Is Active Lifestyle Related to Autonomic Nervous System Function and Lipid Profile in People with Overweight? A Study Pilot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedure
2.4. Statistical Analysis
3. Results
Lipid Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kohl, H.W.; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380. [Google Scholar] [CrossRef] [Green Version]
- James, W.P. Obesity—A modern pandemic: The burden of disease. Endocrinol. Nutr. 2013, 60 (Suppl. S1). [Google Scholar] [CrossRef]
- Pratt, M.; Ramirez Varela, A.; Salvo, D.; Hw, K.I.; Ding, D. Attacking the pandemic of physical inactivity: What is holding us back? Br. J. Sports Med. 2020, 54. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378. [Google Scholar] [CrossRef]
- Da Cuña Carrera, I.; Lantarón Caeiro, E.M.; González González, Y.; Gutiérrez Nieto, M. Repercusión del sedentarismo en la respuesta cardiorrespiratoria en estudiantes universitarios / Sedentarism Impact on Cardio-Respiratory Response in College Students. RIMCAFD 2017. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Martínez, X.; Petermann, F.; Leiva, A.M.; Garrido-Méndez, A.; Salas-Bravo, C.; Martínez, M.A.; Labraña, A.M.; Duran, E.; Valdivia-Moral, P.; Zagalaz, M.L.; et al. Association of physical inactivity with obesity, diabetes, hypertension and metabolic syndrome in the chilean population. Rev. Med. Chil. 2018, 146, 585–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazzianotto-Forti, E.M.; Moreno, M.A.; Plater, E.; Baruki, S.B.S.; Rasera-Junior, I.; Reid, W.D. Impact of Physical Training Programs on Physical Fitness in People with Class II and III Obesity: A Systematic Review and Meta-Analysis. Phys. Ther. 2020, 100, 963–978. [Google Scholar] [CrossRef]
- Biadgilign, S.; Mgutshini, T.; Haile, D.; Gebremichael, B.; Moges, Y.; Tilahun, K. Epidemiology of obesity and overweight in sub-Saharan Africa: A protocol for a systematic review and meta-analysis. BMJ Open 2017, 7, e017666. [Google Scholar] [CrossRef] [Green Version]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 2 December 2020).
- Liao, C.-D.; Tsauo, J.-Y.; Hsiao, D.-J.; Liou, T.-H.; Huang, S.-W.; Lin, L.-F. Association of physical capacity with heart rate variability based on a short-duration measurement of resting pulse rate in older adults with obesity. PLoS ONE 2017, 12, e0189150. [Google Scholar] [CrossRef] [Green Version]
- Voulgari, C.; Pagoni, S.; Vinik, A.; Poirier, P. Exercise improves cardiac autonomic function in obesity and diabetes. Metabolism 2013, 62, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Russo, L.; Lumeng, C.N. Properties and functions of adipose tissue macrophages in obesity. Immunology 2018, 155, 407–417. [Google Scholar] [CrossRef]
- Ayer, J.; Charakida, M.; Deanfield, J.E.; Celermajer, D.S. Lifetime risk: Childhood obesity and cardiovascular risk. Eur. Heart J. 2015, 36, 1371–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wewege, M.A.; Thom, J.M.; Rye, K.-A.; Parmenter, B.J. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome. Atherosclerosis 2018, 274, 162–171. [Google Scholar] [CrossRef]
- Guarino, D.; Nannipieri, M.; Iervasi, G.; Taddei, S.; Bruno, R.M. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity. Front. Physiol. 2017, 8, 665. [Google Scholar] [CrossRef] [Green Version]
- Jokinen, E. Obesity and cardiovascular disease. Minerva Pediatr. 2015, 67, 25–32. [Google Scholar] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar]
- Paschoal, M.A.; Trevizan, P.F.; Scodeler, N.F. Heart rate variability, blood lipids and physical capacity of obese and non-obese children. Arq. Bras. Cardiol. 2009, 93, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Salinas, A.; Zafra-Santos, E.; Pavez-Von Martens, G.; Cofré-Bolados, C.; Lemus-Zúñiga, J.; Sánchez-Aguilera, P. Heart rate variability and insulin resistance among obese males. Rev. Med. Chil. 2015, 143, 1129–1135. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.; Moreira, A.; Moreira, P.; Delgado, L.; Silva, D. Effects of weight changes in the autonomic nervous system: A systematic review and meta-analysis. Clin. Nutr. 2019, 38, 110–126. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.M.; Solomon, S.D. Influence of Physical Activity on Hypertension and Cardiac Structure and Function. Curr. Hypertens. Rep. 2015, 17, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabbone, I.; Bobbio, A.; Rabbia, F.; Bertello, M.C.; Ignaccoldo, M.G.; Saglio, E.; Morello, F.; Veglio, F.; Pacini, G.; Cerutti, F. Early cardiovascular autonomic dysfunction, beta cell function and insulin resistance in obese adolescents. Acta Biomed. 2009, 80, 29–35. [Google Scholar]
- Alvarez, G.E.; Beske, S.D.; Ballard, T.P.; Davy, K.P. Sympathetic neural activation in visceral obesity. Circulation 2002, 106, 2533–2536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farah, B.Q.; Andrade-Lima, A.; Germano-Soares, A.H.; Christofaro, D.G.D.; de Barros, M.V.G.; do Prado, W.L.; Ritti-Dias, R.M. Physical Activity and Heart Rate Variability in Adolescents with Abdominal Obesity. Pediatr. Cardiol. 2018, 39, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Leo, S.; Weng, C.; Yang, X.; Wu, Y.; Tang, X. Mechanisms mediating renal sympathetic nerve activation in obesity-related hypertension. Herz 2015, 40 (Suppl. S2), 190–196. [Google Scholar] [CrossRef]
- Chintala, K.K.; Krishna, B.H.; N, M.R. Heart rate variability in overweight health care students: Correlation with visceral fat. J. Clin. Diagn. Res. 2015, 9, CC06-8. [Google Scholar] [CrossRef]
- Mehta, R.K. Impacts of obesity and stress on neuromuscular fatigue development and associated heart rate variability. Int. J. Obes. 2015, 39, 208–213. [Google Scholar] [CrossRef]
- Böhm, M.; Reil, J.-C.; Deedwania, P.; Kim, J.B.; Borer, J.S. Resting heart rate: Risk indicator and emerging risk factor in cardiovascular disease. Am. J. Med. 2015, 128, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Badrov, M.B.; Bartol, C.L.; DiBartolomeo, M.A.; Millar, P.J.; McNevin, N.H.; McGowan, C.L. Effects of isometric handgrip training dose on resting blood pressure and resistance vessel endothelial function in normotensive women. Eur. J. Appl. Physiol. 2013, 113, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Poddar, M.G.; Kumar, V.; Sharma, Y.P. Automated diagnosis of coronary artery diseased patients by heart rate variability analysis using linear and non-linear methods. J. Med. Eng. Technol. 2015, 39, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.M.; Eleftheriadou, A.; Alam, U.; Cuthbertson, D.J.; Wilding, J.P.H. Cardiac Autonomic Neuropathy in Obesity, the Metabolic Syndrome and Prediabetes: A Narrative Review. Diabetes Ther. 2019, 10, 1995–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T. Effectiveness of lifestyle intervention in overweight children. Proc. Nutr. Soc. 2011, 70, 494–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantilla Toloza, S.C.; Gómez-Conesa, A. El Cuestionario Internacional de Actividad Física. Un instrumento adecuado en el seguimiento de la actividad física poblacional. Rev. Iberoam. Fisioter. Kinesiol 2007, 10, 48–52. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Christensen, J.H. The autonomic nervous system and cardiovascular disease: Role of n-3 PUFAs. Vascul. Pharmacol. 2015, 71, 1–10. [Google Scholar] [CrossRef]
- Contreras-Leal, É.A.; Santiago-García, J. Obesidad, síndrome metabólico y su impacto en las enfermedades cardiovasculares. Rev. Ordem Med. 2011, 22, 103–115. [Google Scholar]
- Saxton, S.N.; Clark, B.J.; Withers, S.B.; Eringa, E.C.; Heagerty, A.M. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol. Rev. 2019, 99, 1701–1763. [Google Scholar] [CrossRef]
- Hamjane, N.; Benyahya, F.; Nourouti, N.G.; Mechita, M.B.; Barakat, A. Cardiovascular diseases and metabolic abnormalities associated with obesity: What is the role of inflammatory responses? A systematic review. Microvasc. Res. 2020, 131, 104023. [Google Scholar] [CrossRef]
- Thayer, J.F.; Fischer, J.E. Heart rate variability, overnight urinary norepinephrine, and plasma cholesterol in apparently healthy human adults. Int. J. Cardiol. 2013, 162, 240–244. [Google Scholar] [CrossRef]
- Oliveira, C.; Silveira, E.A.; Rosa, L.; Santos, A.; Rodrigues, A.P.; Mendonça, C.; Silva, L.; Gentil, P.; Rebelo, A.C. Risk Factors Associated with Cardiac Autonomic Modulation in Obese Individuals. J. Obes. 2020, 2020, 7185249. [Google Scholar] [CrossRef] [PubMed]
- Hillebrand, S.; Swenne, C.A.; Gast, K.B.; Maan, A.C.; le Cessie, S.; Jukema, J.W.; Rosendaal, F.R.; den Heijer, M.; de Mutsert, R. The role of insulin resistance in the association between body fat and autonomic function. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 93–99. [Google Scholar] [CrossRef]
- Silva, L.R.B.E.; Zamunér, A.R.; Gentil, P.; Alves, F.M.; Leal, A.G.F.; Soares, V.; Silva, M.S.; Vieira, M.F.; Simões, K.; Pedrino, G.R.; et al. Cardiac Autonomic Modulation and the Kinetics of Heart Rate Responses in the On- and Off-Transient during Exercise in Women with Metabolic Syndrome. Front. Physiol. 2017, 8, 542. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. Pathophysiology of Diabetic Dyslipidemia. J. Atheroscler. Thromb. 2018, 25, 771–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef]
- Poon, A.K.; Whitsel, E.A.; Heiss, G.; Soliman, E.Z.; Wagenknecht, L.E.; Suzuki, T.; Loehr, L. Insulin resistance and reduced cardiac autonomic function in older adults: The Atherosclerosis Risk in Communities study. BMC Cardiovasc. Disord. 2020, 20, 217. [Google Scholar] [CrossRef]
- Zhao, K.; Ao, Y.; Harper, R.M.; Go, V.L.W.; Yang, H. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: Hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output. Neuroscience 2013, 247, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.W.; Smith, B.N. Rapid inhibition of neural excitability in the nucleus tractus solitarii by leptin: Implications for ingestive behaviour. J. Physiol. 2006, 573, 395–412. [Google Scholar] [CrossRef]
- Lambert, E.A.; Teede, H.; Sari, C.I.; Jona, E.; Shorakae, S.; Woodington, K.; Hemmes, R.; Eikelis, N.; Straznicky, N.E.; De Courten, B.; et al. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance. Clin. Endocrinol. 2015, 83, 812–819. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, B.J.; Genest, J., Jr. High-density lipoproteins and endothelial function. Circulation 2001, 104, 1978–1983. [Google Scholar] [CrossRef] [Green Version]
- Katsogiannos, P.; Kamble, P.G.; Wiklund, U.; Sundbom, M.; Espes, D.; Hammar, U.; Karlsson, F.A.; Pereira, M.J.; Eriksson, J.W. Rapid changes in neuroendocrine regulation may contribute to reversal of type 2 diabetes after gastric bypass surgery. Endocrine 2020, 67, 344–353. [Google Scholar] [CrossRef] [Green Version]
- Windham, B.G.; Fumagalli, S.; Ble, A.; Sollers, J.J.; Thayer, J.F.; Najjar, S.S.; Griswold, M.E.; Ferrucci, L. The Relationship between Heart Rate Variability and Adiposity Differs for Central and Overall Adiposity. J. Obes. 2012, 2012, 149516. [Google Scholar] [CrossRef]
- Abdelbasset, W.K.; Tantawy, S.A.; Kamel, D.M.; Alqahtani, B.A.; Soliman, G.S. A randomized controlled trial on the effectiveness of 8-week high-intensity interval exercise on intrahepatic triglycerides, visceral lipids, and health-related quality of life in diabetic obese patients with nonalcoholic fatty liver disease. Medicine 2019, 98, e14918. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.R.L.; de Souza, K.A.; Dos Santos, K.M.; Peçanha, T.; Ferreira, J.C.; Cambri, L.T.; Arsa, G. Acute Exercise Increases the Ambulatory Cardiac Modulation of Young Men with Overweight/Obesity. Res. Q. Exerc. Sport 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zouhal, H.; Ben Abderrahman, A.; Khodamoradi, A.; Saeidi, A.; Jayavel, A.; Hackney, A.C.; Laher, I.; Algotar, A.M.; Jabbour, G. Effects of physical training on anthropometrics, physical and physiological capacities in individuals with obesity: A systematic review. Obes. Rev. 2020, 21, e13039. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.B.; Gentil, P.R.V.; Beltrame, T.; Basso Filho, M.A.; Alves, F.M.; Silva, M.S.; Pedrino, G.R.; Ramirez-Campillo, R.; Coswig, V.; Rebelo, A.C.S. Exponential model for analysis of heart rate responses and autonomic cardiac modulation during different intensities of physical exercise. R. Soc. Open Sci. 2019, 6, 190639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | PI Group (n = 14) | PA Group (n = 14) | p Value * | Effect Size ¥ | |
---|---|---|---|---|---|
Anthropometric variables | Age (year) | 24.7 ± 2.90 | 23.3 ± 2.12 | 0.0219 | −0.55 |
BMI (Kg/m2) | 26.7 ± 1.54 | 22.5 ± 0.55 | 0.0001 | −3.72 | |
WC (cm) | 112 ± 5.41 | 97 ± 9.11 | 0.004 | −2.00 | |
Lipid profile | Insulin (uU/mL) | 11.8 ± 3.54 | 2.91± 1.26 | 0.0001 | −3.35 |
HDL (mg/dL) | 42.86 ± 6.43 | 44.93 ± 8.12 | 0.3667 | 0.28 | |
LDL (mg/dL) | 102.54 ± 36.35 | 49.79 ± 32.12 | 0.0004 | −1.54 | |
VLDL (mg/dL) | 29.85 ± 13.59 | 16.29 ± 6.24 | 0.0033 | −1.28 | |
TG (mg/dL) | 139.07 ± 58.84 | 81.21 ± 30.86 | 0.004 | −1.23 | |
TC (mg/dL) | 175.86 ± 34.34 | 110.14 ± 35.22 | 0.0001 | −1.89 | |
HOMA-IR | 2.53 ± 1.93 | 0.53 ± 0.17 | 0.0001 | −1.46 | |
Autonomic nervous system function | LF/HF | 2.26 ± 0.39 | 1.36 ± 0.33 | 0.0001 | −2.49 |
SD1 | 24.68 ± 10.27 | 28.49 ± 9.53 | 0.2906 | 0.38 | |
DFA α1 | 1.07 ± 0.25 | 0.98 ± 0.29 | 0.4762 | −0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza-Salinas, A.; Molina-Sotomayor, E.; Cano-Montoya, J.; Gonzalez-Jurado, J.A. Is Active Lifestyle Related to Autonomic Nervous System Function and Lipid Profile in People with Overweight? A Study Pilot. Sustainability 2021, 13, 2439. https://doi.org/10.3390/su13052439
Espinoza-Salinas A, Molina-Sotomayor E, Cano-Montoya J, Gonzalez-Jurado JA. Is Active Lifestyle Related to Autonomic Nervous System Function and Lipid Profile in People with Overweight? A Study Pilot. Sustainability. 2021; 13(5):2439. https://doi.org/10.3390/su13052439
Chicago/Turabian StyleEspinoza-Salinas, Alexis, Edgardo Molina-Sotomayor, Johnattan Cano-Montoya, and Jose Antonio Gonzalez-Jurado. 2021. "Is Active Lifestyle Related to Autonomic Nervous System Function and Lipid Profile in People with Overweight? A Study Pilot" Sustainability 13, no. 5: 2439. https://doi.org/10.3390/su13052439
APA StyleEspinoza-Salinas, A., Molina-Sotomayor, E., Cano-Montoya, J., & Gonzalez-Jurado, J. A. (2021). Is Active Lifestyle Related to Autonomic Nervous System Function and Lipid Profile in People with Overweight? A Study Pilot. Sustainability, 13(5), 2439. https://doi.org/10.3390/su13052439