Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China
Abstract
1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Research Area and Data
3.1.1. Research Area
3.1.2. Data
3.2. Methodology
3.2.1. Tapio Eecoupling Model
3.2.2. Super-Efficiency SBM Model
3.2.3. Malmquist Index
3.2.4. Spatial Autocorrelation Analysis
Global Spatial Autocorrelation
Local Spatial Autocorrelation
3.2.5. Influencing Factors of Land-Use Efficiency
4. Results
4.1. Decoupling Analysis
4.2. Results of Urban Land-Use Efficiency
4.3. Malmquist Index Analysis
4.4. Global Spatial Autocorrelation
4.5. Local Spatial Autocorrelation
4.6. Analysis of Influencing Factors of Urban Land-Use Efficiency
5. Discussion
6. Conclusions
- There is a weak decoupling relationship between urban land use and economic development. The urban land-use efficiency of each city has polarization characteristics (more at both ends and less in the middle), but the difference is gradually narrowing.
- From the perspective of time evolution, we found that the urban land-use efficiency is increasing in different regions, but the reasons for promoting the growth are slightly different. The improvement of urban land-use efficiency is mainly due to the reasonable allocation of input-output factors, the improvement of scale effect of potential benchmark technology progress and technological change, and the potential benchmark technology progress plays a major role.
- From the perspective of spatial distribution, the urban land-use efficiency of each city has spatial self-correlation, but the correlation is not very strong. Furthermore, it formed a clear “center-peripheral” distribution pattern.
- Construction land and fixed assets investment have a significant negative impact on urban land-use efficiency. In addition, innovation, economic connection, and industrial structure optimization can improve land-use efficiency, and economic connection has a positive spillover effect on the land-use efficiency of surrounding areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88. [Google Scholar] [CrossRef]
- Wang, H.; He, Q.; Liu, X.; Zhuang, Y.; Hong, S. Global urbanization research from 1991 to 2009: A systematic research review. Landsc. Urban Plan. 2012, 104, 299–309. [Google Scholar] [CrossRef]
- Michael, F.L.; Noor, Z.Z.; Figueroa, M.J. Review of urban sustainability indicators assessment—Case study between Asian countries. Habitat Int. 2014, 44, 491–500. [Google Scholar] [CrossRef]
- The United Nations. China’s Urban Population Will Increase by 255 Million in 2050; The United Nations: New York, NY, USA, 2018.
- Wang, Z.; Liang, L.; Sun, Z.; Wang, X. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. J. Environ. Manag. 2019, 243, 227–239. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Yang, Y. Strategic adjustment of land use policy under the economic transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Lu, X.H.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- Wang, K.; Tang, Y.; Chen, Y.; Shang, L.; Ji, X.; Yao, M.; Wang, P. The Coupling and Coordinated Development from Urban Land Using Benefits and Urbanization Level: Case Study from Fujian Province (China). Int. J. Environ. Res. Public Health 2020, 17, 5647. [Google Scholar] [CrossRef]
- Lian, H.; Li, H.; Ko, K. Market-led transactions and illegal land use: Evidence from China. Land Use Policy 2019, 84, 12–20. [Google Scholar] [CrossRef]
- Qian, Z. Land acquisition compensation in post-reform China: Evolution, structure and challenges in Hangzhou. Land Use Policy 2015, 46, 250–257. [Google Scholar] [CrossRef]
- Zeng, L.; Yang, J. Urban Expansion, Land Finance and Rural Surplus Labor Transfer—Evidence from the Panel Data of 281 Prefecture-level Cities in China. Res. Econ. Manag. 2020, 41, 14–32. [Google Scholar] [CrossRef]
- Zhang, Z. Study of Chinese Urban Land Use Efficiency. J. Quant. Tech. Econ. 2014, 31, 134–149. [Google Scholar] [CrossRef]
- He, S.; Yu, S.; Li, G.; Zhang, J. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 2020, 95, 104576. [Google Scholar] [CrossRef]
- Lu, M. Transfer of Land for Construction: Breakthrough Point in China’s Coordinated Rural-Urban and Regional Development. Int. Econ. Rev. 2010, 2, 137–148. [Google Scholar]
- Liu, Y.; Zhang, Z.; Zhou, Y. Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Policy 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Louw, E.; Van der Krabben, E.; Amsterdam, H. The Spatial Productivity of Industrial Land. Reg. Stud. 2012, 46, 137–147. [Google Scholar] [CrossRef]
- Huang, Z.; He, C.; Wei, Y.H.D. A comparative study of land efficiency of electronics firms located within and outside development zones in Shanghai. Habitat Int. 2016, 56, 63–73. [Google Scholar] [CrossRef]
- Matthews, K.; Buchan, K.; Sibbald, A.; Craw, S. Combining deliberative and computer-based methods for multi-objective land-use planning. Agric. Syst. 2006, 87, 18–37. [Google Scholar] [CrossRef]
- Wey, W.-M.; Hsu, J. New Urbanism and Smart Growth: Toward achieving a smart National Taipei University District. Habitat Int. 2014, 42, 164–174. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, W.; Li, L.; Ye, Y.; Song, X. Urban land use efficiency and improvement potential in China: A stochastic frontier analysis. Land Use Policy 2020, 99, 105046. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Li, S. Using data envelopment analysis to evaluate efficiency in the economic performance of Chinese cities. Socio-Econ. Plan. Sci. 1989, 23, 325–344. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Sun, Z. How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2020, 90, 104329. [Google Scholar] [CrossRef]
- Huang, J.; Xue, D.Q. Study on Temporal and Spatial Variation Characteristics and Influencing Factors of Land Use Efficiency in Xi’an, China. Sustainability 2019, 11, 6649. [Google Scholar] [CrossRef]
- Zitti, M.; Ferrara, C.; Perini, L.; Carlucci, M.; Salvati, L. Long-Term Urban Growth and Land Use Efficiency in Southern Europe: Implications for Sustainable Land Management. Sustainability 2015, 7, 3359–3385. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Lu, X.; Chen, D.; Kuang, B.; Zhang, C.; Cheng, C. Is high-tech zone a policy trap or a growth drive? Insights from the perspective of urban land use efficiency. Land Use Policy 2020, 95, 104583. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, G.; Deng, X. Dynamic interactive effects of urban land-use efficiency, industrial transformation, and carbon emissions. J. Clean. Prod. 2020, 270, 122547. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Zhang, P.; Wei, Y.; Zheng, X.; Xie, L. Temporal-spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Policy 2019, 88, 104083. [Google Scholar] [CrossRef]
- Hong, H.; Xie, D.; Liao, H.; Tu, B.; Yang, J. Land Use Efficiency and Total Factor Productivity—Distribution Dynamic Evolution of Rural Living Space in Chongqing, China. Sustainability 2017, 9, 444. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Xu, Y.; Zhou, P.; Yeh, C.-H. Evaluating urban land use efficiency with interacting criteria: An empirical study of cities in Jiangsu China. Land Use Policy 2020, 90, 104292. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; He, B.-J.; Wu, J.; Wu, K. Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China. Sustainability 2019, 11, 1446. [Google Scholar] [CrossRef]
- Cui, X.; Fang, C.; Wang, Z.; Bao, C. Spatial relationship of high-speed transportation construction and land-use efficiency and its mechanism: Case study of Shandong Peninsula urban agglomeration. J. Geogr. Sci. 2019, 29, 549–562. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- Kazemi, H.; Akinci, H. A land use suitability model for rainfed farming by Multi-criteria Decision-making Analysis (MCDA) and Geographic Information System (GIS). Ecol. Eng. 2018, 116, 1–6. [Google Scholar] [CrossRef]
- Li, J.; Lewis, J.; Rowland, J.; Tappan, G.; Tieszen, L. Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. J. Arid. Environ. 2004, 59, 463–480. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L.; Huang, X.; Zhao, Y.; Zhang, Y. Evolution of the Spatiotemporal Pattern of Urban Industrial Land Use Efficiency in China. Sustainability 2018, 10, 2174. [Google Scholar] [CrossRef]
- SPBS (Sichuan Provincial Bureau of Statistics). Sichuan Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2019.
- Ji, X.; Wang, K.; Ji, T.; Zhang, Y.; Wang, K. Coupling Analysis of Urban Land Use Benefits: A Case Study of Xiamen City. Land 2020, 9, 155. [Google Scholar] [CrossRef]
- Fagerberg, J.; Srholec, M.; Verspagen, B. Chapter 20—Innovation and Economic Development. In Handbook of the Economics of Innovation; Hall, B.H., Rosenberg, N., Eds.; North-Holland: Amsterdam, The Netherlands, 2010; Volume 2, pp. 833–872. [Google Scholar]
- Lu, X.; Yang, X.; Chen, Z. Measurement and temporal-spatial evolution characteristics of urban land green use efficiency in China. China Popul. Resour. Environ. 2020, 30, 83–91. [Google Scholar] [CrossRef]
- Chen, J.; Wang, P.; Cui, L.; Huang, S.; Song, M. Decomposition and decoupling analysis of CO2 emissions in OECD. Appl. Energy 2018, 231, 937–950. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Matthias, K. Do Forwarders Improve Sustainability Efficiency? Evidence from a European DEA Malmquist Index Calculation. Sustainability 2017, 9, 842. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Li, J.; Jing, Y. Research on Green Development Efficiency Evaluation and Spatial-Temporal Differentiation Based on SBM-GIS: Take the Central Plains Urban Agglomeration as an Example. Ecol. Econ. 2019, 35, 94–101. [Google Scholar]
- Malmquist, S. Index numbers and indifference surfaces. Trab. Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Caves, D.W. The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity. Econometrica 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach. In Data Envelopment Analysis: Theory, Methodology, and Applications; Springer: Dordrecht, The Netherlands, 1994; pp. 253–272. [Google Scholar]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z.Z. Productivity Growth, Technical Progress, and Efficiency Change in Industri-alized Countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Zofío, J.L. Malmquist productivity index decompositions: A unifying framework. Appl. Econ. 2007, 39, 2371–2387. [Google Scholar] [CrossRef]
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L.; Le Gallo, J.; Jayet, H. Spatial Panel Econometrics. In Monetary Policy; Springer Nature: Berlin/Heidelberg, Germany, 2008; pp. 625–660. [Google Scholar]
- Lesage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009; pp. 1–341. [Google Scholar]
- Cai, F. How Can Chinese Economy Achieve the Transition toward Total Factor Productivity Growth? Soc. Sci. China 2013, 1, 56–71. [Google Scholar]
- Fu, L.; Chen, X.; Leng, Z. Urban Agglomerations Eco-Efficiency Analysis Based on Super-efficienty DEA Model: Case Study of Chang-Zhu-Tan “3 + 5” Urban Agglomeration. China Popul. Resour. Environ. 2013, 23, 169–175. [Google Scholar]
- Fang, C. New Structure and New Trend of Formation and Development of Urban Agglomerations in China. Sci. Geogr. Sin. 2011, 31, 1025–1034. [Google Scholar] [CrossRef]
- Meng, D.; Lu, Y. Analysis of inter-provincial accessibility and economic linkage spatial pattern based on the railway network. Geogr. Res. 2012, 31, 107–122. [Google Scholar]
- Chen, Z.; Haynes, K.E. Impact of high-speed rail on regional economic disparity in China. J. Transp. Geogr. 2017, 65, 80–91. [Google Scholar] [CrossRef]
- Wu, F.; Liu, R. Industrial Upgrading and Independent Innovation Ability Construction—Empirical Research Based on China’s Provincial Panel Data. China Ind. Econ. 2013, 57–69. [Google Scholar] [CrossRef]
- He, Y. The theoretical model of I-U-R collaborative innovation. Stud. Sci. Sci. 2012, 30, 165–174. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Wang, W.; He, Y. Analyzing the green efficiency of arable land use in China. Technol. Forecast. Soc. Chang. 2018, 133, 15–28. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wang, W.; Yao, G.; Yu, J. Spatial-temporal disparities and influencing factors of total-factor green use efficiency of industrial land in China. J. Clean. Prod. 2019, 207, 1047–1058. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Chen, W.; Chen, W.; Ning, S.; Liu, E.; Zhou, X.; Wang, Y.; Zhao, M. Exploring the industrial land use efficiency of China’s resource-based cities. Cities 2019, 93, 215–223. [Google Scholar] [CrossRef]
Variable Type | Indicator | Unit | Max | Min | Mean | Var |
---|---|---|---|---|---|---|
Input | Urban construction land | km2 | 847.6 | 5.99 | 55.79 | 8225 |
Number of employees in secondary and tertiary industries | 10,000 people | 548.27 | 10.16 | 44.70 | 4109 | |
Total investment in fixed assets | 100 million yuan | 3871.67 | 7.35 | 186.36 | 145,010 | |
Output | GDP of the secondary industry | 100 million yuan | 3619.81 | 6.32 | 185.78 | 122,246 |
GDP of the tertiary industry | 100 million yuan | 3014.11 | 5.23 | 108.62 | 82,625 | |
Factors | Technological innovation | Pieces | 9168 | 0 | 198.7 | 746,080 |
Industrial structure | % | 61 | 19 | 35 | 73.75 | |
Economic linkages | 104 yuan × people/km2 | 1198.07 | 0.21 | 46.29 | 1.02 × 1012 |
Urban Land Use-Efficiency | Category |
---|---|
Low efficiency | |
Medium-low efficiency | |
Medium efficiency | |
High efficiency |
City | 2003 | 2008 | 2013 | 2018 | City | 2003 | 2008 | 2013 | 2018 |
---|---|---|---|---|---|---|---|---|---|
Chengdu | 1.08 | 1.13 | 1.14 | 1.05 | Bazhong | 0.28 | 0.55 | 0.37 | 0.41 |
Zigong | 0.73 | 1.01 | 0.77 | 0.56 | Ziyang | 0.59 | 0.50 | 0.53 | 0.54 |
Panzhihua | 0.68 | 1.11 | 1.10 | 1.18 | Dujiangyan | 0.59 | 0.42 | 0.57 | 0.49 |
Luzhou | 0.44 | 0.65 | 0.54 | 0.39 | Pengzhou | 0.56 | 0.53 | 0.56 | 0.51 |
Deyang | 0.53 | 0.87 | 0.81 | 0.50 | Qionglai | 1.03 | 1.00 | 1.09 | 1.14 |
Mianyang | 0.81 | 0.88 | 1.01 | 0.64 | Chongzhou | 1.21 | 1.08 | 1.04 | 1.01 |
Guangyuan | 0.50 | 0.36 | 0.35 | 0.27 | Jianyang | 1.03 | 0.63 | 0.81 | 0.56 |
Suining | 0.27 | 0.38 | 0.39 | 0.40 | Guanghan | 0.62 | 1.02 | 1.02 | 0.72 |
Neijiang | 0.44 | 0.52 | 0.55 | 0.42 | Shifang | 1.09 | 1.00 | 1.03 | 0.74 |
Leshan | 0.39 | 0.52 | 0.53 | 0.47 | Mianzhu | 1.00 | 1.04 | 1.06 | 1.02 |
Nanchong | 0.39 | 0.53 | 0.42 | 0.32 | Jiangyou | 0.77 | 0.71 | 1.06 | 1.05 |
Meishan | 0.33 | 0.46 | 0.57 | 0.47 | Emeishan | 0.50 | 0.82 | 0.80 | 0.60 |
Yibin | 1.05 | 1.14 | 1.02 | 0.54 | Langzhong | 0.27 | 0.37 | 0.36 | 0.29 |
Guangan | 0.24 | 0.39 | 0.42 | 0.29 | Huaying | 0.41 | 1.04 | 0.92 | 0.68 |
Dazhou | 0.35 | 0.46 | 0.46 | 0.34 | Wanyuan | 0.30 | 0.35 | 0.43 | 0.38 |
Yaan | 0.43 | 0.46 | 0.71 | 0.49 | Xichang | 0.55 | 0.70 | 0.76 | 0.57 |
City | M | PEC | SEC | PTC | STC |
---|---|---|---|---|---|
Chengdu | 1.0706 | 0.9970 | 1.0012 | 1.0268 | 1.0446 |
Zigong | 1.0230 | 0.9676 | 1.0151 | 1.0337 | 1.0075 |
Panzhihua | 1.0825 | 1.0134 | 1.0236 | 1.0677 | 0.9774 |
Luzhou | 1.0338 | 0.9944 | 0.9976 | 1.0428 | 0.9994 |
Deyang | 1.0346 | 0.9984 | 0.9976 | 1.0388 | 1.0000 |
Mianyang | 1.0261 | 0.9973 | 0.9867 | 1.0507 | 0.9924 |
Guangyuan | 1.0027 | 0.9131 | 1.0515 | 1.0000 | 1.0443 |
Suining | 1.0726 | 1.0278 | 0.9999 | 1.0437 | 1.0000 |
Neijiang | 1.0457 | 0.9973 | 1.0000 | 1.0485 | 1.0000 |
Leshan | 1.0477 | 1.0124 | 0.9997 | 1.0416 | 0.9938 |
Nanchong | 1.0355 | 0.9868 | 1.0004 | 1.0468 | 1.0020 |
Meishan | 1.0650 | 1.0237 | 1.0000 | 1.0404 | 1.0000 |
Yibin | 1.0235 | 0.9767 | 0.9797 | 1.0701 | 0.9995 |
Guangan | 1.0631 | 1.0135 | 1.0000 | 1.0489 | 1.0000 |
Dazhou | 1.0435 | 0.9977 | 1.0000 | 1.0459 | 1.0000 |
Yaan | 1.0518 | 0.9765 | 1.0328 | 1.0021 | 1.0407 |
Bazhong | 1.0817 | 1.0792 | 0.9517 | 1.0067 | 1.0463 |
Ziyang | 1.0370 | 0.9898 | 1.0046 | 1.0476 | 0.9954 |
Dujiangyan | 1.0311 | 0.9868 | 1.0004 | 1.0441 | 1.0004 |
Pengzhou | 1.0461 | 0.9903 | 1.0037 | 1.0550 | 0.9976 |
Qionglai | 1.0567 | 1.0055 | 1.0007 | 1.0002 | 1.0500 |
Chongzhou | 1.0425 | 0.9899 | 0.9982 | 1.0543 | 1.0007 |
Jianyang | 1.0315 | 0.9562 | 1.0041 | 1.0047 | 1.0694 |
Guanghan | 1.0491 | 1.0277 | 0.9825 | 1.0189 | 1.0198 |
Shifang | 1.0267 | 0.9953 | 0.9792 | 1.0486 | 1.0046 |
Mianzhu | 1.0319 | 1.0036 | 0.9973 | 1.0310 | 1.0000 |
Jiangyou | 1.0687 | 1.0027 | 1.0183 | 1.0507 | 0.9962 |
Emeishan | 1.0529 | 0.9780 | 1.0360 | 0.9996 | 1.0395 |
Langzhong | 1.0479 | 1.0001 | 1.0032 | 1.0479 | 0.9968 |
Huaying | 1.0727 | 1.0264 | 1.0083 | 1.0176 | 1.0185 |
Wanyuan | 1.0596 | 0.9916 | 1.0244 | 0.9649 | 1.0811 |
Xichang | 1.0479 | 0.9934 | 1.0093 | 1.0531 | 0.9925 |
Mean | 1.0471 | 0.9972 | 1.0034 | 1.0342 | 1.0128 |
Model I | Model II | Model I | Model II | ||
---|---|---|---|---|---|
ln M | ln M | ln M | ln M | ||
Main | Wx | ||||
ln Construction_land | −0.079 *** (−2.48) | −0.104 *** (−3.27) | ln Construction_land | 0.110 * (0.07) | 0.043 (0.06) |
ln Total_investment | −0.100 *** (−4.39) | −0.119 *** (−5.13) | ln Total_investment | 0.072 ** (0.04) | −0.086 * (0.05) |
ln Employment | −0.028 (−0.03) | −0.091 ** (−2.54) | ln Employment | 0.185 (0.15) | −0.018 (0.11) |
ln Innovation | 0.150 *** (0.06) | ln Innovation | −0.027 (−0.04) | ||
ln Economic_connection | 0.097 * (0.06) | ln Economic_connection | 0.057 * (0.04) | ||
ln Industrial_structure | 0.123 * (0.07) | ln Industrial_structure | 0.036 (0.11) | ||
Spatial_rho | 0.648 *** (0.06) | 0.583 *** (0.07) | |||
N | 512 | 512 | |||
R_square | 0.396 | 0.487 | |||
Log-likelihood | 105.5019 | 130.4824 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, M.; Zhang, Y. Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China. Sustainability 2021, 13, 1771. https://doi.org/10.3390/su13041771
Yao M, Zhang Y. Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China. Sustainability. 2021; 13(4):1771. https://doi.org/10.3390/su13041771
Chicago/Turabian StyleYao, Mengchao, and Yihua Zhang. 2021. "Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China" Sustainability 13, no. 4: 1771. https://doi.org/10.3390/su13041771
APA StyleYao, M., & Zhang, Y. (2021). Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China. Sustainability, 13(4), 1771. https://doi.org/10.3390/su13041771