in the Greater Horn of Africa. Clim. Chang. 2019, 156, 341–363. [Google Scholar] [CrossRef] [Green Version]
INCA ID | Sub-Catchment Area (km2) | Land Use—Arable (%) | Land Use—GRASSLAND/Mixed (%) | Land Use—Forest (%) | Land Use—Water (%) | Land Use—Bare (%) | Land Use—Urban (%) | Population |
---|---|---|---|---|---|---|---|---|
1 | 935 | 8 | 84 | 8 | 0 | 0 | 0 | 165,119 |
2 | 3565 | 18 | 72 | 10 | 0 | 0 | 0 | 820,511 |
3 | 772 | 19 | 66 | 10 | 0 | 1 | 3 | 1,991,568 |
4 | 1473 | 13 | 82 | 4 | 0 | 1 | 0 | 229,943 |
5 | 2561 | 26 | 61 | 4 | 7 | 2 | 0 | 440,405 |
17 | 884 | 19 | 56 | 14 | 0 | 0 | 10 | 1,457,636 |
18 | 1431 | 47 | 44 | 7 | 1 | 0 | 0 | 383,597 |
Reach | Variable | KGE Range (Validation Period) |
---|---|---|
2 | Monthly flow | 0.78–0.89 |
4 | Monthly flow | 0.73–0.89 |
17 | Monthly flow | 0.53–0.60 |
5 | Monthly average nitrate concentration | 0.36–0.41 |
5 | Monthly average phosphorus concentration | 0.60–0.63 |
18 | Monthly average phosphorus concentration | 0.41–0.46 |
Time Period | Population | Mitigation | Annual Nitrate Load (tonnes/year) | Variation Compared to Baseline 1986–2016 (%) | Annual Phosphorus Load (tonnes/year) | Variation Compared to Baseline 1986 to 2016 (%) |
---|---|---|---|---|---|---|
1986–2016 | 2020 | no | 1519–2281 | 773–999 | ||
2031–2055 | 2020 | no | 1279–1977 | −16 to −14% | 649–967 | −17 to −4% |
2056–2080 | 2020 | no | 1035–1714 | −32 to −25% | 655–913 | −16 to −9% |
2031–2055 | 2031–2055 | no | 1753–2656 | 15 to 16% | 997–1287 | 28 to 28% |
2056–2080 | 2056–2080 | no | 1790–2779 | 17 to 21% | 1084–1423 | 40 to 42% |
2031–2055 | 2031–2055 | yes | 1233–1739 | −19 to −24% | 548–691 | −30 to −31% |
2056–2080 | 2056–2080 | yes | 1209–1705 | −21 to −26% | 528–757 | −32 to −25% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bussi, G.; Whitehead, P.G.; Jin, L.; Taye, M.T.; Dyer, E.; Hirpa, F.A.; Yimer, Y.A.; Charles, K.J. Impacts of Climate Change and Population Growth on River Nutrient Loads in a Data Scarce Region: The Upper Awash River (Ethiopia). Sustainability 2021, 13, 1254. https://doi.org/10.3390/su13031254
Bussi G, Whitehead PG, Jin L, Taye MT, Dyer E, Hirpa FA, Yimer YA, Charles KJ. Impacts of Climate Change and Population Growth on River Nutrient Loads in a Data Scarce Region: The Upper Awash River (Ethiopia). Sustainability. 2021; 13(3):1254. https://doi.org/10.3390/su13031254
Chicago/Turabian StyleBussi, Gianbattista, Paul G. Whitehead, Li Jin, Meron T. Taye, Ellen Dyer, Feyera A. Hirpa, Yosef Abebe Yimer, and Katrina J. Charles. 2021. "Impacts of Climate Change and Population Growth on River Nutrient Loads in a Data Scarce Region: The Upper Awash River (Ethiopia)" Sustainability 13, no. 3: 1254. https://doi.org/10.3390/su13031254