Water Quality in Thirty Freshwater Springs and Twenty Four Brackish Springs in the Karst Area to Realize Sustainable Water Resources Management
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Spring Quality
3.2. Quality of Springs from the Aspect of Chemical Parameters
3.3. Spring Quality from the Aspect of Biological Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syofyan, Z. Analisa Ketersediaan Air Bersih untuk Kebutuhan Penduduk di Kecamatan Pauh Kota Padang. In Proceedings of the Seminar Nasional Strategi Pengembangan Infrastruktur ke-3 (SPI-3); Institut Teknologi Padang: Padang, Indonesia, 2017. Available online: http://eproceeding.itp.ac.id/index.php/spi2017 (accessed on 10 January 2021).
- Pratama, D.M. Analisis Kebutuhan dan Ketersediaan Air Bersih di Wilayah Kecamatan Sukamulia Kabupaten Lombok Timur. Bachelor’s Thesis, Fakultas Teknik Universitas Jurusan Teknik Sipil, Mataram, Indonesia, 30 December 2016. [Google Scholar]
- Barakat, A.; Meddah, R.; Afdali, M.; Touhami, F. Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco). Phys. Chem. Earth 2018. [Google Scholar] [CrossRef]
- Sudia, L.B.; Indriyani, L.; Yunus, L.; Mursidi, B.; Dan, A. Kajian dan Pemetaan Sumber Air di Kabupaten Buton Tengah; Laporan Akhir Penelitian; Kerjasama Badan Perencanaan Pembangunan Daerah Kabupaten Buton Tengah dengan Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Halu Oleo: Kendari, Indonesia, 2018. [Google Scholar]
- Joshi, B.K. Hydrology and nutrient dynamics of spring of Almora-Binsar area, Indian Central Himalaya: Landscapes, practices, and management. Water Resour. 2006, 33, 87–96. [Google Scholar] [CrossRef]
- Ansari, M.A.; Deodhar, A.; Kumar, U.S.; Khatti, V.S. Water quality of few springs in outer Himalayas–A study on the groundwater—Bedrock interactions and hydrochemical evolution. Groundw. Sustain. Dev. 2015, 1, 59–67. [Google Scholar] [CrossRef]
- Haque, S.; Kannaujiya, S.; Taloor, A.K.; Keshri, D.; Bhunia, R.K.; Ray, P.K.C.; Chauhan, P. Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundw. Sustain. Dev. 2020, 10, 100337. [Google Scholar] [CrossRef]
- Taloor, A.K.; Pir, R.A.; Adimalla, N.; Ali, S.; Manhas, D.S.; Roy, S.; Singh, A.K. Spring water quality and discharge assessment in the Basantar watershed of Jammu Himalaya using geographic information system (GIS) and water quality Index (WQI). Groundw. Sustain. Dev. 2020, 1–12. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Page, R.M.; Besmer, M.D.; Epting, J.; Sigrist, J.A.; Hammes, F.; Huggenberger, P. Online analysis: Deeper insights into water quality dynamics in spring water. Sci. Total Environ. 2017, 227–236. [Google Scholar] [CrossRef]
- Noerbambang, S.M.; dan Morimura, T. Perancangan dan Pemeliharaan Sistem Plambing; Pradnya Paramita: Jakarta, Indonesia, 2005. [Google Scholar]
- Arthana, I.W. Studi kualitas air beberapa mata air di sekitar Bedugul, Bali (The study of water quality of springs surrounding Bedugul, Bali). J. Lingkung. Hidup Bumi Lestari 2007, 7, 1–9. [Google Scholar]
- Fitra, R.A.F.A. Efektivitas proses pengolahan pada depot air minum di Kabupaten Buton Tengah. J. Keselam. Kesehat. Kerja Lindungan Lingkung. 2019, 5, 40–48. [Google Scholar] [CrossRef]
- Wiryono. Pengantar Ilmu Lingkungan; Pertelon Media: Bengkulu, Indonesia, 2013. [Google Scholar]
- Rao, M.; Krishan, G.; Kumar, C.; Purushothaman, P.; Kumar, S. Observing changes in groundwater resource using hydro-chemical and isotopic parameters: A case study from Bist Doab, Punjab. Environ. Earth Sci. 2017, 76, 175. [Google Scholar] [CrossRef]
- Selvakumar, S.; Ramkumar, K.; Chandrasekar, N.; Magesh, N.; Kaliraj, S. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India. Appl. Water Sci. 2017, 7, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Varol, S.; Davraz, A. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: A case study of the Tefenni plain (Burdur/Turkey). Environ. Earth Sci. 2015, 73, 1725–1744. [Google Scholar] [CrossRef]
- White, D.; Lapworth, D.; Stuart, M.; Williams, P. Hydrochemical profiles in urban groundwater systems: New insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants. Sci. Total Environ. 2016, 562, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, L.; Ma, H.; Yu, K.; Martín, J.D. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China. Environ. Poll. 2016, 216, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Baldisserotto, B. Water pH and hardness affect growth of freshwater teleosts. Brazil. J. Anim. Sci. 2011, 40, 138–144. [Google Scholar]
- Romano, N.; Egnew, N.; Quintero, H.; Kelly, A.; Sinha, A.K. The effects of water hardness on the growth, metabolic indicators and stress resistance of largemouth bass Micropterus salmoides. Aquaculture 2020, 527, 1–6. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.S.; Somridhivej, B. Alkalinity and hardness: Critical but elusive concepts in aquaculture. J. World Aquac. Soc. 2016, 47, 6–41. [Google Scholar] [CrossRef]
- Tirkey, P.; Bhattacharya, T.; Chakraborty, S.; Baraik, S. Assessment of groundwater quality and associated health risks: A case study of Ranchi city, Jharkhand, India. Groundw. Sustain. Dev. 2017, 5, 85–100. [Google Scholar] [CrossRef]
- USGS (United States Geological Survey). Water Hardness. 2016. Available online: http://water.usgs.gov/edu/hardness.html (accessed on 4 February 2021).
- Hailu, Y.; Tilahun, E.; Brhane, A.; Resky, H.; Sahu, O. Ion exchanges process for calcium, magnesium and total hardness from ground water with natural zeolite. Groundw. Sustain. Dev. 2019, 8, 457–467. [Google Scholar] [CrossRef]
- USGS (United States Geological Survey). Water Quality Information: Water Hardness and Alkalinity. 2012. Available online: http://water.usgs.gov/owq/hardnessalkalinity.html (accessed on 17 December 2020).
- Forghani, F.; Park, J.H.; Oh, D.H. Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol. 2015, 48, 28–34. [Google Scholar] [CrossRef] [PubMed]
- MacAdam, J.; Jarvis, P. Water-Formed Scales and Deposits: Types, Characteristics, and Relevant Industries. In. Min. Scal. Depos. 2015, 6, 3–23. [Google Scholar]
- Mukhtasor. Pencemaran Pesisir dan Laut; PT. Pradnya Paramita: Jakarta, Indonesia, 2007. [Google Scholar]
- Hidayat, D.; Suprianto, R.; Dewi, P.S. Penentuan kandungan zat padat (total dissolve solid dan total suspended solid) di perairan Teluk Lampung. Anal. Environ. Chem. 2016, 1, 36–46. [Google Scholar]
- Effendi, H. Telaah Kualitas Air Bagi Pengelolaan Sumber Daya dan Lingkungan; Kanisius: Yogyakarta, Indonesia, 2003; pp. 239–243. [Google Scholar]
- Huljani, M.; Rahma, N. Analisis kadar klorida air sumur bor sekitar tempat pembuangan akhir (TPA) II Musi II Palembang dengan metode titrasi argentometri. ALKIMIA J. Ilmu Kim. Terapan 2018, 2, 5–9. [Google Scholar] [CrossRef]
- Tanjungsari, H.; Sudarno dan Andarani, P. Pengaruh sistem pengelolaan air limbah domestik terhadap kualitas air sumur ditinjau dari konsentrasi TDS, Klorida, Nitrat, COD dan Total Coliform (studi kasus: RT 01, RW 02, pemukiman Tunjungsari, Kelurahan Tembalang). J. Tek. Lingkung. 2016, 5, 1–11. [Google Scholar]
- Fardiaz, S. Polusi Air dan Udara; Kanisius: Yogyakarta, Indonesia, 1992. [Google Scholar]
- Hill, M.K. Understanding Environmental Pollution, 3rd ed.; Cambridge University Press: Cambridge, UK, 2010; 561p. [Google Scholar]
- Cool, G.; Rodriguez, M.J.; Bouchard, C.; Levallois, P.; Joerin, F. Evaluation of the vulnerability to contamination of drinking water systems for rural regions in Québec, Canada. J. Environ. Plan. Manag. 2010, 53, 615–638. [Google Scholar] [CrossRef]
- Masoud, A.A.; Koike, K.; Mashaly, H.A.; Gergis, F. Spatio-temporal trends and change factors of groundwater quality in an arid area with peat rich aquifers: Emergence of water environmental problems in Tanta District, Egypt. J. Arid Environ. 2016, 124, 360–376. [Google Scholar] [CrossRef]
- Schijven, J.; Hassanizadeh, S.M.; de Roda Husman, A.M. Vulnerability of unconfined aquifers to virus contamination. Water Res. 2010, 44, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
Station/Sample Code | Sample Description (Freshwater) | Station/Sample Code | Sample Description (Brackish) | District | Information |
---|---|---|---|---|---|
Freshwater 1 (Chemistry, Biology) | Composite: 1. Kaunci Spring 2. Cio Spring 3. Wadiabero Spring 4. Mapadingki Spring 5. Laponisi Spring 6. Oemposolo Spring 7. Lapahia Spring 8. Laabu Spring | Brackish 1 (Chemistry, Biology) | Composite: 1. Lakakoloto Spring 2. Lawonolita Spring | Gu | Composite means springs of the same category and close together, so that are combined into one sample of springs |
Freshwater 2 (Chemistry, Biology) | Composite: 9. Cimindaka Spring 10. Hola Spring 11. Walando Spring 12. Labungkari Spring | - | - | Gu | |
Freshwater 3 (Chemistry, Biology) | 13. Wulu Spring | - | - | Talaga Raya | |
Freshwater 4 (Chemistry, Biology) | 14. Gua Koo Spring | Brackish 2 (Chemistry, Biology) | Composite: 3. Maguntaloa Spring 4. Maobu Spring 5. Wamoilou Spring | Mawasangka Tengah | |
Freshwater 5 (Chemistry, Biology) | 15.Wakahohondo Spring | Brackish 3 (Chemistry, Biology) | Composite: 6. Lamunde Spring 7. Mawapanda Spring 8. Watorumbe Bata Spring 9. Mawahola Spring | Mawasangka Tengah | |
Freshwater 6 (Chemistry, Biology) | Composite: 16. Wahumbia Spring 17. Koliwutono Spring | Brackish 4 (Chemistry, Biology) | Composite: 10. Katembe Spring 11. Oe Melobu Spring 12. Oe Potubu Spring 13. Oe Katomba Spring | Mawasangka Timur | |
Freshwater 7 (Chemistry, Biology) | 18. Mawaheno Spring | - | - | Mawasangka Timur | |
Freshwater 8 (Chemistry, Biology) | 19. Baruta Analalaki Spring | Brackish 5 (Chemistry, Biology) | 14. Mamba Spring | Sangia Wambulu | |
Freshwater 9 (Chemistry, Biology) | Composite: 20. Oe Balano Spring 21. Kaoe-oe Spring 22. Mandola Spring | - | - | Sangia Wambulu | |
Freshwater 10 (Chemistry, Biology) | Composite: 23. Lakitalo Spring 24. Matawine Spring | Brackish 6 (Chemistry, Biology) | 15. Kampolele Spring | Lakudo | |
Freshwater 11 (Chemistry, Biology) | Composite: 25. Lahunsa Spring 26. Podi Spring 27. Laulawi Spring | Brackish 7 (Chemistry, Biology) | Composite: 16. Wanupe Spring 17. Kambara Spring 18. Masampe Spring 19. Liang Spring 20. Kapala Kampo Spring | Lakudo | |
Freshwater 12 (Chemistry, Biology) | 28. Lapoasa Spring | Brackish 8 (Chemistry, Biology) | 21. Wataeo Spring | Mawasangka | |
Freshwater 13 (Chemistry, Biology) | Composite: 29. Oe Buou Spring 30. Pinggilai Spring | Brackish 9 (Chemistry, Biology) | Composite: 22. Gumanano Spring 23. Kawuna-wuna Spring 24. Moko Spring | Mawasangka |
Parameters | Method Specifications | Method Explanation | Information | Materials Used |
---|---|---|---|---|
Total Dissolved Solids (TDS) | Gravimetry | Gravimetry is an analytical chemical method to determine the quantity of a known substance or component by measuring the weight of the component in its pure state after going through the separation process. | Ex-Situ | Analytical scales |
Acidity (pH) | SNI | SNI is a standard that applies nationally in the country of Indonesia, compiled and formulated by the Technical Committee and stipulated by the National Standardization Department. | Ex-Situ | pH meter |
Hardness (CaCO3) | Titrimetry | Titrimetry, also known as titration, is a quantitative chemical analysis method commonly used to determine the concentration of a known analyte. | Ex-Situ | 25 ml burette (0.05 mL accuracy), 250 mL erlenmeyer, 100 mL measuring cup, rubber ball, spatula, dropper pipette, 25 mL beaker glass, and 10 mL volume pipette. |
Chloride (Cl) | Argentometry | In analytical chemistry, argentometry is a type of titration involving silver (I) ions. This is used to determine the amount of chloride present in the sample. The sample solution is titrated against the silver nitrate solution at a known concentration. The chloride ion reacts with the silver (I) ion to give insoluble silver chloride. | Ex-Situ | pH meter, glass funnel, 250 mL erlenmeyer, 50 mL burette, statif, 25 mL volume pipette, and 50 mL measuring flask. |
Sulfate (SO4) | Spectrophotometric | Spectrophotometry is a quantitative measurement method in analytical chemistry on the reflection or light transmission properties of a material as a function of wavelength. | Ex-Situ | Spectrophotometer |
Nitrate (NO3) | Spectrophotometric | Ex-Situ | Spectrophotometer | |
Nitrite (NO2) | Spectrophotometric | Ex-Situ | Spectrophotometer | |
Iron (Fe) | Spectrophotometric | Ex-Situ | Spectrophotometer | |
Dissolved Oxygen (DO) | Titrimetry | Titrimetry, also known as titration, is a quantitative chemical analysis method commonly used to determine the concentration of a known analyte. | Ex-Situ | DO meter |
Biological Oxygen Demand (BOD) | BOD meter | BOD analyze the amount of oxygen needed to digest organic matter biologically. | Ex-Situ | DO meter |
Biological Parameters | Method Specifications | Method Explanation | Information | Materials Used |
---|---|---|---|---|
Total Coliform | Tube method / Most Probable Number (MPN) | Most Probable Number (MPN) is a test that detects the fermentative nature of Coliform in the sample. | Ex-Situ | MPN table |
Parameters | Unit | Freshwater 1 | Freshwater 2 | Freshwater 3 | Freshwater 4 | Freshwater 5 | Freshwater 6 | Freshwater 7 | Quality Standards |
---|---|---|---|---|---|---|---|---|---|
Total Dissolved Solids (TDS) | mg/L | 530 | 300 | 450 | 510 | 600 | 790 | 590 | 1500 |
Acidity (pH) | - | 6.53 | 6.20 | 6.04 | 6.84 | 6.87 | 6.77 | 6.97 | 6.5–9.0 |
Hardness (CaCO3) | mg/L | 204 | 275.4 | 571.2 * | 193.8 | 197.8 | 332.3 | 220.3 | 500 |
Chloride (Cl) | mg/L | 229.5 | 25.80 | 25.80 | 227.6 | 509.6 | 553.2 | 259.9 | 600 |
Sulfate (SO4) | mg/L | 37 | 23 | 28 | 33 | 45 | 66 | 41 | 400 |
Nitrate (NO3) | mg/L | 2.10 | 1.92 | 1.45 | 2.9 | 1.78 | 2.01 | 1.02 | 10 |
Nitrite (NO2) | mg/L | 0.10 | 0.02 | 0.02 | 0.09 | 0.10 | 0.02 | 0.02 | 1 |
Iron (Fe) | mg/L | 0.02 | 0.01 | <0.01 | 0.01 | 0.02 | <0.01 | 0.01 | 1.0 |
Dissolved Oxygen (DO) | mg/L | 3.03 | 3.85 | 3.15 | 3.59 | 4.00 | 3.11 | 3.52 | - |
Biological Oxygen Demand (BOD) | mg/L | 6.20 | 5.50 | 6.11 | 6.18 | 5.70 | 4.99 | 6.01 | - |
Parameters | Unit | Freshwater 8 | Freshwater 9 | Freshwater 10 | Freshwater 11 | Freshwater 12 | Freshwater 13 | Quality Standards |
---|---|---|---|---|---|---|---|---|
Total Dissolved Solids (TDS) | mg/L | 330 | 290 | 270 | 370 | 440 | 300 | 1500 |
Acidity (pH) | - | 6.80 | 6.80 | 6.84 | 6.77 | 7.21 | 7.32 | 6.5–9.0 |
Hardness (CaCO3) | mg/L | 240 | 234.6 | 150.9 | 204 | 248.8 | 150.2 | 500 |
Chloride (Cl) | mg/L | 13.83 | 10.13 | 40.55 | 35.94 | 276.5 | 230.5 | 600 |
Sulfate (SO4) | mg/L | 15 | 8.0 | 6.0 | 7.0 | 15 | 10 | 400 |
Nitrate (NO3) | mg/L | 0.99 | 1.81 | 3.10 | 1.56 | 2.06 | 1.81 | 10 |
Nitrite (NO2) | mg/L | 0.02 | 0.02 | 0.12 | 0.02 | 0.03 | 0.02 | 1 |
Iron (Fe) | mg/L | 0.01 | 0.02 | <0.01 | 0.02 | 0.01 | 0.03 | 1.0 |
Dissolved Oxygen (DO) | mg/L | 3.33 | 3.71 | 3.81 | 3.79 | 3.50 | 3.60 | - |
Biological Oxygen Demand (BOD) | mg/L | 5.60 | 7.02 | 6.10 | 6.21 | 4.88 | 6.40 | - |
Parameters | Unit | Brackish 1 | Brackish 2 | Brackish 3 | Brackish 4 | Brackish 5 | Quality Standards |
---|---|---|---|---|---|---|---|
Total Dissolved Solids (TDS) | mg/L | 940 | 13,000 * | 12,000 * | 13,600 * | 850 | 1500 |
Acidity (pH) | - | 7.05 | 6.99 | 7.17 | 7.15 | 7.30 | 6.5-9.0 |
Hardness (CaCO3) | mg/L | 303.9 | 461 | 410 | 493 | 338.6 | 500 |
Chloride (Cl) | mg/L | 414 | 691 * | 4562 * | 1059 * | 599 | 600 |
Sulfate (SO4) | mg/L | 72 | 97 | 95 | 99 | 64 | 400 |
Nitrate (NO3) | mg/L | 3.81 | 3.41 | 3.80 | 3.66 | 2.02 | 10 |
Nitrite (NO2) | mg/L | 0.11 | 0.10 | 0.04 | 0.11 | 0.02 | 1 |
Iron (Fe) | mg/L | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 | 1.0 |
Dissolved Oxygen (DO) | mg/L | 3.61 | 2.65 | 2.65 | 3.81 | 3.96 | - |
Biological Oxygen Demand (BOD) | mg/L | 5.66 | 5.70 | 5.70 | 6.11 | 6.03 | - |
Parameters | Unit | Brackish 6 | Brackish 7 | Brackish 08 | Brackish 09 | Quality Standards |
---|---|---|---|---|---|---|
Total Dissolved Solids (TDS) | mg/L | 15,000 * | 16,200 * | 390 | 18,000 * | 1500 |
Acidity (pH) | - | 6.91 | 7.05 | 7.61 | 6.76 | 6.5–9.0 |
Hardness (CaCO3) | mg/L | 718 * | 775 * | 248.8 | 1024 * | 500 |
Chloride (Cl) | mg/L | 1612 * | 1981 * | 1884.3 * | 4470 * | 600 |
Sulfate (SO4) | mg/L | 119 | 121 | 9.0 | 137 | 400 |
Nitrate (NO3) | mg/L | 3.46 | 3.06 | 1.82 | 1.93 | 10 |
Nitrite (NO2) | mg/L | 0.12 | 0.10 | 0.02 | 0.02 | 1 |
Iron (Fe) | mg/L | 0.02 | 0.01 | 0.02 | 0.03 | 1.0 |
Dissolved Oxygen (DO) | mg/L | 3.60 | 3.62 | 3.92 | 3.41 | - |
Biological Oxygen Demand (BOD) | mg/L | 5.90 | 4.99 | 5.05 | 6.07 | - |
Biological Parameter | Unit | Quality Standards Based on Water Class (Government Regulation of the Republic of Indonesia Number 82 of 2001) | Freshwater | Brackish | Information | |||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | |||||
Total Coliform | Individual/100 mL | 1000 | 5000 | 10,000 | 10,000 | 11–460 | 9–240 | Suitable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudia, L.B.; Indriyani, L.; Yunus, L.; Mursidi, B.; Yasin, A.; Albasri; Nurdin, M. Water Quality in Thirty Freshwater Springs and Twenty Four Brackish Springs in the Karst Area to Realize Sustainable Water Resources Management. Sustainability 2021, 13, 2679. https://doi.org/10.3390/su13052679
Sudia LB, Indriyani L, Yunus L, Mursidi B, Yasin A, Albasri, Nurdin M. Water Quality in Thirty Freshwater Springs and Twenty Four Brackish Springs in the Karst Area to Realize Sustainable Water Resources Management. Sustainability. 2021; 13(5):2679. https://doi.org/10.3390/su13052679
Chicago/Turabian StyleSudia, La Baco, Lies Indriyani, Lukman Yunus, Baso Mursidi, Asramid Yasin, Albasri, and Muhammad Nurdin. 2021. "Water Quality in Thirty Freshwater Springs and Twenty Four Brackish Springs in the Karst Area to Realize Sustainable Water Resources Management" Sustainability 13, no. 5: 2679. https://doi.org/10.3390/su13052679
APA StyleSudia, L. B., Indriyani, L., Yunus, L., Mursidi, B., Yasin, A., Albasri, & Nurdin, M. (2021). Water Quality in Thirty Freshwater Springs and Twenty Four Brackish Springs in the Karst Area to Realize Sustainable Water Resources Management. Sustainability, 13(5), 2679. https://doi.org/10.3390/su13052679