The Impact Assessment of Increasing Population Density on Jeddah Road Transportation Using Spatial-Temporal Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Land Use Transport Interactions and Urban Sustainability
2.2. Transportation Issues in Saudi Cities
2.3. The Urban Density and Transportation in Jeddah
- The traditional walled city existed until 1947.
- Unplanned urban development (1947‒1960).
- Planned urban development (1960 until the present).
3. Materials and Methods
3.1. Study Area
3.2. Temporal Data Quantification
3.2.1. Data Acquisition and Collection
3.2.2. Local Cooperative Visual Interpretation
3.3. Temporal Indicators
3.3.1. District Road Density Index
2.3.2. District Parking Index
3.3.3. District Trip Index
3.4. Statistical Analysis
4. Results
4.1. Temporal Changes
4.2. Temporal Indicators
4.2.1. District Road Density Index (DRDI)
4.2.2. District Parking Index (DPI)
4.2.3. District Trip Index (DTI)
4.3. Statistical Analysis
4.3.1. Pearson Correlation Analysis
4.3.2. Paired t-Test
4.3.3. Bootstrap for Paired Samples Test
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Bank. World Development Report 2000/2001: Attacking Poverty; World Bank Group: Washington, DC, USA, 2000; Available online: http://ina.bnu.edu.cn/docs/20140606092223219839.pdf (accessed on 10 October 2019).
- Aljoufie, M. Toward integrated land use and transport planning in fast growing cities: Case of Jeddah city, Saudi Arabia. Habitat Int. J. 2014, 41, 205–215. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sussman, J.M.; Matsumoto, A. Grand challenges in transportation and transit systems. Front. Buil. Environ. 2016, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Handy, S.; Mokhtarian, P. Which comes first: The neighborhood or the walking? Spring: New York City, NY, USA, 2005. [Google Scholar]
- Brownstone, D.; Golob, T.F. The impact of residential density on vehicle usage and energy consumption. J. Urban Econ. 2009, 65, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Aljoufie, M.; Zuidgeest, M.; Brussel, M.; Van Maarseveen, M. Spatial–temporal analysis of urban growth and transportation in Jeddah City, Saudi Arabia. Cities 2013, 31, 57–68. [Google Scholar] [CrossRef]
- Palm, M.; Gregor, B.; Wang, H.; McMullen, B.S. The trade-offs between population density and households׳ transportation-housing costs. Transp. Policy 2014, 36, 160–172. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme. The State of the Arab cities 2012: Challenges of Urban Transition. United Nations Human Settlements Programme-Flagship Report 2012. Available online: http://unhabitat.org/books/the-state-of-arab-cities-2012-challenges-of-urban-transition/ (accessed on 10 October 2019).
- Abdulaal, W.A. Large urban developments as the new driver for land development in Jeddah. Habitat Int. 2012, 36, 36–46. [Google Scholar] [CrossRef]
- Harris, B. Science in planning: Past, present, future. J. Am. Plan. Assoc. 1994, 60, 31–34. [Google Scholar] [CrossRef]
- Wegener, M. Overview of land-use transport models. In Handbook of Transport Geography and Spatial Systems; Emerald Publishing Limited: Bingley, UK, 2004. [Google Scholar]
- Alonso, A.; Monzón, A.; Wang, Y. Modelling Land Use and Transport Policies to Measure Their Contribution to Urban Challenges: The Case of Madrid. Sustainability 2017, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.S. Models of the Relationship between Transport and Land-use: A Review. Transp. Rev. 2006, 26, 325–350. [Google Scholar] [CrossRef]
- Shaw, S.-L.; Xin, X. Integrated land use and transportation interaction: A temporal GIS exploratory data analysis approach. J. Transp. Geogr. 2003, 11, 103–115. [Google Scholar] [CrossRef]
- Geurs, K.T.; Wee, B.V. Land-use/transport Interaction Models as Tools for Sustainability Impact Assessment of Transport Investments: Review and Research Perspectives. Eur. J. Transp. Infrastruct. Res. 2004, 4, 333–355. [Google Scholar]
- United Nations. The Sustainable Development Goals Report; UN: New York, NY, USA, 2016. [Google Scholar]
- Dingil, A.E.; Schweizer, J.; Rupi, F.; Stasiskiene, Z. Updated Models of Passenger Transport Related Energy Consumption of Urban Areas. Sustainability 2019, 11, 4060. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Xiao, L.; Tang, L.; Shi, L.; Su, X.; Wang, H.; Song, Y.; Shao, G. Effects of spatial form on urban commute for major cities in China. Int. J. Sustain. Dev. World Ecol. 2014, 21, 361–368. [Google Scholar] [CrossRef]
- Black, J. Higher Density Housing and Transport in Australian Cities. In Transport, Land-Use and the Environment. Transportation Research, Economics and Policy; Hayashi, Y., Roy, J., Eds.; Springer: Boston, MA, USA, 1996; pp. 50–80. [Google Scholar]
- Kemeny, J. Comparative housing and welfare: Theorising the relationship. J. Hous. Built Enviorn. 2001, 16, 53–70. [Google Scholar] [CrossRef]
- Smith, W.S. Mass transport for high-rise high-density living. J. Transp. Eng. 1984, 110, 521–535. [Google Scholar] [CrossRef]
- Lasmini, A.; Verhaeghe, R.; Pel, A.J.; van Arem, B. Controlling Urban Sprawl with Integrated Approach of Space-transport Development Strategies. Procedia-Social and Behavioral Sciences. Procd. Soc. Behv. 2014, 138, 679–694. [Google Scholar]
- Badoe, D.A.; Miller, E.J. Transportation–land-use interaction: Empirical findings in North America, and their implications for modeling. Transp. Res. D Tr. E 2000, 5, 235–263. [Google Scholar] [CrossRef]
- Wegener, M. Land-use transport interaction models. In Handbook of Regional Science, 1st ed.; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 741–758. [Google Scholar]
- Beimborn, E.; Horowitz, A.; Vijayan, S.; Bordewin, M. An Overview: Land Use and Economic Development in Statewide Transportation Planning, Center for Urban Transportation Studies; University of Wisconsin: Milwaukee, WI, USA, 1999. [Google Scholar]
- Chatman, D.G. Estimating the effect of land use and transportation planning on travel patterns: Three problems in controlling for residential self-selection. J. Transp. Land Use 2014, 7, 47–56. [Google Scholar] [CrossRef] [Green Version]
- De Vos, J. The influence of land use and mobility policy on travel behavior: A comparative case study of Flanders and the Netherlands. J. Transp. Land Use 2015, 8, 171–190. [Google Scholar] [CrossRef] [Green Version]
- Nijkamp, N.; Borzacchiello, M.; Ciuffo, B.; Torrieri, F. Sustainable Urban Land Use and Transportation Planning: A Cognitive Decision Support System for the Naples Metropolitan Area. Int. J. Sustain. Transp. 2007, 1, 91–114. [Google Scholar] [CrossRef]
- Onsted, J.A.; Chowdhury, R.R. Does zoning matter? A comparative analysis of landscape change in Redland, Florida using cellular automata. Landsc. Urban Plan. 2014, 121, 1–18. [Google Scholar] [CrossRef]
- Mattioli, G. Where Sustainable Transport and Social Exclusion Meet: Households Without Cars and Car Dependence in Great Britain. J. Environ. Pol. Plan. 2014, 16, 379–400. [Google Scholar] [CrossRef] [Green Version]
- Al-Hathloul, S.; Mughal, M.A. Urban growth management-the Saudi experience. Habitat Int. 2004, 28, 609–623. [Google Scholar] [CrossRef]
- Al-Fouzan, S.A. Using car parking requirements to promote sustainable transport development in the Kingdom of Saudi Arabia. Cities 2012, 29, 201–211. [Google Scholar] [CrossRef]
- Aljoufie, M.; Tiwari, A. Exploring Housing and Transportation Affordability in Jeddah. Hous. Policy Debate 2020. [Google Scholar] [CrossRef]
- Alotaibi, O.; Potoglou, D. Introducing public transport and relevant strategies in Riyadh City, Saudi Arabia: A stakeholders’ perspective, Urban. Plan. Transp. Res. 2018, 6, 35–53. [Google Scholar] [CrossRef]
- Rahman, S.M.; Khondaker, A.N.; Hasan, M.A.; Reza, I. Greenhouse gas emissions from road transportation in Saudi Arabia-a challenging frontier. Renew. Sust. Energ. Rev. 2017, 69, 812–821. [Google Scholar] [CrossRef]
- Daghistani, A.M.I. Urban growth management in Jeddah. Plan. Out. 1991, 34, 2–9. [Google Scholar] [CrossRef]
- Aljoufie, M.; Brussel, M.; Zuidgeest, M.; van Delden, H.; van Maarseveen, M. Integrated analysis of land-use and transport policy interventions. Transport. Plan. Techn. 2016, 39, 329–357. [Google Scholar] [CrossRef]
- Shaker, A. The Feasibility of Implementing Public Transportation in Jeddah. Master’s Thesis, Ball State University, Muncie, IN, USA, 2014. [Google Scholar]
- Smith, G.R.; Umar al Zayla’i, A. Bride of the Red Sea: A 10th/16th century account of Jeddah. Working Paper, University of Durham, Centre for Middle Eastern and Islamic Studies, Durham 1984. Available online: http://dro.dur.ac.uk/139/1/22CMEIS.pdf (accessed on 15 May 2020).
- Fouracre, P.; Dunkerley, C.; Gardner, G. Mass rapid transit systems for cities in the developing world. Transport. Rev. 2003, 23, 299–310. [Google Scholar] [CrossRef]
- Aljoufie, M.; Tiwari, A. Valuing ‘green infrastructure’ in Jeddah: A city lost in ‘grey’ infrastructure. J. Arch. Urb. 2015, 39, 248–259. [Google Scholar] [CrossRef]
- Zhang, Y.; Guindon, B. Using satellite remote sensing to survey transport-related urban sustainability. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 149–164. [Google Scholar] [CrossRef]
- Feng, L. Applying remote sensing and GIS on monitoring and measuring urban sprawl. A case study of China. Rev. Int. Sostenibilidad Tecnol. y Humanismo 2004, 4, 47–56. [Google Scholar]
- Liu, Y.; Chen, D. Cooperative Interpretation of Land Use; The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: Beijing, China, 2008; Volume XXXVII, Part B7. [Google Scholar]
- Aljoufie, M.; Brussel, M.; Zuidgeest, M.; van Maarseveen, M. Urban growth and transport infrastructure interaction in Jeddah between 1980 and 2007. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 493–505. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Jeddah Municipality. Jeddah Local Plan; Jeddah Municipality: Jeddah, Saudi Arabia, 2009; Unpublished. [Google Scholar]
- Ministry of Municipal and Rural Affairs: Trip Generation Manual for Riyadh City, Saudi Arabia; Ministry of Municipal and Rural Affairs: Riyadh, Saudi Arabia, 2006; Unpublished.
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-based Approach; Guilford Publications: New York, NY, USA, 2013. [Google Scholar]
- Lu, X.; Kang, J.; Zhu, P.; Cai, J.; Guo, F.; Zhang, Y. Influence of urban road characteristics on traffic noise. Transp. Res. Part D Transp. Environ. 2019, 75, 136–155. [Google Scholar] [CrossRef]
- Simon, J.L.; Bruce, P. Resampling: A Tool for Everyday Statistical Work. CHANCE 1991, 4, 22–32. [Google Scholar] [CrossRef]
- Arai, E.; Shimabukuro, Y.E.; Pereira, G.; Vijaykumar, N.L. A Multi-Resolution Multi-Temporal Technique for Detecting and Mapping Deforestation in the Brazilian Amazon Rainforest. Remote Sens. 2011, 3, 1943–1956. [Google Scholar] [CrossRef] [Green Version]
- Calthrop, E.; Proost, S.; van Dender, K. Parking Policies and Road Pricing. Urban Stud. 2000, 37, 63–76. [Google Scholar] [CrossRef]
- Valle, H.D.; Niemeier, G.D. CO2 emissions: Are land-use changes enough for California to reduce VMT? Specification of a two-part model within stru- mental variables. Transp. Res. Part. 2011, B45, 150–161. [Google Scholar] [CrossRef]
- Dingil, A.E.; Schweizer, J.; Rupi, F.; Stasiskiene, Z. Transport indicator analysis and comparison of 151 urban areas, based on open source data. Eur. Transp. Res. Rev. 2018, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.-Y.; Jorge Ochoa, J.; Shah, M.N.; Zhang, X. The application of urban sustainability indicators—A comparison between various practices. Habitat Int. 2011, 35, 17–29. [Google Scholar] [CrossRef]
- Aguayo, M.; Azocar, G.; Wiegand, T.; Wiegand, K.; Vega, C. Revealing driving forces of mid-cities urban growth patterns using spatial modeling: A case study of Los Ángeles (Chile). Ecol. Soc. 2007, 12, 13. [Google Scholar] [CrossRef]
- Te Brommelstroet, M.; Bertolini, L. Developing Land use and Transport PSS. Meaningful information through a dialogue between modelers and planners. Transp. Policy 2008, 15, 251–259. [Google Scholar] [CrossRef]
- Waddell, P. Integrated Land Use and Transportation Planning and Modelling: Addressing Challenges in Research and Practice. Transp. Rev. 2011, 31, 209–229. [Google Scholar] [CrossRef]
District | Area (Ha) | Average Height in 2007 and before | Average Height in 2014 | Population in 2007 | Population in 2014 | Density in 2007 (P/Ha) | Density in 2014 | Change (%) |
---|---|---|---|---|---|---|---|---|
District 1 | 587.28 | 3 floors | 6 floors | 80,145 | 102,308 | 136.47 | 174.21 | 27.65 |
District 2 | 888.49 | 3 floors | 7 floors | 95,185 | 118,380 | 107.13 | 133.24 | 24.37 |
District 3 | 949.15 | 3 floors | 6 floors | 34,181 | 43,634 | 36.01 | 45.97 | 27.66 |
District | Total Road Length (m) | Population in 2007 | Population in 2014 | DRDI in 2007 | DRDI in 2014 | Change (%) |
---|---|---|---|---|---|---|
District 1 | 79,672 | 80,145 | 102,308 | 0.99 | 0.78 | –21.7 |
District 2 | 134,632 | 95,185 | 118,380 | 1.41 | 1.14 | –19.6 |
District 3 | 25,880 | 34,181 | 43,634 | 0.76 | 0.59 | –21.7 |
District | Total Residential Floor Area in 2007 (m2) | Total Residential Floor Area in 2014 (m2) | Parking Standard (Parking Spaces/m2) | DPI in 2007 | DPI in 2014 | Change (%) |
---|---|---|---|---|---|---|
District 1 | 2,495,688 | 4,991,376 | 150 | 16,638 | 33,276 | 100 |
District 2 | 3,888,118 | 9,072,275 | 150 | 25,921 | 60,482 | 133 |
District 3 | 856,983 | 1,713,967 | 150 | 5713 | 11,426 | 100 |
District | Total Residential Floor Area in 2007 (m2) | Total Residential Floor Area in 2014 (m2) | Morning Peak Trip Production Rate (Trips/100 m2) | Evening Peak Trip Production Rate (Trips/100 m2) | DTI 2007 Morning Peak | DTI 2007 Evening Peak | DTI 2014 Morning Peak | Change (%) | DTI 2014 Evening Peak | Change (%) |
---|---|---|---|---|---|---|---|---|---|---|
District 1 | 2,495,688 | 4,991,376 | 0.0073 | 0.0077 | 18,219 | 19,217 | 36,437 | 100 | 38,434 | 100 |
District 2 | 3,888,118 | 9,072,275 | 0.0073 | 0.0077 | 28,383 | 29,939 | 66,228 | 133 | 69,857 | 133 |
District 3 | 856,983 | 1,713,967 | 0.0073 | 0.0077 | 6256 | 6599 | 12,512 | 100 | 13,198 | 100 |
Population | Total Residential Floor Area (m2) | Population Density (Persons/Hectare) | Average Building Height | DRDI | DPI | DTI a | DTI b | ||
---|---|---|---|---|---|---|---|---|---|
Population | Pearson Correlation | 1 | 0.888 * | 0.874 * | 0.390 | 0.646 | 0.888 * | 0.894 * | 0.888 * |
Sig. (2-tailed) | 0.018 | 0.023 | 0.445 | 0.166 | 0.018 | 0.016 | 0.018 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
Total Residential Floor area (m2) | Pearson Correlation | 0.888 * | 1 | 0.640 | 0.654 | 0.475 | 1.000 ** | 0.999 ** | 1.000 ** |
Sig. (2-tailed) | 0.018 | 0.171 | 0.159 | 0.341 | 0.000 | 0.000 | 0.000 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
Population Density (persons/hectare) | Pearson Correlation | 0.874 * | 0.640 | 1 | 0.273 | 0.372 | 0.640 | 0.658 | 0.640 |
Sig. (2-tailed) | 0.023 | 0.171 | 0.601 | 0.467 | 0.171 | 0.155 | 0.171 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
Average Building Height | Pearson Correlation | 0.390 | 0.654 | 0.273 | 1 | ‒0.281 | 0.654 | 0.662 | 0.654 |
Sig. (2-tailed) | 0.445 | 0.159 | 0.601 | 0.589 | 0.159 | 0.152 | 0.159 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
DRDI | Pearson Correlation | 0.646 | 0.475 | 0.372 | ‒0.281 | 1 | 0.475 | 0.461 | 0.475 |
Sig. (2-tailed) | 0.166 | 0.341 | 0.467 | 0.589 | 0.341 | 0.357 | 0.341 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
DPI | Pearson Correlation | 0.888 * | 1.000 ** | 0.640 | 0.654 | 0.475 | 1 | 0.999 ** | 1.000 ** |
Sig. (2-tailed) | 0.018 | 0.000 | 0.171 | 0.159 | 0.341 | 0.000 | 0.000 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
DTI a | Pearson Correlation | 0.894 * | 0.999 ** | 0.658 | 0.662 | 0.461 | 0.999 ** | 1 | 0.999 ** |
Sig. (2-tailed) | 0.016 | 0.000 | 0.155 | 0.152 | 0.357 | 0.000 | 0.000 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
DTI b | Pearson Correlation | 0.888 * | 1.000 ** | 0.640 | 0.654 | 0.475 | 1.000 ** | 0.999 ** | 1 |
Sig. (2-tailed) | 0.018 | 0.000 | 0.171 | 0.159 | 0.341 | 0.000 | 0.000 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Paired Differences | t | df | Sig. (2-tailed) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | ||||||
Lower | Upper | ||||||||
Pair 1 | Population in 2007–opulation in 2014 | ‒18,270.33333 | 7653.44898 | 4418.72083 | ‒37,282.55458 | 741.88791 | ‒4.135 | 2 | 0.054 |
Pair 2 | Total residential floor area in 2007 (m2)– otal residential floor area in 2014 (m2) | ‒2,845,609.66667 | 2,184,706.03 | 1,261,340.61 | ‒8,272,720.29639 | 2,581,500.96 | ‒2.256 | 2 | 0.153 |
Pair 3 | Population density (persons/hectare) in 2007–opulation density (persons/hectare) in 2014 | ‒24.60333 | 13.95115 | 8.0547 | ‒59.25992 | 10.05325 | ‒3.055 | 2 | 0.093 |
Pair 4 | Average building height in 2007–verage building height in 2014 | ‒3.33333 | 0.57735 | 0.33333 | ‒4.76755 | ‒1.89912 | ‒10.000 | 2 | 0.01 |
Pair 5 | DRDI-2007–RDI-2014 | 0.21667 | 0.05033 | 0.02906 | 0.09163 | 0.3417 | 7.456 | 2 | 0.018 |
Pair 6 | DPI-2007–PI-2014 | ‒18,970.66667 | 14,564.78 | 8408.97886 | ‒55,151.58251 | 17,210.25 | ‒2.256 | 2 | 0.153 |
Pair 7 | DTI a-2007–TI a-2014 | ‒21,438.66667 | 15,830.01 | 9139.46115 | ‒60,762.59413 | 17,885.26 | ‒2.346 | 2 | 0.144 |
Pair 8 | DTI b-2007–TI b-2014 | ‒21,911.33333 | 16,822.11 | 9712.25196 | ‒63,699.78074 | 19,877.11 | ‒2.256 | 2 | 0.153 |
Mean | Bootstrap a | ||||||
---|---|---|---|---|---|---|---|
Bias | Std. Error | Sig. (2-Tailed) | 95% Confidence Interval | ||||
Lower | Upper | ||||||
Pair 1 | Population in 2007‒Population in 2014 | ‒18,270.33333 | 13.92568 b | 3117.93061 b | 0.247 b | ‒22,851.00000 b | ‒13,689.66667 b |
Pair 2 | Total residential floor area in 2007 (m2) – otal residential floor area in 2014 (m2) | ‒2,845,609.66667 | 836.20233 b | 901,652.07649 b | 0.130 b | ‒4,288,000.66667 b | ‒1,403,218.66667 b |
Pair 3 | Population density (persons/hectare) in 2007–opulation density (persons/hectare) in 2014 | ‒24.60333 | 0.03565 b | 5.68424 b | 0.001 b | ‒33.86333 b | ‒15.34333 b |
Pair 4 | Average building height in 2007–verage building height in 2014 | ‒3.33333 | ‒0.11702 c | 0.15922 c | 0.002 c | ‒3.66667 c | ‒3.33333 c |
Pair 5 | DRDI-2007–RDI-2014 | 0.21667 | ‒0.00002 b | 0.02076 b | 0.001 b | 0.18333 b | 0.25000 b |
Pair 6 | DPI-2007–DPI-2014 | ‒18,970.66667 | 5.57508 b | 6011.04202 b | 0.130 b | ‒28,586.66667 b | ‒9354.66667 b |
Pair 7 | DTI a-2007–DTI a-2014 | ‒21,438.66667 | 9.10173 b | 6521.03174 b | 0.001 b | ‒31,968.33333 b | ‒10,909.00000 b |
Pair 8 | DTI b-2007–DTI b-2014 | ‒21,911.33333 | 6.43881 b | 6942.67000 b | 0.130 b | ‒33,017.66667 b | ‒10,805.00000 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljoufie, M. The Impact Assessment of Increasing Population Density on Jeddah Road Transportation Using Spatial-Temporal Analysis. Sustainability 2021, 13, 1455. https://doi.org/10.3390/su13031455
Aljoufie M. The Impact Assessment of Increasing Population Density on Jeddah Road Transportation Using Spatial-Temporal Analysis. Sustainability. 2021; 13(3):1455. https://doi.org/10.3390/su13031455
Chicago/Turabian StyleAljoufie, Mohammed. 2021. "The Impact Assessment of Increasing Population Density on Jeddah Road Transportation Using Spatial-Temporal Analysis" Sustainability 13, no. 3: 1455. https://doi.org/10.3390/su13031455
APA StyleAljoufie, M. (2021). The Impact Assessment of Increasing Population Density on Jeddah Road Transportation Using Spatial-Temporal Analysis. Sustainability, 13(3), 1455. https://doi.org/10.3390/su13031455