Understanding Green Street Design: Evidence from Three Cases in the U.S.
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
4.1. Seattle: The Pioneer
4.2. Portland: Pioneer and Fruitful Implementer
4.3. Philadelphia: A Systemic Approach
- (1)
- Identify potential streets where GSI can be implemented based on existing conditions. Here, streets are screened by gradient or conflict with existing utilities.
- (2)
- Identify the street’s typology according to the Complete Streets Handbook.
- (3)
- Consider potential GSI type for each selected street according to the “Sustainability Matrix.”
- (4)
- Choose the most appropriate GSI.
5. Green Street Design and Implementation
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Rana, M.P. Social benefits of urban green space. Manag. Environ. Qual. Int. J. 2012, 23, 173–189. [Google Scholar] [CrossRef]
- Hegetschweiler, K.T.; de Vries, S.; Arnberger, A.; Bell, S.; Brennan, M.; Siter, N.; Olafsson, A.S.; Voigt, A.; Hunziker, M. Linking demand and supply factors in identifying cultural ecosystem services of urban green infrastructures: A review of European studies. Urban For. Urban Green. 2017, 21, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Gehl, J.; Gemzøe, L.; Kirknæs, S.; Søndergaard, B.S. New City Life; Arkitektens Forlag, the Danish Architectural Press: Copenhagen, Denmark, 2006. [Google Scholar]
- Hamilton-Baillie, B. Shared Space: Reconciling People, Places and Traffic. Built Environ. 2008, 34, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Hamilton-Baillie, B. Towards shared space. URBAN Des. Int. 2008, 13, 130–138. [Google Scholar] [CrossRef]
- Karteris, M.; Theodoridou, I.; Mallinis, G.; Tsiros, E.; Karteris, A. Towards a green sustainable strategy for Mediterranean cities: Assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data. Renew. Sustain. Energy Rev. 2016, 58, 510–525. [Google Scholar] [CrossRef]
- Kuehler, E.; Hathaway, J.; Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Anguluri, R.; Narayanan, P. Role of green space in urban planning: Outlook towards smart cities. Urban For. Urban Green. 2017, 25, 58–65. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Tajima, K. New estimates of the demand for urban green space: Implications for valuing the environmental benefits of Boston’s big dig project. J. Urban Aff. 2003, 25, 641–655. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environ. Sci. Policy 2015, 62, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, S.L.; Martínez, J.; Muñoz, A.; Quijano, J.; Diaz-Granados, M.; Camacho, L.; Rodríguez, J.; Maestre, A.; Pitt, R. Development of a multiscale methodology for sustainable urban drainage systems planning. In Case Study: Bogotá, Colombia Développement d ’ une Méthodologie Multi-échelle pour la Planification de Systèmes de Drainage Urbain Durables; Étude de cas: Bogotá, Colombia, 2016. [Google Scholar]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Balaban, O.; de Oliveira, J.A.P. Sustainable buildings for healthier cities: Assessing the co-benefits of green buildings in Japan. J. Clean. Prod. 2017, 163, S68–S78. [Google Scholar] [CrossRef]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Anderson, E.C.; Minor, E.S. Vacant lots: An underexplored resource for ecological and social benefits in cities. Urban For. Urban Green. 2017, 21, 146–152. [Google Scholar] [CrossRef]
- Säumel, I.; Weber, F.; Kowarik, I. Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move. Environ. Sci. Policy 2015, 62, 24–33. [Google Scholar] [CrossRef]
- Ekkel, E.D.; de Vries, S. Nearby green space and human health: Evaluating accessibility metrics. Landsc. Urban Plan. 2017, 157, 214–220. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Coutts, C.; Hahn, M. Green infrastructure, ecosystem services, and human health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef] [Green Version]
- van den Bosch, M.; Nieuwenhuijsen, M. No time to lose—Green the cities now. Environ. Int. 2017, 99, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, A.; Barbosa-Leiker, C.; Brooks, K.R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 2016, 20, 407–418. [Google Scholar] [CrossRef]
- Douglas, O.; Lennon, M.; Scott, M. Green space benefits for health and well-being: A life-course approach for urban planning, design and management. Cities 2017, 66, 53–62. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, K.; Hammond, C. Residents’ perceptions of green infrastructure in the contemporary residential context: A study of Kingswood, Kingston-upon-Hull, England. J. Environ. Plan. Manag. 2021, 64, 145–163. [Google Scholar] [CrossRef]
- Wang, J.; Banzhaf, E. Towards a better understanding of Green Infrastructure: A critical review. Ecol. Indic. 2018, 85, 758–772. [Google Scholar] [CrossRef]
- Grunwald, L.; Heusinger, J.; Weber, S. A GIS-based mapping methodology of urban green roof ecosystem services applied to a Central European city. Urban For. Urban Green. 2017, 22, 54–63. [Google Scholar] [CrossRef]
- Camps-Calvet, M.; Langemeyer, J.; Calvet-Mir, L.; Gómez-Baggethun, E. Ecosystem services provided by urban gardens in Barcelona, Spain: Insights for policy and planning. Environ. Sci. Policy 2015, 62, 14–23. [Google Scholar] [CrossRef]
- Zwierzchowska, I.; Haase, D.; Dushkova, D. Discovering the environmental potential of multi-family residential areas for nature-based solutions. A Central European cities perspective. Landsc. Urban Plan. 2020, 206, 103975. [Google Scholar] [CrossRef]
- Lu, G.; Noyce, D.A. Pedestrian Crossings at Midblock Locations: A Fuzzy Logic Solution for Existing Signal Operations. Transp. Res. Rec. J. Transp. Res. Board 2009, 2140, 63–78. [Google Scholar] [CrossRef]
- McCord, J.; McCord, M.; McCluskey, W.; Davis, P.T.; McIlhatton, D.; Haran, M. Effect of public green space on residential property values in Belfast metropolitan area. J. Financ. Manag. Prop. Constr. 2014, 19, 117–137. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Webster, C. Estimating the mediate effect of privately green space on the relationship between urban public green space and property value: Evidence from Shanghai, China. Land Use Policy 2016, 54, 439–447. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Blair, A.; De Lacy, P.; Kaoma, H.; Mugwagwa, N.; Dalu, M.T.; Walton, W. How important is green infrastructure in small and medium-sized towns? Lessons from South Africa. Landsc. Urban Plan. 2017. [Google Scholar] [CrossRef]
- Martínez, J.L.C.; García, J.M.; López, N.R.; Valenciano, J.D. Mapping green infrastructure and socioeconomic indicators as a public management tool: The case of the municipalities of Andalusia (Spain). Environ. Sci. Eur. 2020, 32. [Google Scholar] [CrossRef]
- Church, S.P. Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools. Landsc. Urban Plan. 2015, 134, 229–240. [Google Scholar] [CrossRef]
- Zegras, C. Mainstreaming Sustainable Urban Transport: Putting the Pieces Together. In Urban Transport in the Developing World: A Handbook of Policy and Practice; Edward Elgar Publishing: Cheltenham, UK, 2011; pp. 548–588. [Google Scholar]
- Anderson, L.M.; Cordell, H.K. Influence of trees on residential property values in Athens, Georgia (U.S.A.): A survey based on actual sales prices. Landsc. Urban Plan. 1988, 15, 153–164. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Miettinen, A. Property Prices and Urban Forest Amenities. J. Environ. Econ. Manag. 2000, 39, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Mell, I.C.; Henneberry, J.; Hehl-Lange, S.; Keskin, B. To green or not to green: Establishing the economic value of green infrastructure investments in The Wicker, Sheffield. Urban For. Urban Green. 2016, 18, 257–267. [Google Scholar] [CrossRef]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372650, 1655–1660. [Google Scholar] [CrossRef] [Green Version]
- de Vries, S.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Natural Environments—Healthy Environments? An Exploratory Analysis of the Relationship between Greenspace and Health. Environ. Plan. A 2003, 350, 1717–1731. [Google Scholar] [CrossRef] [Green Version]
- Grahn, P.; Stigsdotter, U.K. The relation between perceived sensory dimensions of urban green space and stress restoration. Landsc. Urban Plan. 2010, 94, 264–275. [Google Scholar] [CrossRef]
- Nowak, D.J. Brooklyn’s Urban Forest; USDA Forest Service: Vallejo, CA, USA, 2002. [Google Scholar]
- Jim, C.Y.; Chen, W.Y. Recreation–amenity use and contingent valuation of urban greenspaces in Guangzhou, China. Landsc. Urban Plan. 2006, 75, 81–96. [Google Scholar] [CrossRef]
- Price, C. Quantifying the aesthetic benefits of urban forestry. Urban For. Urban Green. 2003, 1, 123–133. [Google Scholar] [CrossRef]
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Characklis, G.W.; Wiesner, M.R. Particles, Metals, and Water Quality in Runoff from Large Urban Watershed. J. Environ. Eng. 1997, 123, 753–759. [Google Scholar] [CrossRef]
- Transportation Research Board; NCHRP Report 767; Transportation Research Board of the National Academies: Washington, DC, USA, 2014.
- Niemczynowicz, J. A detailed water budget for the city of Lund as a basis for the simulation of different future scenarios. Iahs Publ. Int. Assoc. Hydrol. Sci. Wallingford 1990, 198298, 51–58. [Google Scholar]
- Hogland, W.; Niemczynowicz, J. The unit superstructure—A new construction to prevent groundwater depletion. Conjunctive water Use Proc. Budapest Symp. 1986, 1986, 513–522. [Google Scholar]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Brack, C.L. Pollution mitigation and carbon sequestration by an urban forest. Environ. Pollut. 2002, 116, S195–S200. [Google Scholar] [CrossRef]
- Akbari, H. Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut. 2002, 116, S119–S126. [Google Scholar] [CrossRef]
- Sebastiani, A.; Buonocore, E.; Franzese, P.P.; Riccio, A.; Chianese, E.; Nardella, L.; Manes, F. Modeling air quality regulation by green infrastructure in a Mediterranean coastal urban area: The removal of PM10 in the Metropolitan City of Naples (Italy). Ecol. Modell. 2021, 440, 109383. [Google Scholar] [CrossRef]
- Voordeckers, D.; Lauriks, T.; Denys, S.; Billen, P.; Tytgat, T.; van Acker, M. Guidelines for passive control of traffic-related air pollution in street canyons: An overview for urban planning. Landsc. Urban Plan. 2020, 207, 103980. [Google Scholar] [CrossRef]
- Pillsbury, N.; Reimer, J.; Thompson, R. Tree Volume Equations for Fifteen Urban Species in California; California Polytechnic State University: Riverside, CA, USA, 1998. [Google Scholar]
- Konopacki, S.; Akbari, H. Energy Savings for Heat-Island Reduction Strategies in Chicago and Houston (Including Updates for Baton Rouge, Sacramento, and Salt Lake City); BerkeleyLab: Berkeley, CA, USA, 2002. [Google Scholar]
- Jansson, C.; Almkvist, E.; Jansson, P.-E. Heat balance of an asphalt surface: Observations and physically-based simulations. Meteorol. Appl. 2006, 132, 203. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research: Design and Methods; SAGE Publications: Los Angeles, CA, USA, 1994. [Google Scholar]
- George, A.L.; Bennett, A. Case Studies and Theory Development in the Social Sciences; Belfer Center for Science and International Affairs: Cambridge, MA, USA, 2005. [Google Scholar]
- US Environmental Protection Agency (EPA). Results of the nationwide urban runoff program, vol. I. Final Report. In Water Planning Division; US Environmental Protection Agency (EPA): Washington, DC, USA, 1983. [Google Scholar]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Puget Sound Water Quality Action Team. 2000 Puget Sound Water Quality Management Plan: Status Report; Puget Sound Water Quality Action Team: Washington, DC, USA, 2000. [Google Scholar]
- Horner, R.; May, C.; Livingston, E.; Blaha, D.; Scoggins, M.; Tims, J.; Maxted, J. Linking Stormwater BMP Designs and Performance to Receiving Water Impact Mitigation; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2001; pp. 60–77. [Google Scholar] [CrossRef] [Green Version]
- Wise, S. Green infrastructure rising. Planning 2008, 74, 14–19. [Google Scholar]
- Matsuno, H.; Chiu, S. Seatle Streets—Stormwater Management Challenge; NACTO: Seattle, WA, USA, 2001. [Google Scholar]
- Horner, R.; Lim, H.; Burges, S.J. Hydrologic Monitoring of the Seattle Ultra-Urban Stormwater Management Projects: Summary of the 2000–2003 Water Years. In Water Resources Series Technical Report No. 181; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2004. [Google Scholar]
- Lenth, J.; Rheaume, A.; Tackett, T. Lessons learned from monitoring bioretention swales in west Seattle’s high point neighborhood. In Low Impact Development for Urban Ecosystem and Habitat Protection; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2008; p. 29. [Google Scholar]
- City of Seattle. Director’s Rule 2-05, Right-of-Way Improvements Manual; Department of Planning and Development: Seattle, WA, USA, 2005. [Google Scholar]
- Seattle Public Utilities. Right-of-Way Improvements Manual; Seattle Public Utilities: Seattle, WA, USA, 2012. [Google Scholar]
- Lowry, T.; DeWald, S.; LaClergue, D. Transforming Gray to Green in the Right-of-Way. In Low Impact Development for Urban Ecosystem and Habitat Protection; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2008. [Google Scholar]
- Tackett, T. Personal communication. Seattle Public Utilities: Seattle, WA, USA, 2014. [Google Scholar]
- Lenth, J. Personal communication. Herrera Consulting: Seattle, WA, USA, 2014. [Google Scholar]
- LaClergue, D. Personal communication. Seattle Department of Planning and Development: Seattle, WA, USA, 2014. [Google Scholar]
- METRO. Creating Livable Streets: Street Design Guidelines, 2nd ed.; Metropolitan regional government for the Portland Area: Portland, OR, USA, 2002. [Google Scholar]
- City of Portland. Green Streets Cross-Bureau Team Report—Phase I; City of Portland: Portland, OR, USA, 2007. [Google Scholar]
- Bureau of Environmental Services. Sewer and Drainage Facilities Design Manual; City of Portland: Portland, OR, USA, 2007. [Google Scholar]
- METRO. Metropolitan Green Spaces Master Plan; METRO: Portland, OR, USA, 1992. [Google Scholar]
- Department of Environmental Quality. Best Management Practices Manual; Oregon Department of Environmental Quality: Portland, OR, USA, 1997. [Google Scholar]
- Kloss, C.; Lukes, R. Managing Wet Weather with Green Infrastructure Municipal Handbook; US Environmental Protection Agency: Washington, DC, USA, 2008. [Google Scholar]
- Bureau of Environmental Services. Stormwater Management Manual; City of Portland: Portland, OR, USA, 2016. [Google Scholar]
- Kurtz, T. Personal communication. Bureau of Environmental Services: Portland, OR, USA, 2014. [Google Scholar]
- Kurtz, T. Managing Street Runoff with Green Streets. In Low Impact Development for Urban Ecosystem and Habitat Protection; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2008; p. 20. [Google Scholar] [CrossRef]
- Fancher, S. Personal communication. Environmental Services for the City of Gresham: Gresham, OR, USA, 2015. [Google Scholar]
- Philadelphia Water Department. Amended Green City Clean Waters; Philadelphia Water Department: Philadelphia, PA, USA, 2011. [Google Scholar]
- Wallace Roberts & Todd. GreenPlan Philadelphia; Wallace Roberts & Todd: Philadelphia, PA, USA, 2010. [Google Scholar]
- Mandarano, L.; Paulsen, K. Governance capacity in collaborative watershed partnerships: Evidence from the Philadelphia region. J. Environ. Plan. Manag. 2011, 540, 1293–1313. [Google Scholar] [CrossRef]
- Cammarata, M. Personal communication. Bureau of Environmental Services: Portland, OR, USA, 2014. [Google Scholar]
- Stratus Consulting. A Triple Bottom Line Assessment of Traditional and Green Infrastructure Options for Controlling CSO Events in Philadelphia’s Watersheds; Final Report; Stratus Consulting: Boulder, CO, USA, 2009. [Google Scholar]
- Gallo, C.; Moore, A.; Wywrot, J. Comparing the adaptability of infiltration based BMPs to various U.S. regions. Landsc. Urban Plan. 2012, 106, 326–335. [Google Scholar] [CrossRef]
- Cross, N. Engineering Design Methods: Strategies for Product Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Ben-Joseph, E. Residential Street Standards & Neighborhood Traffic Control: A Survey of Cities’ Practices and Public Officials’ Attitudes; NACTO: New York, NY, USA, 1995; pp. 1–56. [Google Scholar]
- Litman, T. Why and how to reduce the amount of land paved for roads and parking facilities. Environ. Pract. 2011, 13, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Fancher, S. Personal communication. Environmental Services for the City of Gresham: Gresham, OR, USA, 2014. [Google Scholar]
- Tackett, T. Street Alternatives: Seattle Public Utilities’ Natural Drainage System Program. In Low Impact Development: New and Continuing Applications; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2009; pp. 316–321. [Google Scholar] [CrossRef]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Hui, N.; Saxe, S.; Roorda, M.; Hess, P.; Miller, E.J. Measuring the completeness of complete streets. Transp. Rev. 2018, 38, 73–95. [Google Scholar] [CrossRef]
- Rodriguez-Valencia, A. The Urban Right-of-Way Allocation Problem: Considering All Demands. In Transportation Research Board 93rd Annual Meeting, 2014. Available online: https://trid.trb.org/view/1288973 (accessed on 29 July 2019).
- Jensen, S.U.; Underlien, S.; Jensen, S.U. Pedestrian and Bicyclist Level of Service on Roadway Segments. Transp. Res. Rec. J. Transp. Res. Board 2007, 2031, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Vallejo-Borda, J.; Rosas-Satizabal, D.; Rodriguez-Valencia, A. Cyclists’ Perceived Infrastructure Service Quality and Enjoyment: A SEM Approach. In Proceedings of the 98th Transportation Research Board Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
Environmental Service | Benefits | Source |
---|---|---|
Visual availability | Higher property values | L. M. Anderson and Cordell [37], Tajima [10], Tyrväinen and Miettinen [38], Lu and Noyce [30], McCord et al. [31], Yang et al. [32], Mell et al. [39] |
Better health (mental and physical) | Mitchell and Popham [40], de Vries et al. [41], Grahn and Stigsdotter [42], Akpinar et al. [23], Douglas et al. [24], van den Bosch and Nieuwenhuijsen [22], van Vliet and Hammond [25], Caparrós Martínez et al. [34] | |
Aesthetics and positive valuation | Nowak et al. [43], Jim and Chen [44], Price [45], Zhou and Parves Rana [1] Zwierzchowska et al. [29] | |
Perviousness | Filtration non-point pollutants | Arnold and Gibbons [46], Characklis and Wiesner [47], Transportation Research Board [48] |
Wastewater cost reduction or rainfall interception | Niemczynowicz [49], Hogland and Niemczynowicz [50], Grunwald et al. [27], Jiménez et al. [13], Meerow and Newell [14] | |
Ground water recharge | Hogland and Niemczynowicz [50], Caparrós Martínez et al. [34] | |
Processing capacity | Carbon sequestration | Beckett et al. [51], Brack [52], Akbari [53], Nowak et al. [43], Karteris et al. [6], Sebastiani et al. [54], Caparrós Martínez et al. [34], Voordeckers et al. [55] |
Reduce energy consumption | Pillsbury et al. [56], Akbari [53], Konopacki and Akbari [57] | |
Mitigate heat island effect | Akbari [53], Konopacki and Akbari [57], Jansson et al. [58], Anguluri and Narayanan [8], Grunwald et al. [27], Meerow and Newell [14], Norton et al. [9], Caparrós Martínez et al. [34] |
Steps for GSI Implementation |
---|
1. valuate the site |
2. Confirm current requirements |
3. Characterize site drainage area, runoff, and hierarchy |
4. Develop a conceptual design |
5. Develop a Landscape Plan |
6. Complete Stormwater Management Plan 7. Prepare Operation and Maintenance Plan 8. Submit final plans and obtain permits 9. Construct and inspect |
Facility Area (ft2) | Drainage Area (ft2) | Peak Flow Reduction | Flow Vol. Reduction | Sizing Factor | |
---|---|---|---|---|---|
Glencoe Rain Garden | 2000 | 35,000 | 80% | 89% | 0.057 |
NE Siskiyou and 35th | 300 | 6000 | 81–85% | 61% | 0.050 |
SW 12th and Montgomery | 272 | 7500 | n.a. | 50–74% | 0.036 |
NE Fremont and 131st | 300 | 4500 | 95% | 96% | 0.067 |
SE 21st and Tibbetts | 300 | 4500 | n.a. | 70% | 0.067 |
Seattle | Portland | Philadelphia | |
---|---|---|---|
Rooted in Stormwater Management? | Yes | Yes | Yes |
Previous larger scale planning, prior on-site design? | Yes | Yes | Yes |
Born as part of a citywide greening strategy? | No | No | Yes |
Other benefits of green streets assessed and acknowledged? | No | No | Yes |
Multidisciplinary process? | Yes | Yes | Yes |
Defined stepwise procedure or routine? | Yes a | Yes a | Yes a |
Inter-agency collaboration during the process? | Yes | Yes | Yes |
Competing with transportation interests within the ROW? | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Valencia, A.; Ortiz-Ramirez, H.A. Understanding Green Street Design: Evidence from Three Cases in the U.S. Sustainability 2021, 13, 1916. https://doi.org/10.3390/su13041916
Rodriguez-Valencia A, Ortiz-Ramirez HA. Understanding Green Street Design: Evidence from Three Cases in the U.S. Sustainability. 2021; 13(4):1916. https://doi.org/10.3390/su13041916
Chicago/Turabian StyleRodriguez-Valencia, Alvaro, and Hernan A. Ortiz-Ramirez. 2021. "Understanding Green Street Design: Evidence from Three Cases in the U.S." Sustainability 13, no. 4: 1916. https://doi.org/10.3390/su13041916
APA StyleRodriguez-Valencia, A., & Ortiz-Ramirez, H. A. (2021). Understanding Green Street Design: Evidence from Three Cases in the U.S. Sustainability, 13(4), 1916. https://doi.org/10.3390/su13041916