Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review
Abstract
:1. Introduction
2. Electrical Review
2.1. Mismatch Faults and MPPT
2.2. Short Circuit, Open Circuit, and Asymmetrical Faults
2.3. Web and Wireless based Fault Detection Techniques
3. Artificial Intelligence Based Analysis
4. Thermal Imaging-Based Analysis
5. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | |
I | Current |
ISC | Short Circuit Current |
IMPP | Maximum Power Point Current |
LCM | Miscellaneous Capture Losses |
LCT | Thermal Capture Losses |
FF | Fill Factor |
P | Power |
V | Voltage |
VOC | Open Circuit Voltage |
VMPP | Maximum Power Point Voltage |
Acronyms | |
ABC | Artificial Bee Colony |
AC | Alternating Current |
ACO | Ant Colony |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
AMPPT | Adaptive Maximum Power Point Tracking |
APRE | Absolute Performance Ratio Error |
ATIR | Attenuated Total Reflectance Infrared Microscopy |
BL | Bridge-Linked |
DBMS | Database Management System |
DC | Direct Current |
ELM | Extreme Learning Machine |
ESM | Earth Capacitance Measurement |
EMWA | Exponentially Weighted Moving Average |
FL | Fuzzy Logic |
FDOG | First Order Derivative of Gaussian |
FPGA | Field Programmable Gate Array |
GA | Genetic Algorithm |
GCPV | Grid-Connected Photovoltaic |
GPS | Global Positioning System |
IRT | Infrared Thermography |
PID | Induced Potential |
IMD | Insulation Monitoring Device |
ISE | Integrated Software Environment |
IMICV | Inverter Matrix Impedance Current Vector |
KELM | Kernel Extreme Learning Machine |
LCOE | Levelized Cost of Energy |
MSE | Mean Square Error |
MIPC | Model Integrated PV and Converter |
MPPT | Maximum Power Point Tracking |
NE | Normalized Error |
OC | Open Circuit |
ODM | One Diode Model |
PR | Performance Ratio |
P&O | Perturbation-and-Observation |
PV | Photovoltaic |
PNN | Probabilistic Neural Network |
PSO | Particle Swarm Optimization |
RF | Radio Frequency |
RCM | residual current detector |
RDBMS | Relational Database Management System |
SA | Simulated Annealing |
SC | Short Circuit |
SEM | Scanning Electron Microscopy |
STC | Standard Test Conditions |
SVM | Support Vector Machine |
SLIC | Simple Linear Iterative Clustering |
SA-RBF | Simulated Annealing Radial Basis Function |
GISTEL | Solar Radiation by Tele detection |
TCT | Total Cross Tied |
TDR | Time-domain Reflectometry |
XSG | Xilinx System Generator |
WSN | Wireless Sensor Networking |
References
- Fan, S.; Hyndman, R.J. Short-Term Load Forecasting Based on a Semi-Parametric Additive Model. IEEE Trans. Power Syst. 2012, 27, 134–141. [Google Scholar] [CrossRef] [Green Version]
- IEA International Energy Agency. Trends 2018—In Photovoltaic Applications. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/2018_iea-pvps_report_2018.pdf (accessed on 23 November 2020).
- Bp. Statistical Review of World Energy. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/solar-energy.html (accessed on 23 November 2020).
- Huld, T.; Müller, R.; Gambardella, A. A new solar radiation database for estimating PV performance in Europe and Africa. Sol. Energy 2012, 86, 1803–1815. [Google Scholar] [CrossRef]
- Brown, L.R. The Great Transition: Shifting from Fossil Fuels to Solar and Wind Energy, 1st ed.; WW Norton & Company: New York, NY, USA, 2015. [Google Scholar]
- Fraunhofer-Institut für Solare Energiesysteme ISE. Photovoltaics-Report. 2018. Available online: www.ise.fraunhofer.de (accessed on 23 November 2020).
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Anderson, B.; Anderson, R. Fundamentals of Semiconductor Devices; McGraw-Hill, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Araneo, R.; Lammens, S.; Grossi, M.; Bertone, S. EMC Issues in High-Power Grid-Connected Photovoltaic Plants. IEEE Trans. Electromagn. Compat. 2009, 51, 639–648. [Google Scholar] [CrossRef]
- Wohlgemuth, J.H.; Kurtz, S. Using accelerated testing to predict module reliability. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 003601–003605. [Google Scholar]
- Chamberlin, C.E.; Rocheleau, M.A.; Marshall, M.W.; Reis, A.M.; Coleman, N.T.; Lehman, P.A. Comparison of PV module performance before and after 11 and 20 years of field exposure. In Proceedings of the 37th IEEE 2011 Photovoltaic Specialists Conference (PVSC), Seattle, WA, USA, 19–24 June 2011. [Google Scholar]
- Nehme, B.; Msirdi, N.K.; Namaane, A.; Akiki, T. Analysis and Characterization of Faults in PV Panels. Energy Procedia 2017, 111, 1020–1029. [Google Scholar] [CrossRef]
- Hariharan, R.; Chakkarapani, M.; Ilango, G.S. Challenges in the detection of line-line faults in PV arrays due to partial shading. In Proceedings of the 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, Tamil Nadu, India, 7–8 April 2016; pp. 23–27. [Google Scholar]
- Alam, M.K.; Khan, F.H.; Johnson, J.; Flicker, J. PV faults: Overview, modeling, prevention and detection techniques. In Proceedings of the 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), Salt Lake City, UT, USA, 23–26 June 2013; pp. 1–7. [Google Scholar]
- Alam, M.K.; Khan, F.; Johnson, J.; Flicker, J. A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques. IEEE J. Photovolt. 2015, 5, 982–997. [Google Scholar] [CrossRef]
- Whaley, C. Best Practices in Photovoltaic System Operations and Maintenance, 2nd ed.; NREL: Golden, CO, USA, 2016. [CrossRef] [Green Version]
- Klise, G.T.; Balfour, J.R.; Keating, T.J. Solar PV O&M Standards and Best Practices–Existing Gaps and Improvement Efforts; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2014.
- Stellbogen, D. Use of PV circuit simulation for fault detection in PV array fields. In Proceedings of the Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference 1993 (Cat. No.93CH3283-9), Louisville, KY, USA, 10–14 May 1993; pp. 1302–1307. [Google Scholar]
- Ventura, C.; Tina, G.M. Development of Models for On-line Diagnostic and Energy Assessment Analysis of PV Power Plants: The Study Case of 1 MW Sicilian PV Plant. Energy Procedia 2015, 83, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Ventura, C.; Tina, G.M. Utility scale photovoltaic plant indices and models for on-line monitoring and fault detection purposes. Electr. Power Syst. Res. 2016, 136, 43–56. [Google Scholar] [CrossRef]
- Spertino, F.; Ciocia, A.; Di Leo, P.; Tommasini, R.; Berardone, I.; Corrado, M.; Infuso, A.; Paggi, M. A power and energy procedure in operating photovoltaic systems to quantify the losses according to the causes. Sol. Energy 2015, 118, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Triki-Lahiani, A.; AbdelGhani, A.B.-B.; Slama-Belkhodja, I. Fault detection and monitoring systems for photovoltaic installations: A review. Renew. Sustain. Energy Rev. 2018, 82, 2680–2692. [Google Scholar] [CrossRef]
- Saleh, M.U.; Deline, C.; Benoit, E.J.; Kingston, S.R.; Harley, J.B.; Furse, C.M.; Scarpulla, M.A. Detection and Localization of Damaged Photovoltaic Cells and Modules Using Spread Spectrum Time Domain Reflectometry. IEEE J. Photovolt. 2020, 11, 195–201. [Google Scholar] [CrossRef]
- Takashima, T.; Yamaguchi, J.; Otani, K.; Kato, K.; Ishida, M. Experimental Studies of Failure Detection Methods in PV Module Strings. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; Volume 2, pp. 2227–2230. [Google Scholar]
- Vargas, J.; Goss, B.; Gottschalg, R. Large scale PV systems under non-uniform and fault conditions. Sol. Energy 2015, 116, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Chandel, S.S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: A re-view. Renew. Sustain. Energy Rev. 2013, 27, 753–767. [Google Scholar] [CrossRef]
- Nguyen, X.H. Matlab/Simulink Based Modeling to Study Effect of Partial Shadow on Solar Photovoltaic Array. Environ. Syst. Res. 2015, 4, 20. [Google Scholar] [CrossRef]
- Patel, H.; Agarwal, V. MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics. IEEE Trans. Energy Convers. Manag. 2008, 23, 302–310. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Lehman, B. Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions. In Proceedings of the 2006 IEEE Workshops on Computers in Power Electronics, Troy, NY, USA, 16–19 July 2006; pp. 295–299. [Google Scholar] [CrossRef]
- Hammond, R.; Srinivasan, D.; Harris, A.; Whitfield, K.; Wohlgemuth, J. Effects of soiling on PV module and radiometer per-formance. In Proceedings of the Photovoltaic Specialists Conference Record of the Twenty-Sixth IEEE 1997, Anaheim, CA, USA, 29 September–3 October 1997; pp. 1121–1124. [Google Scholar]
- Heidari, N.; Gwamuri, J.; Townsend, T.; Pearce, J.M. Impact of Snow and Ground Interference on Photovoltaic Electric System Performance. IEEE J. Photovolt. 2015, 5, 1680–1685. [Google Scholar] [CrossRef] [Green Version]
- Wendlandt, S.; Drobisch, A.; Buseth, T.; Krauter, S.; Grunow, P. Hot spot risk analysis on silicon cell modules. In Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6–10 September 2010. [Google Scholar]
- Zhao, Y.; Lehman, B.; De Palma, J.-F.; Mosesian, J.; Lyons, R. Challenges to overcurrent protection devices under line-line faults in solar photovoltaic arrays. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 20–27. [Google Scholar] [CrossRef]
- Zhao, Y.; De Palma, J.F.; Mosesian, J.; Lyons, R.; Lehman, B. Line–line fault analysis and protection challenges in solar pho-tovoltaic arrays. IEEE Trans. Ind. Electron. 2013, 60, 3784–3795. [Google Scholar] [CrossRef]
- Xia, K.; He, Z.; Yuan, Y.; Wang, Y.; Xu, P. An arc fault detection system for the household photovoltaic inverter according to the DC bus currents. In Proceedings of the 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya City, Thailand, 25–28 October 2015; pp. 1687–1690. [Google Scholar]
- Spooner, E.D.; Wilmot, N. Safety issues, arcing and fusing in PV arrays. In Proceedings of the 3rd International Solar Energy Society Conference—Asia Pacific Region (ISES-AP-08) Incorporating the 46th ANZSES Conference, Sydney, Australia, 25–28 November 2008. [Google Scholar]
- Zhao, Y. Fault Analysis in Solar Photovoltaic Arrays. Master’s Thesis, Northeastern University, Boston, MA, USA, 2010. [Google Scholar]
- Davarifar, M.; Rabhi, A.; El Hajjaji, A. Comprehensive Modulation and Classification of Faults and Analysis Their Effect in DC Side of Photovoltaic System. Energy Power Eng. 2013, 5, 230–236. [Google Scholar] [CrossRef]
- Makrides, G.; Zinsser, B.; Georghiou, G.E.; Schubert, M.; Werner, J.H. Degradation of different photovoltaic technologies under field conditions. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010; pp. 002332–002337. [Google Scholar]
- Akram, M.N.; Lotfifard, S. Modeling and Health Monitoring of DC Side of Photovoltaic Array. IEEE Trans. Sustain. Energy 2015, 6, 1245–1253. [Google Scholar] [CrossRef]
- Hua, C.-C.; Ku, P.-K. Implementation of a Stand-Alone Photovoltaic Lighting System with MPPT, Battery Charger and High Brightness LEDs. In Proceedings of the 2005 International Conference on Power Electronics and Drives Systems, Kuala Lumpur, Malaysia, 18 April 2006; pp. 1601–1605. [Google Scholar]
- Wang, Y.; Li, Y.; Ruan, X. High-Accuracy and Fast-Speed MPPT Methods for PV String Under Partially Shaded Conditions. IEEE Trans. Ind. Electron. 2016, 63, 235–245. [Google Scholar] [CrossRef]
- Schimpf, F.; Norum, L.E. Recognition of electric arcing in the DC-wiring of photovoltaic systems. In Proceedings of the INTELEC 2009—31st International Telecommunications Energy Conference, Incheon, Korea, 18–22 October 2009; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Omer, A. Renewable energy resources for electricity generation in Sudan. Renew. Sustain. Energy Rev. 2007, 11, 1481–1497. [Google Scholar] [CrossRef]
- Xia, J.; Guo, Y.; Dai, B.; Zhang, X. Sensor fault diagnosis and system reconfiguration approach for an electric traction PWM rectifier based on sliding mode observer. IEEE Trans. Ind. Appl. 2017, 53, 4768–4778. [Google Scholar] [CrossRef]
- Haeberlin, H.; Beutler, C. Normalized representation of energy and power for analysis of performance and on-line error de-tection in PV-systems. In Proceedings of the 13th European Photovoltaic Solar Energy Conference, Nice, France, 23–27 October 1995; p. 934. [Google Scholar]
- Drews, A.; De Keizer, A.C.; Beyer, H.G.; Lorenz, E.; Betcke, J.; Van Sark, W.G.; Heydenreich, W.; Wiemken, E.; Stettler, S.; Toggweiler, P.; et al. Monitoring and remote failure detection of grid-connected PV systems based on satellite observa-tions. Sol. Energy 2007, 81, 548–564. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, S.; Da Silva, M.A.; Chouder, A.; Guasch, D.; Karatepe, E. New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators. Energy Convers. Manag. 2014, 86, 241–249. [Google Scholar] [CrossRef]
- Stein, J.S.; Klise, G. Models Used to Assess the Performance of Photovoltaic Systems; Sandia National Laboratories: Albuquerque, CA, USA, 2009. [CrossRef] [Green Version]
- Espinoza-Trejo, D.R.; Diez, E.; Barcenas, E.; Verde, C.; Espinosa-Perez, G.; Bossio, G. Model-based Fault Detection and Isolation in a MPPT BOOST converter for photovoltaic systems. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 2189–2194. [Google Scholar]
- Penkey, P.; Alhajeri, F.; Johnson, B.K. Modeling, analysis and detection of faults in grid-connected PV systems. In Proceedings of the 2016 10th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, Tamil Nadu, India, 7–8 January 2016; pp. 1–5. [Google Scholar]
- Ramli, M.A.M.; Twaha, S.; Ishaque, K.; Al-Turki, Y.A. A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renew. Sustain. Energy Rev. 2017, 67, 144–159. [Google Scholar] [CrossRef]
- Karatepe, E.; Hiyama, T.; Boztepe, M.; Colak, M. Voltage based power compensation system for photovoltaic generation system under partially shaded insolation conditions. Energy Convers. Manag. 2008, 49, 2307–2316. [Google Scholar] [CrossRef]
- Gökmen, N.; Karatepe, E.; Ugranli, F.; Silvestre, S. Voltage band based global MPPT controller for photovoltaic systems. Sol. Energy 2013, 98, 322–334. [Google Scholar] [CrossRef]
- Chong, B.; Zhang, L. Controller design for integrated PV–converter modules under partial shading conditions. Sol. Energy 2013, 92, 123–138. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Salmasi, F.R. Determination of maximum solar power under shading and converter faults—A prerequisite for failure-tolerant power management systems. Simul. Model. Pr. Theory 2016, 62, 14–30. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, Y.; Chen, Y. Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions. Renew. Energy 2014, 66, 337–345. [Google Scholar] [CrossRef]
- Toodeji, H.; Aghaei, S. Domestic PV System with Feedback Linearization-Based Control Strategy for Module-Level MPPT under Partial Shading Condition. J. Mod. Power Systems. Clean Energy 2020, 1–10. [Google Scholar] [CrossRef]
- Fadhel, S.; Diallo, D.; Delpha, C.; Migan, A.; Bahri, I.; Trabelsi, M.; Mimouni, M.F. Maximum power point analysis for partial shading detection and identification in photovoltaic systems. Energy Convers. Manag. 2020, 224, 113374. [Google Scholar] [CrossRef]
- Solórzano, J.; Egido, M. Automatic fault diagnosis in PV systems with distributed MPPT. Energy Convers. Manag. 2013, 76, 925–934. [Google Scholar] [CrossRef]
- Silvestre, S.; Boronat, A.; Chouder, A. Study of bypass diodes configuration on PV modules. Appl. Energy 2009, 86, 1632–1640. [Google Scholar] [CrossRef]
- Schill, C.; Brachmann, S.; Koehl, M. Impact of soiling on IV -curves and efficiency of PV-modules. Sol. Energy 2015, 112, 259–262. [Google Scholar] [CrossRef]
- Pavan, A.M.; Tessarolo, A.; Barbini, N.; Mellit, A.; Lughi, V. The effect of manufacturing mismatch on energy production for large-scale photovoltaic plants. Sol. Energy 2015, 117, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.H.; Lee, J.I.; Song, H.-E.; Ju, Y.C.; Ko, S.W.; Jung, Y.-S.; Kang, G.H. Classification conditions of cells to reduce cell-to-module conversion loss at the production stage of PV modules. Renew. Energy 2017, 103, 582–593. [Google Scholar] [CrossRef]
- Pareek, S.; Chaturvedi, N.; Dahiya, R. Optimal interconnections to address partial shading losses in solar photovoltaic arrays. Sol. Energy 2017, 155, 537–551. [Google Scholar] [CrossRef]
- Braun, H.; Buddha, S.; Krishnan, V.; Tepedelenlioglu, C.; Spanias, A.; Banavar, M.; Srinivasan, D. Topology reconfiguration for optimization of photovoltaic array output. Sustain. Energy Grids Netw. 2016, 6, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, N.; Zakaria, N.Z.; Shaari, S.; Omar, A.M. Threshold value of DC array current and DC string voltage for fault detection in grid-connected photovoltaic system. Sci. Res. J. 2020, 17, 1–13. [Google Scholar] [CrossRef]
- Silvestre, S.; Kichou, S.; Chouder, A.; Nofuentes, G.; Karatepe, E. Analysis of current and voltage indicators in grid connected PV (photovoltaic) systems working in faulty and partial shading conditions. Energy 2015, 86, 42–50. [Google Scholar] [CrossRef]
- Falvo, M.; Capparella, S. Safety issues in PV systems: Design choices for a secure fault detection and for preventing fire risk. Case Stud. Fire Saf. 2015, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Flicker, J.; Johnson, J. Photovoltaic ground fault detection recommendations for array safety and operation. Sol. Energy 2016, 140, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Wirth, G.; Schroedter-Homscheidt, M.; Zehner, M.; Becker, G. Satellite-based snow identification and its impact on monitoring photovoltaic systems. Sol. Energy 2010, 84, 215–226. [Google Scholar] [CrossRef]
- Tadj, M.; Benmouiza, K.; Cheknane, A. An innovative method based on satellite image analysis to check fault in a PV system lead–acid battery. Simul. Model. Pr. Theory 2014, 47, 236–247. [Google Scholar] [CrossRef]
- Firth, S.K.; Lomas, K.; Rees, S. A simple model of PV system performance and its use in fault detection. Sol. Energy 2010, 84, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Celik, B.; Karatepe, E.; Gökmen, N.; Silvestre, S. A virtual reality study of surrounding obstacles on BIPV systems for estimation of long-term performance of partially shaded PV arrays. Renew. Energy 2013, 60, 402–414. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M.; Chong, B.; Zhang, L. Seven indicators variations for multiple PV array configurations under partial shading and faulty PV conditions. Renew. Energy 2017, 113, 438–460. [Google Scholar] [CrossRef] [Green Version]
- Dolara, A.; Lazaroiu, G.C.; Leva, S.; Manzolini, G. Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy 2013, 55, 466–475. [Google Scholar] [CrossRef]
- Peng, L.; Sun, Y.; Meng, Z. An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition. J. Power Sources 2014, 248, 621–631. [Google Scholar] [CrossRef]
- Chouder, A.; Silvestre, S.; Taghezouit, B.; Karatepe, E. Monitoring, modelling and simulation of PV systems using LabVIEW. Sol. Energy 2013, 91, 337–349. [Google Scholar] [CrossRef]
- Olamaei, J.; Ebrahimi, S.; Moghassemi, A.; Moghassemi, A. Compensation of voltage sag caused by partial shading in grid-connected PV system through the three-level SVM inverter. Sustain. Energy Technol. Assess. 2016, 18, 107–118. [Google Scholar] [CrossRef]
- Celik, B.; Karatepe, E.; Silvestre, S.; Gökmen, N.; Chouder, A. Analysis of spatial fixed PV arrays configurations to maximize energy harvesting in BIPV applications. Renew. Energy 2015, 75, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Hachana, O.; Tina, G.M.; Hemsas, K.E. PV array fault DiagnosticTechnique for BIPV systems. Energy Build. 2016, 126, 263–274. [Google Scholar] [CrossRef]
- Drif, M.; Mellit, A.; Aguilera, J.; Pérez, P. A comprehensive method for estimating energy losses due to shading of GC-BIPV systems using monitoring data. Sol. Energy 2012, 86, 2397–2404. [Google Scholar] [CrossRef]
- Bressan, M.; El Basri, Y.; Galeano, A.; Alonso, C. A shadow fault detection method based on the standard error analysis of I-V curves. Renew. Energy 2016, 99, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Shimakage, T.; Nishioka, K.; Yamane, H.; Nagura, M.; Kudo, M. Development of fault detection system in PV system. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011; pp. 1–5. [Google Scholar]
- Baba, M.; Shimakage, T.; Takeuchi, N. Examination of fault detection technique in PV systems. In Proceedings of the 2013 35th International Telecommunications Energy Conference Smart Power and Efficiency’(INTELEC), Frankfurt, Germany, 13–17 October 2013; pp. 1–4. [Google Scholar]
- Davarifar, M.; Rabhi, A.; El-Hajjaji, A.; Dahmane, M. Real-time model base fault diagnosis of PV panels using statistical signal processing. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20–23 October 2013; pp. 599–604. [Google Scholar]
- Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M. Simultaneous fault detection algorithm for grid-connected photovoltaic plants. IET Renew. Power Gener. 2017, 11, 1565–1575. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V. Fault detection algorithm for grid-connected photovoltaic plants. Sol. Energy 2016, 137, 236–245. [Google Scholar] [CrossRef]
- Agamy, M.S.; Harfman-Todorovic, M.; Elasser, A. Ground fault and insulation degradation detection and localization in PV plants. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa Bay, FL, USA, 16–21 June 2013; pp. 2840–2844. [Google Scholar]
- Bressan, M.; El-Basri, Y.; Alonso, C. A new method for fault detection and identification of shadows based on electrical sig-nature of defects. In Proceedings of the 2015 17th European Power Electronics and Applications (EPE’15 ECCE-Europe) Conference, Geneva, Switzerland, 2–10 September 2015; pp. 1–8. [Google Scholar]
- Platon, R.; Martel, J.; Woodruff, N.; Chau, T.Y. Online Fault Detection in PV Systems. IEEE Trans. Sustain. Energy 2015, 6, 1200–1207. [Google Scholar] [CrossRef]
- Gokmen, N.; Karatepe, E.; Silvestre, S.; Celik, B.; Ortega, P. An efficient fault diagnosis method for PV systems based on op-erating voltage-window. Energy Convers. Manag. 2013, 73, 350–360. [Google Scholar] [CrossRef]
- Silvestre, S.; Mora-López, L.; Chouder, A.; Sánchez-Pacheco, F.; Domínguez-Pumar, M. Remote supervision and fault detection on OPC monitored PV systems. Sol. Energy 2016, 137, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Yahyaoui, I.; Segatto, M.E. A practical technique for on-line monitoring of a photovoltaic plant connected to a single-phase grid. Energy Convers. Manag. 2017, 132, 198–206. [Google Scholar] [CrossRef]
- Hazra, A.; Das, S.; Basu, M. An efficient fault diagnosis method for PV systems following string current. J. Clean. Prod. 2017, 154, 220–232. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, B.; Song, X.; Tian, G.; Li, K.; He, X. Photovoltaic fault detection using a parameter-based model. Sol. Energy 2013, 96, 96–102. [Google Scholar] [CrossRef]
- Garoudja, E.; Harrou, F.; Sun, Y.; Kara, K.; Chouder, A.; Silvestre, S. Statistical fault detection in photovoltaic systems. Sol. Energy 2017, 150, 485–499. [Google Scholar] [CrossRef]
- Almeida, P.M.; Monteiro, K.M.; Barbosa, P.G.; Duarte, J.L.; Ribeiro, P.F. Improvement of PV grid-tied inverters operation under asymmetrical fault conditions. Sol. Energy 2016, 133, 363–371. [Google Scholar] [CrossRef]
- Takashima, T.; Yamaguchi, J.; Otani, K.; Oozeki, T.; Kato, K.; Ishida, M. Experimental studies of fault location in PV module strings. Sol. Energy Mater. Sol. Cells 2009, 93, 1079–1082. [Google Scholar] [CrossRef]
- Chouder, A.; Silvestre, S. Automatic supervision and fault detection of PV systems based on power losses analysis. Energy Convers. Manag. 2010, 51, 1929–1937. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, A.Q. Model-based fault detection of hybrid fuel cell and photovoltaic direct current power sources. J. Power Sources 2011, 196, 5197–5204. [Google Scholar] [CrossRef]
- Silvestre, S.; Chouder, A.; Karatepe, E. Automatic fault detection in grid connected PV systems. Sol. Energy 2013, 94, 119–127. [Google Scholar] [CrossRef]
- Chine, W.; Mellit, A.; Pavan, A.M.; Kalogirou, S.A. Fault detection method for grid-connected photovoltaic plants. Renew. Energy 2014, 66, 99–110. [Google Scholar] [CrossRef]
- Trillo-Montero, D.; Santiago, I.; Luna-Rodriguez, J.; Real-Calvo, R. Development of a software application to evaluate the performance and energy losses of grid-connected photovoltaic systems. Energy Convers. Manag. 2014, 81, 144–159. [Google Scholar] [CrossRef]
- Mallor, F.; León, T.; De Boeck, L.; Van Gulck, S.; Meulders, M.; Van der Meerssche, B. A method for detecting malfunctions in PV solar panels based on electricity production monitoring. Sol. Energy 2017, 153, 51–63. [Google Scholar] [CrossRef]
- Djordjevic, S.; Parlevliet, D.; Jennings, P. Detectable faults on recently installed solar modules in Western Australia. Renew. Energy 2014, 67, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Wang, Y.; Zhu, D.; Chang, N.; Pedram, M. Online fault detection and tolerance for photovoltaic energy harvesting systems. In Proceedings of the International Conference on Computer-Aided Design, San Jose, CA, USA, 5–9 November 2012; pp. 1–6. [Google Scholar]
- Ali, M.H.; Rabhi, A.; El Hajjaji, A.; Tina, G.M. Real Time Fault Detection in Photovoltaic Systems. Energy Procedia 2017, 111, 914–923. [Google Scholar] [CrossRef]
- Moura, A.P.; Lopes, J.A.P.; De Moura, A.A.; Sumaili, J.; Moreira, C. IMICV fault analysis method with multiple PV grid-connected inverters for distribution systems. Electr. Power Syst. Res. 2015, 119, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Davarifar, M.; Rabhi, A.; Hajjaji, A.; Kamal, E.; Daneshifar, Z. Partial shading fault diagnosis in PV system with discrete wavelet transform (DWT). In Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–22 October 2014; pp. 810–814. [Google Scholar]
- Kim, I.-S. On-line fault detection algorithm of a photovoltaic system using wavelet transform. Sol. Energy 2016, 126, 137–145. [Google Scholar] [CrossRef]
- Madeti, S.R.; Singh, S. Online fault detection and the economic analysis of grid-connected photovoltaic systems. Energy 2017, 134, 121–135. [Google Scholar] [CrossRef]
- Madeti, S.R.; Singh, S. Online modular level fault detection algorithm for grid-tied and off-grid PV systems. Sol. Energy 2017, 157, 349–364. [Google Scholar] [CrossRef]
- Le, P.T.; Tsai, H.-L.; Lam, T.H. A wireless visualization monitoring, evaluation system for commercial photovoltaic modules solely in MATLAB/Simulink environment. Sol. Energy 2016, 140, 1–11. [Google Scholar] [CrossRef]
- Ayesh, S.; Ramesh, P.; Ramakrishnan, S. Design of wireless sensor network for monitoring the performance of photovoltaic panel. In Proceedings of the 2017 Trends in Industrial Measurement and Automation (TIMA), Chennai, India, 6–8 January 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Chao, K.-H.; Chen, C.-T. A remote supervision fault diagnosis meter for photovoltaic power generation systems. Measurement 2017, 104, 93–104. [Google Scholar] [CrossRef]
- Sukwhan, K.O.; Youngseok, J.U.; Gi-Hwan, K.A.; Youngchul, J.U.; Hwang, H.; Junghun, S.O.; Hee-Eun, S.O. Korea Advanced Energy Research Institute, Assignee. Photovoltaic System Having Fault Diagnosis Apparatus, and Fault Diagnosis Method for Photovoltaic System. U.S. Patent 15/309,215, 19 January 2015. [Google Scholar]
- Raymond, D.W.; Stofer, G. Solar Photovoltaic Modules with Integral Wireless Telemetry. U.S. Patent 12/800,917, 26 May 2010. [Google Scholar]
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.A. ANFIS-based modelling for photovoltaic power supply system: A case study. Renew. Energy 2011, 36, 250–258. [Google Scholar] [CrossRef]
- Youssef, A.; El-Telbany, M.; Zekry, A. The role of artificial intelligence in photo-voltaic systems design and control: A review. Renew. Sustain. Energy Rev. 2017, 78, 72–79. [Google Scholar] [CrossRef]
- Rezgui, W.; Mouss, L.-H.; Mouss, N.K.; Mouss, M.D.; Benbouzid, M. A smart algorithm for the diagnosis of short-circuit faults in a photovoltaic generator. In Proceedings of the 2014 First International Conference on Green Energy ICGE 2014, Sfax, Tunisia, 25–27 March 2014; pp. 139–143. [Google Scholar]
- Yi, Z.; Etemadi, A. Line-to-Line Fault Detection for Photovoltaic Arrays Based on Multiresolution Signal Decomposition and Two-Stage Support Vector Machine. IEEE Trans. Ind. Electron. 2017, 64, 8546–8556. [Google Scholar] [CrossRef]
- Andrianajaina, T.; Sambatra, E.J.R.; Andrianirina, C.B.; Razafimahefa, T.D.; Heraud, N. PV fault detection using the least squares method. In Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 20–22 October 2016; pp. 846–851. [Google Scholar]
- Bonsignore, L.; Davarifar, M.; Rabhi, A.; Tina, G.M.; Elhajjaji, A. Neuro-Fuzzy Fault Detection Method for Photovoltaic Systems. Energy Procedia 2014, 62, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Spataru, S.; Sera, D.; Kerekes, T.; Teodorescu, R. Diagnostic method for photovoltaic systems based on light I–V measurements. Sol. Energy 2015, 119, 29–44. [Google Scholar] [CrossRef]
- Lin, F.-J.; Lu, K.-C.; Ke, T.-H. Probabilistic Wavelet Fuzzy Neural Network based reactive power control for grid-connected three-phase PV system during grid faults. Renew. Energy 2016, 92, 437–449. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhong, D.; Li, B.; Liu, Y. Research on Fault Detection of PV Array Based on Data Fusion and Fuzzy Mathematics. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March 2011; pp. 1–4. [Google Scholar]
- Tadj, M.; Benmouiza, K.; Cheknane, A.; Silvestre, S. Improving the performance of PV systems by faults detection using GISTEL approach. Energy Convers. Manag. 2014, 80, 298–304. [Google Scholar] [CrossRef]
- Ducange, P.; Fazzolari, M.; Lazzerini, B.; Marcelloni, F. An intelligent system for detecting faults in photovoltaic fields. In Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications, Cordoba, Spain, 22–24 November 2011; pp. 1341–1346. [Google Scholar]
- Chine, W.; Mellit, A.; Lughi, V.; Malek, A.; Sulligoi, G.; Pavan, A.M. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renew. Energy 2016, 90, 501–512. [Google Scholar] [CrossRef]
- Mekki, H.; Mellit, A.; Salhi, H. Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simul. Model. Pract. Theory 2016, 67, 1–13. [Google Scholar] [CrossRef]
- Laamami, S.; Benhamed, M.; Sbita, L. Artificial neural network-based fault detection and classification for photovoltaic system. In Proceedings of the 2017 International Conference on Green Energy Conversion Systems (GECS), Hammamet, Tunisia, 23–25 March 2017; pp. 1–7. [Google Scholar]
- Salem, F.; Awadallah, M.A. Detection and assessment of partial shading in photovoltaic arrays. J. Electr. Syst. Inf. Technol. 2016, 3, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chen, Z.; Wu, L.; Lin, P.; Cheng, S.; Lu, P. An Intelligent Fault Diagnosis Approach for PV Array Based on SA-RBF Kernel Extreme Learning Machine. Energy Procedia 2017, 105, 1070–1076. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, L.; Cheng, S.; Lin, P.; Wu, Y.; Lin, W. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics. Appl. Energy 2017, 204, 912–931. [Google Scholar] [CrossRef]
- Garoudja, E.; Chouder, A.; Kara, K.; Silvestre, S. An enhanced machine learning based approach for failures detection and diagnosis of PV systems. Energy Convers. Manag. 2017, 151, 496–513. [Google Scholar] [CrossRef] [Green Version]
- Daliento, S.; Chouder, A.; Guerriero, P.; Pavan, A.M.; Mellit, A.; Moeini, R.; Tricoli, P. Monitoring, Diagnosis, and Power Forecasting for Photovoltaic Fields: A Review. Int. J. Photoenergy 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Chen, Z.; Luo, X.; Yan, W. Visible defects detection based on UAV-based inspection in large-scale photovoltaic systems. IET Renew. Power Gener. 2017, 11, 1234–1244. [Google Scholar] [CrossRef]
- Kaden, T.; Lammers, K.; Möller, H.J. Power loss prognosis from thermographic images of PID affected silicon solar modules. Sol. Energy Mater. Sol. Cells 2015, 142, 24–28. [Google Scholar] [CrossRef]
- Buerhop, C.; Schlegel, D.W.; Niess, M.; Vodermayer, C.; Weißmann, R.; Brabec, C. Reliability of IR-imaging of PV-plants under operating conditions. Sol. Energy Mater. Sol. Cells 2012, 107, 154–164. [Google Scholar] [CrossRef]
- Kim, D.; Youn, J.; Kim, C. Automatic fault recognition of photovoltaic modules based on statistical analysis of UAV ther-mography. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 179. [Google Scholar] [CrossRef] [Green Version]
- Pestana, D.G.; Mendonça, F.; Morgado-Dias, F. A low-cost FPGA based thermal imaging camera for fault detection in PV panels. In Proceedings of the 2017 International Conference on Internet of Things for the Global Community (IoTGC), Funchal, Portugal, 10–13 July 2017; pp. 1–6. [Google Scholar]
- Tsanakas, J.A.; Ha, L.D.; Al Shakarchi, F. Advanced inspection of photovoltaic installations by aerial triangulation and ter-restrial georeferencing of thermal/visual imagery. Renew. Energy 2017, 102, 224–233. [Google Scholar] [CrossRef]
- Alsafasfeh, M.; Abdel-Qader, I.; Bazuin, B. Fault detection in photovoltaic system using SLIC and thermal images. In Proceedings of the 2017 International Conference on Information Technology (ICIT), Singapore, 27–29 December 2017; pp. 672–676. [Google Scholar]
- Jaffery, Z.A.; Dubey, A.K.; Irshad; Haque, A. Scheme for predictive fault diagnosis in photo-voltaic modules using thermal imaging. Infrared Phys. Technol. 2017, 83, 182–187. [Google Scholar] [CrossRef]
- Aghaei, M.; Grimaccia, F.; Gonano, C.A.; Leva, S. Innovative Automated Control System for PV Fields Inspection and Remote Control. IEEE Trans. Ind. Electron. 2015, 62, 7287–7296. [Google Scholar] [CrossRef]
- Aghaei, M.; Gandelli, A.; Grimaccia, F.; Leva, S.; Zich, R.E. IR real-time analyses for PV system monitoring by digital image processing techniques. In Proceedings of the 2015 International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP), Krakow, Poland, 17–19 June 2015; pp. 1–6. [Google Scholar]
- Dotenco, S.; Dalsass, M.; Winkler, L.; Wurzner, T.; Brabec, C.; Maier, A.; Gallwitz, F. Automatic detection and analysis of photovoltaic modules in aerial infrared imagery. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–9 March 2016; pp. 1–9. [Google Scholar]
- Muntwyler, U.; Schuepbach, E.; Lanz, M. Infrared (IR) drone for quick and cheap PV inspection. In Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 14–18 September 2015; pp. 1804–1806. [Google Scholar]
- Quarter, P.B.; Grimaccia, F.; Leva, S.; Mussetta, M.; Aghaei, M. Light Unmanned Aerial Vehicles (UAVs) for cooperative in-spection of PV plants. IEEE J. Photovolt. 2014, 4, 1107–1113. [Google Scholar] [CrossRef] [Green Version]
- Aghaei, M.; Bellezza, Q.P.; Grimaccia, F.; Leva, S.; Mussetta, M. Unmanned aerial vehicles in photovoltaic systems monitoring applications. In Proceedings of the European Photovoltaic Solar Energy 29th Conference and Exhibition, Amsterdam, The Netherlands, 22–26 September 2014; pp. 2734–2739. [Google Scholar]
Fault Type | Sub Faults | Description |
---|---|---|
Partial shading [27,28] | Trees existence, overhead supply lines, nearby structures | |
Mismatch Faults | Uniform irradiance distribution [29] | Non-uniform nature of irradiance in the day |
Soiling [30] | Dirt accumulation and droppings due to birds | |
Snow covering and hot spot [31,32] | Immense change in temperature in tropical regions | |
Upper ground fault [33,34] | An unnatural ground path with no impedance between the last two PV string modules | |
Lower ground fault [33,34] | An unnatural path to the ground with null impedance between the second and third modules in PV string through a huge back-feed stream | |
Series arc fault [35,36] | Current conductors having discontinuity caused by solar disjoint, damage of a cell, connector’s corrosion, | |
Parallel arc fault [35,36] | Breakdown of insulation in current conductors | |
Line to line faults [33,37] | Short circuit among the two joints with unlike potentials | |
Bypass diode faults [38] | Short circuit due to wrong connections | |
Degradation faults [39] | Cell’s coating, delamination, yellowing, browning, bubble, and interconnection results in degradation and increases the series resistance | |
Bridging fault [37,38] | Loose connection between the different joint having different potentials | |
Open Circuit fault [40] | Connection breaks down between the solar panels | |
Maximum power point tracking (MPPT) fault [41,42] | Defects in MPPT controller | |
Cabling faults [43] | -------------- | |
Inverter faults | Defects in the inverter components such as Insulated Gate Bipolar Transistor IGBT | |
Sudden natural disasters [44] | Due to storms, natural lighting, etc. |
Working Conditions | Loss (%) |
---|---|
A | −0.10 |
B | −0.08 |
C | −0.02 |
D | 0.03 |
E | 0.13 |
F | 0.40 |
STC | 0.35 |
Weighted | 0.21 |
Ref | Methods | Purposes | Tasks |
---|---|---|---|
[50,51,52,53,54,55,56] [60] | Maximum Power Point Tracking (MPPT) Distributed MPPT | Monitoring | Generalized shading conditions. Faults in general |
[57] | Adaptive MPPT | Monitoring | General faults Partial shading |
[58] | Model Integrated PV and Converter (MIPC) | Monitoring | Partial shading |
[71,72] | Satellite Data based technique | Detection and diagnostic | Generalized shading conditions. Shading due to snow |
[74] | Analytical | Detection | Shading |
[77] | Lambert W function | Monitoring | Partial shading |
[83] | I-V curve | Prediction | Soiling |
Faulty PV Cells | 2 | 6 | 10 | 14 | 18 |
---|---|---|---|---|---|
Power loss in proposed system (w) | 0.37 | 1.95 | 1.96 | 3.19 | 4.26 |
Max power loss in baseline (w) | 1.20 | 3.96 | 5.94 | 7.70 | 8.39 |
Min Power loss of baseline (w) | 0.89 | 2.68 | 3.41 | 3.76 | 4.79 |
Max power loss reduction | 81.31% | 50.63% | 67.06% | 58.64% | 49.23% |
Min power loss reduction | 58.38% | 27.18% | 42.57% | 15.16% | 11.06% |
Ref | Methods | Purposes | Tasks |
---|---|---|---|
[90,91,92,93,94] | Sensor network (OPC) | Diagnostic | Open and short circuit faults Ground faults Partial Shading |
[95] | Metaheuristic | Diagnostic Localization | Open and short circuit faults |
[97] | One diode model (ODM)-exponentially weighted moving average (EMWA) | Detection Localization | Faults in general |
[102] | DC Simulation | Monitoring Detection | A set of faults |
[104] | Relational database management system (RDBMS) | Monitoring | Thermal faults |
[105] | cumulative distribution range | Diagnostic Detection | Faults in general |
[108] | Two diode model | Diagnostic Detection | Faults in general Short and open circuit faults |
[109] | Inverter Matrix Impedance Current Vector (IMICV) | Monitoring | Shunt faults |
[110,111] | Wavelet transformation | Diagnostic Detection | Faults in general Inverter faults |
Ref | Methods | Purposes | Tasks |
---|---|---|---|
[113] | Sensor network | Monitoring and detection | Early fault detection Faults in general |
[114] | STM32F4DISCOVERY via data acquisition DAQ board | Detection Simulation | Faults in general Partial Shading |
[115] | Wireless sensor network | Detection at a module level localization | Short and open circuit Bypass diode |
[117,118] | Hybrid | Detection and diagnostic | Faults in general String and module level |
Ref | Algorithm | Platform | Parameters | Targeted Faults |
---|---|---|---|---|
[122] | Support Vector Machine (SVM) & k-NN | - | current and voltage | Short circuit |
[123] | Two-Stage SVM | - | current and voltage | Line to line |
[124,125,126,127] | Neuro-Fuzzy Model | MATLAB/Simulink | I-V curve | Mismatch |
129] | GISTEL & Fuzzy Logic | - | Solar radiation and DC power | Mismatch |
[130] | Takagi-Sugeno-Kahn fuzzy neural network | - | Output power | Short and open circuit, partial shading, etc. |
[131] | Xilinx Device Generator (XSG) & Integrated Software Environment (ISE) | Field Programmable Gate Array (FPGA) | Irradiance level, T, I, V, and peak I-V characteristics | Mismatch, connection, cells, diodes, and modules shunted |
[132,133,134] | Artificial Neural Network (ANN) | MATLAB/Simulink | Current and voltage | Mismatch |
[135,136] | Simulated annealing radial basis function (SA-RBF) & KELM | MATLAB | I-V curve | Short and open circuit, health, and mismatch |
[137] | Artificial bee colony (ABC) & Probabilistic Neural Network (PNN) | PSIM™/MATLAB™ | Current, voltage, and power | Mismatch |
Drone | Camera | ||||||||
---|---|---|---|---|---|---|---|---|---|
Reference | Device Model | Propulsion | Device Specification | Resolution | Range Specification | Object Temperature Range | Precision | Thermal Sensitivity | Weight |
[150] | dji S1000 | Electric | GoPRo Hero 3 Optris PI 450 + recorder | 1920 × 1080 382 × 288 | 7.5–13 μm | −20 °C to 100 °C 0 °C to 250 °C 150 °C to 900 °C | ±2 °C or ±2% | 0.040 K | 76 g 380 g |
[151] | Nimbus EosXi Nimbus PLP-610 | Gasoline Electric | Thermoteknix MicroCAM 640 Nikon1 V1 HD | 640 × 480 3906 × 2606 | 8–12 μm | 0.060 K | 74 g 383 g | ||
[152] | Nimbus PLP-610 | Electric | Nikon1 V1 HD | 3906 × 2606 | 383 g | ||||
[144] | Condor AY 704 | Electric | Optris PI 450 | 382 × 288 | 7.5–13 μm | −20 °C to 100 °C 0 °C to 250 °C 150 °C to 900 °C | ±2 °C or ±2%. | 0.040 K | 320 g |
[147,148] | Electric | Flir A35 | 320 × 256 | −40 °C to 160 °C −40 °C to 550 °C | ±5 °C or ±5% | 0.05 K | 200 g | ||
[149] | DaVinci Copters ScaraBot X8 | Electric | GoPRo Hero 3+ Optris PI 45 | 1920 × 1080 382 × 288 | 7.5–13 μm | −20 °C to 100 °C 0 °C to 250 °C 150 °C to 900 °C | ±2 °C or ±2%. | 0.04 K | 76 g 320 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navid, Q.; Hassan, A.; Fardoun, A.A.; Ramzan, R.; Alraeesi, A. Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review. Sustainability 2021, 13, 1629. https://doi.org/10.3390/su13041629
Navid Q, Hassan A, Fardoun AA, Ramzan R, Alraeesi A. Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review. Sustainability. 2021; 13(4):1629. https://doi.org/10.3390/su13041629
Chicago/Turabian StyleNavid, Qamar, Ahmed Hassan, Abbas Ahmad Fardoun, Rashad Ramzan, and Abdulrahman Alraeesi. 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review" Sustainability 13, no. 4: 1629. https://doi.org/10.3390/su13041629
APA StyleNavid, Q., Hassan, A., Fardoun, A. A., Ramzan, R., & Alraeesi, A. (2021). Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review. Sustainability, 13(4), 1629. https://doi.org/10.3390/su13041629