Determining the 2019 Carbon Footprint of a School of Design, Innovation and Technology
Abstract
:1. Introduction
1.1. Approaches to Environmental Assessment of Buildings
1.2. Contribution of Construction to GHGs
2. Materials and Methods
2.1. Methodology
- Analytic structure—in a corporate footprint, this could be constituted by the production centers, and these by sections or departments.
2.2. GHG Scenario of ESNE
2.3. Calculations Criteria
- Estimation of the aircraft fuel burn.
- Calculation of the passengers’ fuel burn based on a passenger/freight factor.
- Seat occupied = total seats × load factor
- CO2 emissions/passenger = (passengers’ fuel burn × 3.16)/seat occupied
- 2018 Guidelines Defra Conversion Factors [39].
- By car: average diesel car 0.178 kg CO2 person/km, one seat occupied;
- average petrol car 0.184 kgCO2 person/km, one seat occupied.
- By bus: regular diesel bus, 0.023 kg CO2 person/km.
- For train and metro, a Renfe/SNCF methodology based on the Ecopassenger calculator was considered [40]:
- By train/Metro: 0.025 kg CO2 person/km (regular Spanish electric mix).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Special Report on Climate Change and Land (SRCCL). 2019. Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2020/07/03_Technical-Summary-TS_V2.pdf (accessed on 23 September 2020).
- UN Population. 2019. Available online: https://www.un.org/en/sections/issues-depth/population/#:~:text=The%20world’s%20population%20is%20expected,nearly%2011%20billion%20around%202100 (accessed on 23 September 2020).
- IPCC 2019. IPCC 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://report.ipcc.ch/sr15/pdf/sr15_spm_fig1.pdf (accessed on 28 September 2020).
- bp Statistical Review of World Energy. 2020. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (accessed on 21 September 2020).
- What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, the World Bank Open Knowledge Repository. 2020. Available online: https://openknowledge.worldbank.org/handle/10986/30317 (accessed on 17 October 2020).
- NASA. Global Climate Change. 2020. Available online: https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed on 17 October 2020).
- UNFCCC. Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 23 July 2020).
- UE 2030 Climate and Energy Policy Framework, European Council. 2014. Available online: http://data.consilium.europa.eu/doc/document/ST-169-2014-INIT/en/pdf (accessed on 19 October 2020).
- European Green Deal, UE. 2020. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 20 October 2020).
- European Commission. Regulation of the European Parliament and of the Council. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020PC0080&from=EN (accessed on 20 July 2020).
- BOCG. Boletín Oficial de las Cortes Generales, 121/000019 Proyecto de Ley de Cambio Climático y Transición Energética. 2020. Available online: http://www.congreso.es/public_oficiales/L14/CONG/BOCG/A/BOCG-14-A-19-1.PDF (accessed on 20 July 2020).
- Ding, G. Life Cycle Assessment (LCA) of Sustainable Building Materials: An Overview; Woodhead Publishing Limited: Sawston, UK; Cambridge, UK, 2014. [Google Scholar]
- Wackernagel, M.; Kitzes, J. Ecological Footprint. 2008. Available online: https://www.sciencedirect.com/science/article/pii/B9780080454054006200 (accessed on 21 September 2020).
- González-Vallejo, P.; Marrero, M.; Solís-Guzmán, J. The ecological footprint of dwelling construction in Spain. Ecol. Indic. 2015, 52, 75–84. [Google Scholar] [CrossRef]
- Castellani, V.; Sala, S. Ecological Footprint and Life Cycle Assessment in the sustainability assessment of tourism activities. Ecol. Indic. 2012, 16, 135–147. [Google Scholar] [CrossRef]
- Wackernagel, M.; Monfreda, C.; Moran, D.; Wermer, P.; Goldfinger, S.; Deumling, D.; Murray, M. National Footprint and Biocapacity Accounts 2005: The underlying calculation method. Land Use Policy 2004, 21. Available online: https://www.researchgate.net/publication/228649734_National_Footprint_and_Biocapacity_Accounts_2005_The_underlying_calculation_method (accessed on 22 July 2020).
- Wiedmann, T.; Minx, J. A Definition of Carbon Footprint. C. C. Pertsova. Ecol. Econ. Res. Trends 2008, 1, 1–11. [Google Scholar]
- Fenner, A.; Kibert, C.; Woo, J.; Morque, S.; Razkenari, M.; Hakim, H.; Lu, X. The carbon footprint of buildings: A review of methodologies and applications. Renew. Sustain. Energy Rev. 2018, 94, 1142–1152. [Google Scholar] [CrossRef]
- Camacho, C.; Pereira, J.; Gomez, M.; Arrero, M.M. Huella de carbono como instrumento de decisión en la rehabilitación energética. Películas de control solar frente a la sustitución de ventanas. Rev. Hábitat Sustentable 2018, 8, 20–31. [Google Scholar] [CrossRef]
- Gao, T.; Liu, Q.; Wang, J. A comparative study of carbon footprint and assessment standards. Int. J. Low-Carbon Technol. 2013, 9, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Sangwan, K.; Bhakar, V.; Arora, V.; Solanki, P. Measuring carbon footprint of an Indian university using life cycle assessment. In Proceedings of the 25th CIRP Life Cycle Engineering (LCE) Conference, Procedia CIRP 69, Copenhagen, Denmark, 30 April–2 May 2018. [Google Scholar]
- Syafrudin, S.; Zaman, B.; Budihardjo, M.; Yumaroh, S.; Gita, D.; Lantip, D. Carbon Footprint of Academic Activities: A Case Study in Diponegoro University. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Tembalang, Indonesia, 2020. [Google Scholar]
- Zakaria, R.; Aly, S.H.; Hustim, M.; Oja, A.D. A Study of Assessment and Mapping of Carbon Footprints to Campus Activities in Hasanuddin University Faculty of Engineering. In IOP Conf. Series: Materials Science and Engineering, Proceedings of The 3rd EPI International Conference on Science and Engineering (EICSE2019), 24-25 September 2019, South Sulawesi, Indonesia; IOP Publishing: Tembalang, Indonesia, 2020. [Google Scholar]
- Paguigan, G.; Jacinto, D. Carbon Footprint Inventory of Buildings in Isabela State University: Benchmark for Future Design Alternatives. In Proceedings of the 4th International Research Conference on Higher Education, Cabagan, Isabela, 27–29 August 2018. [Google Scholar]
- MITECO. Informe de Inventario Nacional Gases de Efecto Invernadero, Serie 1990–2018. 2020. Available online: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/es-2020-nir_tcm30-508122.pdf (accessed on 12 November 2020).
- UN-Environment. Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector, Global Status Report 2017. 2017. Available online: https://www.worldgbc.org/sites/default/files/UNEP%20188_GABC_en%20%28web%29.pdf (accessed on 15 September 2020).
- CarbonFeel. SchoolFeel. 2020. Available online: http://www.carbonfeel.org/Carbonfeel_2/SchoolFeel.html (accessed on 12 July 2020).
- CarbonFeel. BookFeel. 2020. Available online: http://www.carbonfeel.org/Carbonfeel_2/BookFeel.html (accessed on 7 July 2020).
- MITECO. Ministerio Para la Transición Ecológica, Guía Para el Cálculo de la Huella de Carbono y Para la Elaboración de un Plan de Mejora de una Organización. 2020. Available online: https://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/guia_huella_carbono_tcm30-479093.pdf (accessed on 20 July 2020).
- Lo-Iacono-Ferreira, V.; Torregrosa-López, J.; Capuz-Rizo, S. The use of carbon footprint as a key performance indicator in higher education institutions. In Proceedings of the 22nd International Congress on Project Management and Engineering, Madrid, Spain, 11–13 July 2018. [Google Scholar]
- Güereca, L.; Torres, N.; Noyola, A. Carbon Footprint as a basis for a cleaner research institute in Mexico. J. Clean. Prod. 2013, 47, 396–403. [Google Scholar] [CrossRef]
- Yañez, P.; Sinha, A.; Vásquez, M. Carbon Footprint Estimation in a University Campus: Evaluation and Insights. Sustainability 2020, 12, 181. [Google Scholar] [CrossRef] [Green Version]
- More, A.; Patil, M.; Shinde, N.; Waghere, S.; Dharwal, K.; Bhave, S. Carbon Footprint of International University Dr. D. Y. Patil, Akurdi, Pune. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 1952–1954. [Google Scholar] [CrossRef]
- Budihardjo, M.; Syafrudin, S.; Putri, S.; Prinaningrum, A.; Willentiana, K. Quantifying Carbon Footprint of Diponegoro University: Non-Academic Sector. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Tembalang, Indonesia, 2020. [Google Scholar]
- Khandelwal, M.; Jain, V.; Sharma, A.; Bansal, S. Students’Attitude toward Carbon Footprints of a Leading Private University in India. Manag. Econ. Res. J. 2019, 5, 7. [Google Scholar] [CrossRef]
- Lim, M.; Hayder, G. Performance and Reduction of Carbon Footprint for a Sustainable Campus. Int. J. Eng. Adv. Technol. 2019, 9, 1. [Google Scholar]
- ICAO. International Civil Aviation Organization. Available online: https://www.icao.int/environmental-protection/CarbonOffset/Documents/Methodology%20ICAO%20Carbon%20Calculator_v11-2018.pdf (accessed on 21 October 2020).
- Ciers, J.; Mandic, A.; Toth, L.D.; Op’t Veld, G. Carbon Footprint of Academic Air Travel: A Case Study in Switzerland. Sustainability 2019, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Defra Factors. Greenhouse Gas Reporting: Conversion Factors 2018. 2018. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2018 (accessed on 10 October 2020).
- Hüttermann, R. EcoPassenger. Environmental Methodology and Data; Ifeu: Heidelberg/Hannover, Germany, 2016. [Google Scholar]
- Renf/SCNF. EcoPassenger. 2016. Available online: http://ecopassenger.org/bin/query.exe/hn?ld=uic-eco&L=vs_uic& (accessed on 2 December 2020).
- IDAE-Instituto Para la Diversificación y Ahorro de la Energía. Guía Técnica de Diseño de Centrales de Calor Eficientes. 2010. Available online: https://www.idae.es/uploads/documentos/documentos_11_Guia_tecnica_de_diseno_de_centrales_de_calor_eficientes_e53f312e.pdf (accessed on 23 September 2020).
- IDEA. Prestaciones Medias Estacionales de las Bombas de Calor Para Producción de Calor en Edificios. 2014. Available online: https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reconocidos/Reconocidos/Otros%20documentos/Prestaciones_Medias_Estacionales.pdf (accessed on 26 September 2020).
- Ull, J.B.; Gupta, A.; Mumovic, D.; Kimpian, J. Life cycle cost and carbon footprint of energy efficient refurbishments to 20th century UK school buildings. Int. J. Sustain. Built Environ. 2014, 3, 1–17. [Google Scholar]
- Rahma, N.; Rosnarti, D.; Purnomo, A. The carbon footprint of Trisakti University’s campus in Jakarta, Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Tembalang, Indonesia, 2020; Volume 452. [Google Scholar]
- Karuchit, S.; Puttipiriyangkul, W.; Karuchit, T. Carbon Footprint Reduction from Energy-Saving Measure and Green Area of Suranaree University of Technology. Int. J. Environ. Sci. Dev. 2020, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Patarlageanu, S.; Negrei, C.; Dinu, M.; Chiocaru, R. Reducing the Carbon Footprint of the Bucharest University of Economic Studies through Green Facades in an Economically Efficient Manner. Sustainability 2020, 12, 3779. [Google Scholar] [CrossRef]
- Lozano, R. Incorporation and institutionalization of SD into universities: Breaking through barriers to change. J. Clean. Prod. 2006, 9, 787–796. [Google Scholar] [CrossRef]
- Qafisheh, N.; Sarr, M.; Hussain, U.; Awadh, S. Carbon Footprint of ADU Students: Reasons and Solutions. Environ. Pollut. 2017, 6, 7. [Google Scholar] [CrossRef] [Green Version]
Factor | Algorithms |
---|---|
P986 | CO2-e Emissions = E000 × F186 × 0.000001 Total emissions in tCO2-e E000 = consumption of material/service/object of study (UF, Functional unit) 0.000001 = Conversion factor gCO2 to tCO2 F186. Scale factor per general functional unit Value = 8.1000 (gCO2/UF) Source: Winnipeg Sewage Treatment Program South End Plant https://www.winnipeg.ca/finance/findata/matmgt/documents//2012/682-2012//682-2012_Appendix_H-WSTP_South_End_Plant_Process_Selection_Report/PSR_rev%20final.pdf Comments: Appendix 7 Material Plastic Fiber GRP. Functional unit: gr Year: 2012 |
Mode of Transport | Km/Year |
---|---|
—Without consumption | 44,040 |
Walking | 43,320 |
Bicycle | 720 |
—Railway transport | 304,920 |
Metro | 99,960 |
RENFE suburban trains | 204,760 |
Tramway | 200 |
—Road transport | 314,440 |
Citybus | 31,960 |
Private electric vehicle. (car/bicycle/motorbike) | 35,880 |
Private car diesel | 127,040 |
Private car gasoline | 61,080 |
Private motorbike | 58,480 |
Total | 663,400 |
Mode of Transport | km/Year |
---|---|
—Road | 57,060 |
Bus | 47,480 |
Diesel car 1 | 9580 |
—Train | 37,400 |
—Air | 565,000 |
Total | 695,460 |
Scope | Chapter | Data | Units |
---|---|---|---|
1 | Fossil fuels (Diesel C) | 11,000 | L |
Leakage Refrigerant gas (R-410A) | 4.3 1 | kg | |
2 | Electricity | 241,572 1 | kWh |
3 | Materials | ||
Textiles | 1439 | kg | |
Wood | 100 | kg | |
Cardboard + paper + books | 11,850 | kg | |
IT equipment | 524 | kg | |
Water | 1628 1 | m 3 | |
HPDE 3D printer | 4.2 2 | kg | |
Furniture | 452 | kg | |
Business and field trips | 695,000 | km/year | |
Land | 94,460 | km/year | |
Employee commuting | 663,400 | km/year | |
Waste | |||
Cardboard + paper | 6500 | kg | |
Light packaging | 2100 | kg | |
Remaining fraction | 4200 | kg |
Scope | CF (kg CO2-e) |
---|---|
1. Direct emissions and absorptions | 40,526 |
Stationary combustion | 31,548 |
Refrigerant leakage (R-410A) | 8978 |
2. Indirect energy emissions (Electricity consumed) | 72,471 |
3. Other indirect emissions | 142,549 |
Energy not included in direct and indirect | |
WTT transmission and distribution losses 1 | 18,802 |
Products purchased | 34,645 |
Water (natural) | 643 |
Wood/cork/basketry/rubber/plastic products | 158 |
Furniture | 2501 |
Paper, books and cardboard | 11,254 |
Computer, electronic and optical products | 8699 |
Textile products | 11,387 |
Employee commuting | 47,391 |
Train/Metro/Tram | 14,626 |
Road transport | 32,765 |
Urban bus | 2564 |
Private car | |
Diesel | 16,755 |
Petrol | 11,523 |
Electric (incl. bike and skateboard) | 1923 |
Business and field trips | 38,382 |
International and national flights | 29,855 |
Road transport | 7374 |
By bus | 991 |
Private car | 6382 |
Train (AVE) | 1153 |
Waste | 3328 |
Cardboard + paper | 366 |
Light packaging | 252 |
Remaining fraction | 2710 |
Total | 255,548 |
Ratios | Kg CO2-e/m2 | Kg CO2-e/Student | Kg CO2-e/Student·h |
---|---|---|---|
Built-up area: 4000 m2 | |||
Students: 1500 | |||
Scenario 1 | 64 | 170 | 0.28 |
Scenario 2 | 46 | 122 | 0.20 |
Reduction | −28% |
Ratios | kg CO2-e/km | kg CO2-e/Person |
---|---|---|
—Travel to work | ||
Private combustion vehicles | 0.788 | 764 |
Public transport | 0.051 | 183 |
—Study and business trips | ||
Private diesel cars | 0.667 | 236 |
Bus | 0.054 | 16 |
Flights | 0.053 | 409 |
Train AVE | 0.031 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippone, G.; Sancho, R.; Labella, S. Determining the 2019 Carbon Footprint of a School of Design, Innovation and Technology. Sustainability 2021, 13, 1750. https://doi.org/10.3390/su13041750
Filippone G, Sancho R, Labella S. Determining the 2019 Carbon Footprint of a School of Design, Innovation and Technology. Sustainability. 2021; 13(4):1750. https://doi.org/10.3390/su13041750
Chicago/Turabian StyleFilippone, Guillermo, Rocío Sancho, and Sebastián Labella. 2021. "Determining the 2019 Carbon Footprint of a School of Design, Innovation and Technology" Sustainability 13, no. 4: 1750. https://doi.org/10.3390/su13041750
APA StyleFilippone, G., Sancho, R., & Labella, S. (2021). Determining the 2019 Carbon Footprint of a School of Design, Innovation and Technology. Sustainability, 13(4), 1750. https://doi.org/10.3390/su13041750