National Limits of Sustainability: The Czech Republic’s CO2 Emissions in the Perspective of Planetary Boundaries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- (1)
- Model allocating the equal share of CO2 emissions per capita, adjusted for past emissions (since 1990) and GDP per capita;
- (2)
- Model allocating the equal share of CO2 emissions per capita, adjusted for past emissions (since 1990);
- (3)
- Model allocating the equal share of CO2 emissions per capita.
- (1)
- the equal share of CO2 emissions per capita model, adjusted for past emissions (since 1990) and GDP per capita, will be exceeded more than 46 times in 2050;
- (2)
- the equal share of CO2 emissions per capita model, adjusted for past emissions (since 1990), will be exceeded more than eight times in 2050;
- (3)
- the equal share of CO2 emissions per capita model will be exceeded more than twice in 2050.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights, 2019, ST/ESA/SER.A/423. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 14 September 2020).
- Wozniak, E.; Tyczewska, A.; Twardowski, T. Bioeconomy development factors in the European Union and Poland. New Biotechnol. 2021, 60, 2–8. [Google Scholar] [CrossRef]
- Fialova, J.; Brezina, D.; Zizlavska, N.; Michal, J.; Machar, I. Assessment of Visitor Preferences and Attendance to Singletrails in the Moravian Karst for the Sustainable Development Proposals. Sustainability 2019, 11, 3560. [Google Scholar] [CrossRef] [Green Version]
- Pechanec, V.; Machar, I.; Sterbova, L.; Prokopova, M.; Kilianova, H.; Chobot, K.; Cudlin, P. Monetary Valuation of Natural Forest Habitats in Protected Areas. Forests 2017, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Stegmanna, P.; Londob, M.; Jungingerc, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. 2020, 6, 100029. [Google Scholar] [CrossRef]
- Sillman, J.; Uusitalo, V.; Tapanen, T.; Salonen, A.; Soukka, R.; Kahiluoto, H. Contribution of honeybees towards the net environmental benefits of food. Sci. Total Environ. 2021, 756, 143880. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nykvist, B.; Persson, Å.; Moberg, F.; Persson, L.; Cornell, S.; Rockström, J. National Environmental Performance on Planetary Boundaries: A Study for the Swedish Environmental Protection Agency, 2013. Report 6576, Naturvårdsverket. p. 122. ISBN 978-91-620-6576-8.. Available online: http://www.naturvardsverket.se/Om-Naturvardsverket/Publikationer/ISBN/6500/978-91-620-6576-8/ (accessed on 23 September 2020).
- Cole, M.; Bailey, R.; New, M. Tracking sustainable development with a national barometer for South Africa using a downscaled “safe and just space” framework. Proc. Natl. Acad. Sci. USA 2014, 111, E4399–E4408. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Heijungs, R.; Duan, Z.; De Snoo, G. The environmental sustainability of nations: Benchmarking the carbon, water and land footprints against allocated planetary boundaries. Sustainability 2015, 7, 11285–11305. [Google Scholar] [CrossRef] [Green Version]
- Dao, H.; Friot, D.; Peduzzi, P.; Chatenoux, B.; De Bono, A.; Schwarzer, S. Environmental Limits and Swiss Footprints Based on Planetary Boundaries; UNEP/GRID-Geneva & University of Geneva: Geneva, Switzerland, 2018; Available online: https://archive-ouverte.unige.ch/unige:74873 (accessed on 25 September 2020).
- Hickel, J. Quantifying national responsibility for climate breakdown: An equality-based attribution approach for carbon dioxide emissions in excess of the planetary boundary. Lancet Planet Health 2020, 4, e399–e404. [Google Scholar] [CrossRef]
- Hoff, H.; Nykvist, B.; Carson, M. Living Well, within the Limits of Our Planet? Measuring Europe’s Growing External Footprint. SEI Working Paper 2014–05, Stockholm Environment Institute, 2014. Available online: https://www.sei.org/publications/living-well-within-the-limits-of-our-planet-measuring-europes-growing-external-footprint/ (accessed on 25 September 2020).
- Dearing, J.A.; Wang, R.; Zhang, K.; Dyke, J.G.; Haberl, H.; Hossain, M.S.; Langdon, P.G.; Lenton, T.M.; Raworth, K.; Brown, S.; et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change 2014, 28, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Kahiluoto, H.; Kuisma, M.; Kuokkanen, A.; Mikkilä, M.; Linnanen, L. Local and social facets of planetary boundaries: Right to nutrients. Environ. Res. Lett. 2015, 10, 104013. [Google Scholar] [CrossRef]
- Häyhä, T.; Lucas, P.; van Vuuren, D.; Cornell, S.E.; Hoff, H. From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged? Glob. Environ. Change 2016, 40, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Clift, R.; Sim, S.; King, H.; Chenoweth, J.L.; Christie, I.; Clavreul, J.; Mueller, C.; Posthuma, L.; Boulay, A.-M.; Chaplin-Kramer, R.; et al. The challenges of applying planetary boundaries as a basis for strategic decision-making in companies with global supply chains. Sustainability 2017, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Ryberg, M.W.; Bjerre, T.K.; Nielsen, P.H.; Hauschild, M. Absolute environmental sustainability assessment of a Danish utility company relative to the Planetary Boundaries. J. Ind. Ecol. 2020. [Google Scholar] [CrossRef]
- Bjorn, A.; Sim, S.; King, H.; Patouillard, L.; Margni, M.; Hauschild, M.; Ryberg, M. Life cycle assessment applying planetary and regional boundaries to the process level: A model case study. Int. J. Life Cycle Assess. 2020, 25, 2241–2254. [Google Scholar] [CrossRef]
- Roos, S.; Zamani, B.; Sandin, G.; Petrs, G.M.; Svanstrom, M. A life cycle assessment (LCA) – based approach to guiding an industry sector towards sustainability: The case of the Swedish apparel sector. J. Clean. Prod. 2016, 133, 691–700. [Google Scholar] [CrossRef]
- Van Vuuren, V.P.; Lucas, P.L.; Hayha, T.; Cornell, S.E.; Stafford-smith, M. horses for courses: Analytical tools to explore planetary boundaries. Earth Syst. Dyn. 2016, 7, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Machar, I.; Vozenilek, V.; Kirchner, K.; Vlckova, V.; Bucek, A. Biogeographic model of climate conditions for vegetation zones in Czechia. Geografie 2017, 122, 64–82. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Heijungs, R.; De Snoo, G.R. Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint-boundary environmental sustainability assessment framework. Ecol. Econ. 2015, 114, 218–226. [Google Scholar] [CrossRef]
- Kim, R.; Kotze, L. Planetary boundaries at the intersection of Earth system law, science and governance: A state-of-the-art review. Rev. Eur. Comp. Int. Environ. Law 2020, 1–13. [Google Scholar] [CrossRef]
- Butz, C.; Liechti, J.; Bodin, J.; Cornell, S.E. Towards defining an environmental investment universe within planetary boundaries. Sustain. Sci. 2018, 13, 1031–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenstein, M.; Calvo-Serrano, R.; Galan-Martin, A.; Pozo, C.; Zurano-Cervello, P.; Guillen-Gosalbez, G. Operating within Planetary Boundaries without compromising well-being? A Data Envelopment Analysis approach. J. Clean. Prod. 2020, 270, 121833. [Google Scholar] [CrossRef]
- Baer, P.; Athanasiou, T.; Kartha, S. The Greenhouse Development Rights Framework: The Right to Development in a Climate Constrained World; Heinrich Boll Foundation, Christian Aid, EcoEquity and the Stockholm Environment Institute: Berlin, Germany, 2008. [Google Scholar]
- Ryberg, M.W.; Richardson, K.; Hauschild, M.Z. Development of a life-cycle impact assessment methodology linked to the planetary boundaries framework. Ecol. Indic. 2018, 88, 250–262. [Google Scholar] [CrossRef] [Green Version]
- Oprsal, Z.; Harmacek, J.; Pavlik, P.; Machar, I. What Factors can Influence the Expansion of Protected Areas around the World in the Context of International Environmental and Development Goals? Probl. Ekorozw. 2018, 13, 145–157. [Google Scholar]
- Hoff, H.; Alva, L.I. How the Planetary Boundaries Framework can Support National Implementation of the 2030 Agenda; Stockholm Environment Institute: Stockholm, Sweden, 2017; Available online: https://mediamanager.sei.org/documents/Publications/SEI-2017-PB-Hoff-HowthePlanetary.pdf (accessed on 16 February 2021).
- Lucas, P.; Wilting, H. Using Planetary Boundaries to Support National Implementation of Environment-Related Sustainable Development Goals. PBI; Netherlands Environmental Assessment Agency: Hague, The Netherlands; Available online: https://www.researchgate.net/publication/328654952_Using_planetary_boundaries_to_support_national_implementation_of_environment-related_Sustainable_Development_Goals (accessed on 16 February 2021).
- Janoušková, S.; Hák, T.; Moldan, B. Global SDGs Assessments: Helping or Confusing Indicators? Sustainability 2018, 10, 1540. [Google Scholar] [CrossRef] [Green Version]
- Lafortune, G.; Fuller, G.; Schmidt-Traub, G.; Kroll, C. How Is Progress towards the Sustainable Development Goals Measured? Comparing Four Approaches for the EU. Sustainability 2020, 12, 7675. [Google Scholar] [CrossRef]
- Bowen, K.J.; Cradock-Henry, N.A.; Koch FPatterson, J.; Häyhä, T.; Vogt, J.; Barbi, F. Implementing the “Sustainable Development Goals”: Towards addressing three key governance challenges—collective action, trade-offs, and accountability. Current Opin. Environ. Sustain. 2017, 26–27, 90–96. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Greenhouse Gas Bulletin (GHG Bulletin) - No. 16: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2019. Available online: https://library.wmo.int/index.php?lvl=notice_display&id=21795#.X_tgwzSg82w (accessed on 23 November 2020).
- Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.-L.; Parmesan, C.; et al. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PloS ONE 2013, 8, e81648. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis; IPCC: Cambridge, 17 May 2013. [Google Scholar]
- IPCC. Summary for Policymakers. Global Warming of 1.5 °C; Masson-Delmotte, V.P., Zhai, H.-O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/sr15/ (accessed on 16 February 2021).
- Jacob, V.A. The Implementation of the Paris Agreement on Climate Change. Transnatl. Environ. Law 2020, 9, 621–625. [Google Scholar] [CrossRef]
- Ryberg, M.W.; Andersen, M.M.; Owsianiak, M.; Hauschild, M.Z. Downscaling the planetary boundaries in absolute environmental sustainability assessments - A review. J. Clean. Prod. 2020, 276, 123287. [Google Scholar] [CrossRef]
- Machar, I.; Vlčková, V.; Šálek, L.; Pechanec, V.; Nowak, A.; Nowak, S.; Plášek, V.; Švajda, J.; Opršal, Z.; Topacoglu, O. Environmental Modelling of Forest Vegetation Zones as a Support Tool for Sustainable Management of Central European Spruce Forests. J. Landsc. Ecol. 2018, 11, 45–63. [Google Scholar] [CrossRef] [Green Version]
- Chandrakumar, C.; McLaren, S.J.; Jayamaha, N.P.; Ramilan, T. Absolute sustainability-based life-cycle assessment (ASLCA): A benchmarking approach to operate agri-foods systems within the 2 °C global carbon budget. J. Ind. Ecol. 2019, 23, 906–917. [Google Scholar] [CrossRef]
- Dao, H.; Peduzzi, P.; Friot, D. National environmental limits and footprints based on the Planetary Boundaries framework: The case of Switzerland. Glob. Environ. Change 2018, 52, 49–57. [Google Scholar] [CrossRef] [Green Version]
- O´Neil, D.W.; Fanning, A.L.; Lamb, W.F.; Steinberger, J.K. A good life for all within planetary boundaries. Nat. Sustain. 2018, 1, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Global Carbon Project. Supplemental Data of Global Carbon Budget 2019 (Version 1.0) [Data Set]. Available online: https://doi.org/10.18160/gcp-2019 (accessed on 20 December 2020).
- Franzen, A.; Mader, S. Consumption-based versus production-based accounting of CO2 emissions: Is there evidence for carbon leakage? Environ. Sci. Policy 2018, 84, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Olivier, J.G.J.; Vignati, E. Fossil CO2 and GHG Emissions of All World Countries - 2019 Report, EUR 29849 EN; Publications Office of the European Union: Luxembourg, 2019; pp. 1–96. ISBN 978-92-76-11100-9. [Google Scholar] [CrossRef]
- Fanning, A.L.; O’Neill, D.W. Tracking resource use relative to planetary boundaries in a steady-state framework: A case study of Canada and Spain. Ecol. Indic. 2016, 69, 836–849. [Google Scholar] [CrossRef]
- UN General Assembly, Transforming our world: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 20 December 2020).
- Environment Agency. Greenhouse Gas Emissions. 2020 [Data Set]. Available online: https://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=sdg_13_10&language=en (accessed on 3 November 2020).
- Eurostat. Air Emissions Intensities by NACE Rev. 2 Activity. 2020 [Data Set]. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ac_aeint_r2/default/table?lang=en (accessed on 5 November 2020).
- Ministry of Environment of the Czech Republic. Politika Ochrany Klimatu. 2017. Available online: https://www.mzp.cz/C1257458002F0DC7/cz/politika_ochrany_klimatu_2017/$FILE/OEOK-POK-20170329.pdf (accessed on 23 November 2020).
- Knoblauch, C.; Beer, C.; Liebner, S.; Grigoriev, M.N.; Pfeiffer, E.M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 2018, 8, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Petrescu, A.M.R.; Lohila, A.; Tuovinen, J.P. The uncertain climate footprint of wetlands under human pressure. Proc. Natl. Acad. Sci. USA 2015, 112, 4594–4599. [Google Scholar] [CrossRef] [Green Version]
- Bjorn, A.; Sim, S.; King, H.; Keys, P.; Wang-Erlandsson, L.; Cornell, S.E.; Margni, M.; Bulle, C. Challenges and opportunities towards improved application of the planetary boundary for land-system change in the life cycle assessment of product. Sci. Total Environ. 2019, 696, 133964. [Google Scholar] [CrossRef]
- Zelenakova, M.; Labant, S.; Zvijakova, L.; Weiss, E.; Cepelova, H.; Weiss, R.; Fialova, J.; Mind’as, J. Methodology for environmental assessment of proposed activity using risk analysis. Environ. Assess. Impact Rev. 2020, 80, 106333. [Google Scholar] [CrossRef]
Level of Confidence | Maximum Cumulative Emissions | Maximum Cumulative Emissions Accounting for Non-CO2 Forcing |
---|---|---|
>33% | 1570 GtC (5760 GtCO2) | 900 GtC (3300 GtCO2) |
>50% | 1210 GtC (4440 GtCO2) | 820 GtC (3010 GtCO2) |
>66% | 1000 GtC (3670 GtCO2) | 790 GtC (2900 GtCO2) |
Variable | Description |
---|---|
Maximum global future CO2 emissions from 2017 onwards | |
Maximum cumulative global emissions accounting for non-CO2 forcing with >66% probability to stay below 2 °C | |
Past global CO2 emissions from 1870 until 2011 | |
Past global CO2 emissions from 2012 until 2016 |
Variable | Description |
---|---|
Maximum future CO2 emissions from 2017 onwards in the Czech Republic | |
Czech population in 1990 | |
World population in 1990 | |
Maximum global CO2 emissions from 2017 onwards | |
World past emissions from 1990 until 2016 | |
Past production-based CO2 emissions from 1990 until 2016 in the Czech Republic | |
2017 world average GDP per capita in PPP (constant 2017 international $) | |
2017 Czech GDP per capita in PPP (constant 2017 international $) | |
Sum of all countries’ GDP-adjusted FE |
2005 | 2020 | 2030 | 2040 | 2050 | Year |
---|---|---|---|---|---|
146 | 114 | 102 | 70 | 39 | MtCO2eq. |
118 | 92 | 83 | 57 | 32 | MtCO2 |
Global | National (Czech Republic) | |
---|---|---|
Budget 2017–2100 | 825 GtCO2 | 48.7 MtCO2 |
Budget per year | 9.9 GtCO2 | 0.6 MtCO2 |
Limit 2017 | 7.6 GtCO2 | 0.6 MtCO2 |
Per capita yearly | 1 tCO2 | 0.06 tCO2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsonsova, A.; Machar, I. National Limits of Sustainability: The Czech Republic’s CO2 Emissions in the Perspective of Planetary Boundaries. Sustainability 2021, 13, 2164. https://doi.org/10.3390/su13042164
Parsonsova A, Machar I. National Limits of Sustainability: The Czech Republic’s CO2 Emissions in the Perspective of Planetary Boundaries. Sustainability. 2021; 13(4):2164. https://doi.org/10.3390/su13042164
Chicago/Turabian StyleParsonsova, Aneta, and Ivo Machar. 2021. "National Limits of Sustainability: The Czech Republic’s CO2 Emissions in the Perspective of Planetary Boundaries" Sustainability 13, no. 4: 2164. https://doi.org/10.3390/su13042164
APA StyleParsonsova, A., & Machar, I. (2021). National Limits of Sustainability: The Czech Republic’s CO2 Emissions in the Perspective of Planetary Boundaries. Sustainability, 13(4), 2164. https://doi.org/10.3390/su13042164