A Comparison of Linear and Non-Linear Machine Learning Techniques (PCA and SOM) for Characterizing Urban Nutrient Runoff
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology Description
2.2. Study Area
2.3. Dataset
2.3.1. Observations
2.3.2. Simulations
2.3.3. Generations
2.4. Variable Selection
2.5. Machine Learning Techniques
2.5.1. Linear Techniques: PCA and Pearson’s r
2.5.2. Non-Linear Techniques: SOM and Spearman’s ρ
3. Results and Discussion
3.1. Dataset Profiling
3.2. PCA and SOM Run
3.3. Feature Correlation
3.4. Data Point Grouping
3.5. Feature Importance
3.6. Further Discussion
4. Conclusions
- Pearson’s r was able to represent the main urban nutrient runoff processes detected in the study area: rainfall-runoff and phosphorus transport driven by sediments. Spearman’s ρ, by strengthening the rainfall-runoff process, was also able to depict the transport of dissolved nutrients in urban runoff.
- Regarding feature correlation, both PCA and SOM methodologies captured the primary process that symbolizes nutrient build-up and wash-off. Notably, both were able to represent the critical role played by TSS in the nutrient mobilization from impervious surfaces. This was proved particularly for phosphorus, which dominantly was particle-bound, while nitrogen transport mainly occurred through water (dissolved). The latter was better depicted by the SOM analysis.
- Regarding datapoint grouping, both techniques were able to group data points well. The PCA groups data points following the same direction of the vector chosen for labeling them. The SOM better delineates the groups by assigning different shades to the neurons: the lighter, the more similar to its neighbors (distance map). Furthermore, by overlapping distance and frequency map, we can identify similarities (or dissimilarities) among data points that belong to the same group.
- Concerning feature importance, the main difference between the two techniques is that the PCA can compute the meaningful variables for the system, while the SOM can only provide the feature importance for each neuron. PCA loadings are able to detect the dilution process that was never well detected by previous linear techniques. The SOM outcomes can detect the main processes under study by confirming the previous results. Furthermore, SOM maps can be coupled to extract further information.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keeler, B.L.; Polasky, S.; Brauman, K.A.; Johnson, K.A.; Finlay, J.C.; O’Neill, A.; Kovacs, K.; Dalzell, B. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc. Natl. Acad. Sci. USA 2012, 109, 18619–18624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranieri, E.; Gorgoglione, A.; Petrella, A.; Petruzzelli, V.; Gikas, P. Benzene removal in horizontal subsurface flow constructed wetlands treatment. Int. J. Appl. Eng. Res. 2015, 10, 14603–14614. [Google Scholar]
- Namugize, J.N.; Jewitt, G.; Graham, M. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Phys. Chem. Earth 2018, 105, 247–264. [Google Scholar] [CrossRef]
- Ding, L.; Li, Q.; Tang, J.; Wang, J.; Chen, X. Linking land use metrics measured in aquatic–terrestrial interfaces to water quality of reservoir-based water sources in Eastern China. Sustainability 2019, 11, 4860. [Google Scholar] [CrossRef] [Green Version]
- Gorgoglione, A.; Gregorio, J.; Ríos, A.; Alonso, J.; Chreties, C.; Fossati, M. Influence of land use/land cover on surface-water quality of Santa Lucía river, Uruguay. Sustainability 2020, 12, 4692. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–29. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Gioia, A.; Iacobellis, V. A Framework for assessing modeling performance and effects of rainfall-catchment-drainage characteristics on nutrient urban runoff in poorly gauged watersheds. Sustainability 2019, 11, 4933. [Google Scholar] [CrossRef] [Green Version]
- Todeschini, S. Hydrologic and environmental impacts of imperviousness in an industrial catchment of northern Italy. J. Hydrol. Eng. 2016, 21, 05016013. [Google Scholar] [CrossRef]
- Ki, S.J.; Kang, J.-H.; Lee, S.W.; Lee, Y.S.; Cho, K.H.; An, K.-G.; Kim, J.H. Advancing assessment and design of stormwater monitoring programs using a self-organizing map: Characterization of trace metal concentration profiles in stormwater runoff. Water Res. 2011, 45, 4183–4197. [Google Scholar] [CrossRef]
- Surbeck, C.Q.; Jiang, S.C.; Ahn, J.H.; Grant, S.B. Flow fingerprinting fecal pollution and suspended solids in stormwater runoff from an urban coastal watershed. Environ. Sci. Technol. 2006, 40, 4435–4441. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Leermakers, M.; Elskens, M.; De Ridder, F.; Doan, T.H.; Baeyens, W. Correlations, partitioning and bioaccumulation of heavy metals between different compartments of Lake Balaton. Sci. Total Environ. 2005, 341, 211–226. [Google Scholar] [CrossRef]
- Lee, H.; Lau, S.L.; Kayhanian, M.; Stenstrom, M.K. Seasonal first flush phenomenon of urban stormwater discharges. Water Res. 2004, 38, 4153–4163. [Google Scholar] [CrossRef]
- Gobel, P.; Dierkes, C.; Coldewey, W.C. Storm water runoff concentration matrix for urban areas. J. Contam. Hydrol. 2007, 91, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Staponites, L.R.; Barták, V.; Bíly, M.; Simon, O.P. Performance of landscape composition metrics for predicting water quality in headwater catchments. Sci. Rep. 2019, 9, 14405. [Google Scholar] [CrossRef]
- Cho, K.H.; Kang, J.H.; Ki, S.J.; Park, Y.; Cha, S.M.; Kim, J.H. Determination of the optimal parameters in regression models for the prediction of chlorophyll-a: A case study of the Yeongsan reservoir, Korea. Sci. Total Environ. 2009, 407, 2536–2545. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.F.; Elias, C.; Ferreira, J.; Tornés, E.; Puccinelli, C.; Delmas, F.; Dörflinger, G.; Urbanič, G.; Marcheggiani, S.; Rosebery, J.; et al. Water quality assessment of rivers using diatom metrics across Mediterranean Europe: A methods inter calibration exercise. Sci. Total Environ. 2014, 476, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Wang, Y.; Yang, Q.; Meng, F.; Yao, Z.; Cheng, P. Assessment of surface water quality using a growing hierarchical self-organizing map: A case study of the Songhua River Basin, northeastern China, from 2011 to 2015. Environ. Monit. Assess. 2018, 190, 260. [Google Scholar] [CrossRef]
- Dutta, S.; Dwivedi, A.; Kumar, M.S. Use of water quality index and multivariate statistical techniques for the assessment of spatial variations in water quality of a small river. Environ. Monit. Assess. 2018, 190, 718. [Google Scholar] [CrossRef]
- Liu, A.; Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Influence of land use on river sediment pollution. Env. Pollut. 2017, 229, 639–646. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Castro, A.; Gioia, A.; Iacobellis, V. Application of the Self-Organizing Map (SOM) to Characterize Nutrient Urban Runoff. In Computational Science and Its Applications—ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Karaka, Y., Eds.; Springer: Cham, Switzerland, 2020; Volume 12252. [Google Scholar]
- Gamble, A.; Babbar-Sebens, M. On the use of multi-variate statistical methods for combining in-stream monitoring data and spatial analysis to characterize water quality conditions in the White River Basin, Indiana, USA. Environ. Monit. Assess. 2012, 184, 845–875. [Google Scholar] [CrossRef] [PubMed]
- Sengorur, B.; Koklu, R.; Ates, A. Water quality assessment using artificial intelligence techniques: SOM and ANN—A case study of Melen River Turkey. Water Qual. Expo. Health 2015, 7, 469–490. [Google Scholar] [CrossRef]
- Park, Y.-S.; Kwon, Y.-S.; Hwang, S.-J.; Park, S. Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environ. Model. Softw. 2014, 55, 214–221. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Marisco, A.; Caldara, M.; Capolongo, D.; Pennetta, L. Climatic characteristics of middle-southern Apulia (southern Italy). J. Maps 2007, 3, 342–348. [Google Scholar] [CrossRef]
- Köppen, W. Das geographische System der Klimate, In Handbuch der Klimatologie; Borntraeger: Berlin, Germany, 1936; Volume 1. [Google Scholar]
- Zito, G.; Cacciapaglia, G. Precipitazioni in Puglia: Mappe stagionali. In Proceedings of the 5th Workshop Progetto Strategico Clima, Ambiente e Territorio nel Mezzogiorno, Amalfi, Italy, 28–30 April 1993; pp. 223–253. [Google Scholar]
- SIT Puglia. Available online: http://www.sit.puglia.it/ (accessed on 16 December 2020).
- Eaton, A.D.; Clesceri, L.S.; Greenberg, A.E. Standard Methods for the Examination of Water and Wastwater, 19th ed.; American Public Health Association (APHA) Association: Baltimore, MD, USA, 1995. [Google Scholar]
- Di Modugno, M.; Gioia, A.; Gorgoglione, A.; Iacobellis, V.; La Forgia, G.; Piccinni, A.F.; Ranieri, E. Build-up/wash-off monitoring and assessment for sustainable management of first flush in an urban area. Sustainability 2015, 7, 5050–5070. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L.A. Storm Water Management Model User’s Manual Version 5.1; EPA- 600/R-14/413b; National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2009.
- Yazdi, M.N.; Ketabchy, M.; Sample, D.J.; Durelle, S.; Hehuan, L. An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environ. Model. Softw. 2019, 118, 211–225. [Google Scholar] [CrossRef]
- Lee, S.B.; Yoon, C.G.; Jung, K.W.; Hwang, H.S. Comparative evaluation of runoff and water quality using HSPF and SWMM. Water Sci. Technol. 2010, 62, 6. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.H.; Yoon, C.G. Pollutant loading estimates from watershed by rating curve method and SWMM. Korean J. Environ. Agric. 2000, 19, 419–425. [Google Scholar]
- Kim, J.H.; Paik, D.H. A study on runoff characteristics of combined sewer overflow (CSO) in urban area using GIS & SWMM. Korean J. Environ. Health 2005, 31, 467–474. [Google Scholar]
- Baek, S.S.; Ligaray, M.; Pyo, J.; Park, J.P.; Kang, J.H.; Pachepsky, Y.; Chun, J.A.; Cho, K.H. A novel water quality module of the SWMM model for assessing low impact development (LID) in urban watersheds. J. Hydrol. 2020, 586, 124886. [Google Scholar] [CrossRef]
- Bisht, D.S.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study. Nat. Hazards 2016, 84, 749–776. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Bombardelli, F.A.; Pitton, B.J.L.; Oki, L.R.; Haver, D.L.; Young, T.M. Uncertainty in the parameterization of sediment build-up and wash-off processes in the simulation of sediment transport in urban areas. Environ. Model. Softw. 2019, 111, 170–181. [Google Scholar] [CrossRef]
- Tu, M.C.; Smith, P. Modeling pollutant buildup and washoff parameters for SWMM based on land use in a semiarid urban watershed. Water Air Soil Pollut. 2018, 229, 121. [Google Scholar] [CrossRef]
- Veneziano, D.; Iacobellis, V. Multiscaling pulse representation of temporal rainfall. Water Resour. Res. 2002, 38, 131–1313. [Google Scholar] [CrossRef]
- Veneziano, D.; Furcolo, P.; Iacobellis, V. Multifractality of iterated pulse processes with pulse amplitudes generated by a random cascade. Fractals 2002, 10, 209–222. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Gioia, A.; Iacobellis, V.; Piccinni, A.F.; Ranieri, E. A rationale for pollutograph evaluation in ungauged areas, using daily rainfall patterns: Case studies of the Apulian region in Southern Italy. Appl. Environ. Soil Sci. 2016, 2016, 9327614. [Google Scholar] [CrossRef] [Green Version]
- Regional Regulation, 9 December 2013, nº 26, “Stormwater Runoff and First Flush Regulations” (Implementation of Article 13 of Legislative Decree nº 152/06 and Subsequent Amendments). Available online: https://www.indicenormativa.it/sites/default/files/R_26_09_12_2013.pdf (accessed on 18 December 2020).
- Gorgoglione, A.; Bombardelli, F.A.; Pitton, B.J.L.; Oki, L.R.; Haver, D.L.; Young, T.M. Role of sediments in insecticide runoff from urban surfaces: Analysis and modeling. Int. J. Environ. Res. Public Health 2018, 15, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, M.J. Chemometrics in Analytical Spectroscopy, 2nd ed.; Royal Society of Chemistry: Cambridge, UK, 2007; pp. 67–95. [Google Scholar]
- Mishra, S.P.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.P.; Saikhom, R.; Laishram, M. Multivariate statistical data analysis/principal component analysis (PCA). Int. J. Livest. Res. 2017, 7, 60–75. [Google Scholar]
- Massart, D.L.; Vandeginste, B.G.M.; Deming, S.M.; Michotte, Y.; Kaufman, L. Chemometrics—A Text Book; Elsevier: Amsterdam, The Netherlands, 1988; Chapters 1–4; pp. 14–21. [Google Scholar]
- Arriola, A.; Pastorini, M.; Capdehourat, G.; Grampín, E.; Castro, A. Large-Scale Internet User Behavior Analysis of a Nationwide K-12 Education Network Based on DNS Queries. In Computational Science and Its Applications—ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., Karaka, Y., Eds.; Springer: Cham, Switzerland, 2020; Volume 12249. [Google Scholar]
- An, Y.; Zou, Z.; Li, R. Descriptive Characteristics of Surface Water Quality in Hong Kong by a self-organising map. Int. J. Environ. Res. Public Health 2016, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Balamurali, M.; Silversides, K.L.; Melkumyan, A. A comparison of t-SNE, SOM and SPADE for identifying material type domains in geological data. Comput. Geosci. 2019, 125, 78–89. [Google Scholar] [CrossRef]
- Balamurali, M.; Melkumyan, A. Detection of outliers in geochemical data using ensembles of subsets of variables. Math. Geosci. 2018, 50, 369–380. [Google Scholar] [CrossRef]
- Pandas_Profiling Library. Available online: https://github.com/pandas-profiling (accessed on 29 December 2020).
- Scikit-Learn Library. Scikit-Learn: Machine Learning in Python, Pedregosa et al., JMLR 12; MIT Press Microtome Publishing: Cambridge, MA, USA, 2011; pp. 2825–2830. [Google Scholar]
- Vesanto, J.; Himberg, J.; Alhoniemi, E.; Parhankangas, J. SOM Toolbox for Matlab 5; Technical Report A57 2000; Neural Networks Research Centre, Helsinki University of Technology: Helsinki, Finland, 2000. [Google Scholar]
- Vettigli, G. Minisom: Minimalistic and Numpy-Based Implementation of the Self Organizing Map. Available online: https://github.com/JustGlowing/minisom (accessed on 29 December 2020).
- Gorgoglione, A.; Alonso, J.; Chreties, C.; Fossati, M. Assessing temporal and spatial patterns of surface-water quality with a multivariate approach: A case study in Uruguay. IOP Conf. Ser. Earth Environ. Sci. 2020, 612, 012002. [Google Scholar] [CrossRef]
- Artina, S.; Maglionico, M.; Marinelli, A. Le Misure di Qualità nel Bacino Urbano Fossolo, Modelli Quali-Quantitativi del Drenaggio Urbano; CSDU: Milano, Italy, 1997; pp. 21–78. [Google Scholar]
- Milano, V.; Pagliara, S.; Della Casa, F. Urban stormwater quantity and quality in the experimental urban catchment of Picchianti. In Proceedings of the 2nd International Conference: New Trends in Water and Environmental Engineering for safety and Life: Eco-compatible Solutions for Aquatic Environments, Capri, Italy, 24–28 June 2002. [Google Scholar]
- Han, Y.H.; Lau, S.L.; Kayhanian, M.; Stensrtom, M.K. Correlation analysis among highway stormwater pollutants and characteristics. In Proceedings of the IWA 8th International Conference on Diffuse/Nonpoint Pollution, Kyoto, Japan, 24–29 October 2004. [Google Scholar]
- Ciaponi, C.; Papiri, S.; Todeschini, S. Analisi e Interpretazione Della Correlazione tra Alcuni Parametri Inquinanti Nella Rete Fognaria di Cascina Scala in Tempo di Pioggia; XXX° Convegno di Idraulica e Costruzioni Idrauliche—IDRA: Ancona, Italy, 2006. [Google Scholar]
- Borda, T.; Celi, L.; Zavattaro, L.; Sacco, D.; Barberis, E. Effect of agronomic management on risk of suspended solids and phosphorus losses from soil to waters. J. Soils Sediments 2011, 11, 440–451. [Google Scholar] [CrossRef]
- Viviano, G.; Salerno, F.; Manfredi, E.C.; Polesello, S.; Valsecchi, S.; Tartari, G. Surrogate measures for providing high frequency estimates of total phosphorus concentrations in urban watersheds. Water Res. 2014, 64, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Ng Kee Kwong, K.F.; Bholah, A.; Volc, Y.L.; Pyne, E.K. Nitrogen and phosphorus transport by surface runoff from a silty clay loam soil under sugarcane in the humid tropical environment of Mauritius. Agric. Ecosyst. Environ. 2002, 91, 147–157. [Google Scholar] [CrossRef]
- Chen, N.; Hong, H. Nitrogen export by surface runoff from a small agricultural watershed in southeast China: Seasonal pattern and primary mechanism. Biogeochemistry 2011, 106, 311–321. [Google Scholar] [CrossRef]
- Inamdar, S.; Dhillon, G.; Singh, S.; Parr, T.; Qin, Z. Particulate nitrogen exports in stream runoff exceed dissolved nitrogen forms during large tropical storms in a temperate, headwater, forested watershed. J. Geophys. Res. Biogeosci. 2015, 120, 1548–1566. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Wang, M.K.; Wang, G.; Chen, M.H.; Luo, D.; Li, R. Nitrogen runoff under simulated rainfall from a sewage-amended lateritic red soil in Fujian, China. Soil Tillage Res. 2012, 123, 35–42. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Calabrese, A.; Pappagallo, G.; D’ambrosio, E.; Lo Porto, A. Impact of anthropogenic activities on a temporary river. Fresenius Environ. Bull. 2012, 21, 3278–3286. [Google Scholar]
- Li, L.Q.; Yin, C.Q.; Kong, L.L.; He, Q.C. Effect of antecedent dry weather period on urban storm runoff pollution load. Huan Jing Ke Xue 2007, 28, 2287–2293. [Google Scholar] [PubMed]
- Bian, B. Effect of antecedent dry period on water quality of urban storm runoff pollution. Huan Jing Ke Xue 2009, 12, 3522–3526. [Google Scholar]
- Lee, J.Y.; Kim, H.; Kim, Y.; Han, M.Y. Characteristics of the event mean concentration (EMC) from rainfall runoff on an urban highway. Environ. Pollut. 2011, 159, 884–888. [Google Scholar] [CrossRef] [PubMed]
Event | ADP (days) | Total Rainfall (mm) | Event Duration (min) | Max. Rainfall Intensity (mm/h) | Runoff Volume (m3) | Runoff Peak (m3/s) |
---|---|---|---|---|---|---|
10 November 2006 | 6 | 2.4 | 50 | 24 | 113.49 | 0.04 |
22 November 2006 | 11 | 4.3 | 112 | 6 | 148.86 | 0.04 |
1 December 2006 | 18 | 5.9 | 251 | 12 | 286.88 | 0.05 |
24 January 2007 | 19 | 1.6 | 37 | 12 | 111.62 | 0.05 |
10 February 2007 | 6 | 12.9 | 398 | 36 | 460.11 | 0.05 |
Event | TSS (mg/L) | TN (mg/L) | TP (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|---|
min | max | EMC | min | max | EMC | min | max | EMC | |
11/10/2006 | 224.0 | 420.0 | 19.54 | 7.0 | 8.3 | 0.47 | 0.70 | 1.00 | 0.05 |
11/22/2006 | 124.0 | 2160.0 | 86.40 | 3.6 | 14.0 | 0.45 | 0.24 | 2.96 | 0.11 |
12/17/2006 | 6.0 | 217.0 | 6.040 | - | - | - | - | - | - |
01/24/2007 | 177.0 | 807.0 | 47.96 | 5.4 | 10.0 | 0.48 | 0.65 | 0.99 | 0.03 |
02/10/2007 | 541.0 | 2090.0 | 40.00 | 6.3 | 13.0 | 0.25 | 2.08 | 3.63 | 0.08 |
Process | Parameter | Range | Value |
---|---|---|---|
Build-up | 87.000–446.000 | 115 | |
0.002–6.000 | 0.08 | ||
Wash-off | 0.110–0.190 | 0.18 | |
0.000–3.000 | 2.35 |
ADP (days) | Tot_Rainfall (mm) | Runoff_Vol (m3) | EMC_TSS (mg/L) | EML_TSS (mg) | EMC_TN (mg/L) | EML_TN (mg) | EMC_TP (mg/L) | EML_TP (mg) | |
---|---|---|---|---|---|---|---|---|---|
min | 2.010 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
5th percentile | 2.177 | 0.617 | 5.580 × 104 | 4.104 × 10−6 | 0.214 | 1.991 × 10−7 | 1.444 | 1.050 × 10−7 | 0.022 |
median | 5.031 | 13.684 | 2.791 × 106 | 1.617 × 10−4 | 735.796 | 1.562 × 10−6 | 4.415 | 7.628 × 10−7 | 2.225 |
95th percentile | 18.140 | 100.346 | 2.105 × 107 | 6.576 × 10−4 | 2209.532 | 3.635 × 10−5 | 12.721 | 2.376 × 10−6 | 5.323 |
max | 59.135 | 422.099 | 1.489 × 108 | 1.428 × 10−3 | 3655.108 | 2.185 × 10−4 | 36.648 | 5.462 × 10−6 | 10.780 |
sd | 6.041 | 39.059 | 1.171 × 107 | 2.221 × 10−4 | 743.537 | 1.951 × 10−5 | 3.929 | 7.648 × 10−7 | 1.649 |
coef. variat. | 0.879 | 1.472 | 1.966 | 1.004 | 0.893 | 2.413 | 0.724 | 0.799 | 0.700 |
kurtosis | 18.812 | 26.378 | 65.981 | 6.231 | 0.306 | 37.433 | 10.376 | 4.182 | 2.129 |
mean | 6.874 | 26.529 | 5.960 × 106 | 2.211 × 10−4 | 832.201 | 8.084 | 5.425 | 9.572 × 10−7 | 2.355 |
variance | 36.489 | 1525.611 | 1.373 × 1014 | 4.934 × 10−8 | 55,2847.603 | 3.805 × 10−10 | 15.435 | 5.850 × 10−13 | 2.720 |
ADP | Tot_Rainfall | Runoff_Vol | EMC_TSS | EMC_TN | EMC_TP | EML_TSS | EML_TN | EML_TP | |
---|---|---|---|---|---|---|---|---|---|
PC1 | 0.278 | 0.361 | 0.258 | 0.157 | −0.203 | −0.124 | 0.493 | 0.404 | 0.489 |
PC2 | 0.407 | −0.330 | −0.319 | 0.423 | 0.211 | 0.525 | −0.002 | 0.352 | −0.024 |
PC3 | 0.374 | 0.203 | 0.283 | −0.456 | 0.675 | −0.035 | −0.126 | 0.201 | −0.134 |
PC4 | −0.021 | 0.193 | 0.716 | 0.331 | −0.140 | 0.449 | −0.260 | −0.145 | −0.176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorgoglione, A.; Castro, A.; Iacobellis, V.; Gioia, A. A Comparison of Linear and Non-Linear Machine Learning Techniques (PCA and SOM) for Characterizing Urban Nutrient Runoff. Sustainability 2021, 13, 2054. https://doi.org/10.3390/su13042054
Gorgoglione A, Castro A, Iacobellis V, Gioia A. A Comparison of Linear and Non-Linear Machine Learning Techniques (PCA and SOM) for Characterizing Urban Nutrient Runoff. Sustainability. 2021; 13(4):2054. https://doi.org/10.3390/su13042054
Chicago/Turabian StyleGorgoglione, Angela, Alberto Castro, Vito Iacobellis, and Andrea Gioia. 2021. "A Comparison of Linear and Non-Linear Machine Learning Techniques (PCA and SOM) for Characterizing Urban Nutrient Runoff" Sustainability 13, no. 4: 2054. https://doi.org/10.3390/su13042054
APA StyleGorgoglione, A., Castro, A., Iacobellis, V., & Gioia, A. (2021). A Comparison of Linear and Non-Linear Machine Learning Techniques (PCA and SOM) for Characterizing Urban Nutrient Runoff. Sustainability, 13(4), 2054. https://doi.org/10.3390/su13042054