Effects of Three Levels of Green Exercise, Physical and Social Environments, Personality Traits, Physical Activity, and Engagement with Nature on Emotions and Attention
Abstract
:1. Introduction
2. Physical Environment and Psychological Health
3. Social Environment and Psychological Health
4. Physical Activity and Psychological Health
5. Personality Traits, Physical Activity, and Psychological Health
6. Research Methods
6.1. Research Design
6.2. Experimental Procedure
6.3. Experimental Setting
6.4. Experimental Treatment
6.5. Participants and Companions
6.6. Research Variables and Measurements
6.6.1. Three Levels of Green Exercise (Independent and Predictor Variable)
6.6.2. Personality Traits (Predictor Variable)
6.6.3. Social Environment (Predictor Variable)
6.6.4. Physical Environment (Predictor Variable)
6.6.5. Daily Physical Activity (Predictor Variable)
6.6.6. Emotions (Dependent Variable)
6.6.7. Attention (Dependent Variable)
6.7. Statistical Analysis
7. Results
7.1. Scale Reliability
7.2. Hypothesis 1 (Differences in Emotions and Attention between Three Green Exercise Levels)
7.3. Hypothesis 2 (Greater Effects of Engagement with Nature on Emotions and Attention Than Other Factors)
8. Discussion
9. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Number | Min. | Max. | Mean | S.D. | Skewness | Kurtosis | ||
---|---|---|---|---|---|---|---|---|---|
Physiologically Equivalent Temperature | Overall | 95 | 5.3 | 35.9 | 22.096 | 6.932 | −0.117 | −0.34 | |
Green exercise | Level 1 | 33 | 10.7 | 34.8 | 23.279 | 6.137 | 0.208 | −0.594 | |
Level 2 | 31 | 5.3 | 35.4 | 19.958 | 7.64 | 0.162 | −0.514 | ||
Level 3 | 31 | 8 | 35.9 | 22.974 | 6.706 | −0.406 | 0.342 | ||
Standard Effective Temperature | Overall | 95 | 2.8 | 26.2 | 14.76 | 5.565 | −0.092 | −0.78 | |
Green exercise | Level 1 | 33 | 8.1 | 26.2 | 16.258 | 4.774 | 0.321 | −0.622 | |
Level 2 | 31 | 2.8 | 22.6 | 12.597 | 6.261 | 0.161 | −1.267 | ||
Level 3 | 31 | 6.3 | 23.9 | 15.329 | 5.09 | −0.107 | −0.862 | ||
Noise (dB) | Overall | 95 | 44.13 | 56.33 | 47.83 | 2.397 | 0.8 | 0.595 | |
Green exercise | Level 1 | 33 | 44.53 | 56.33 | 47.445 | 2.602 | 1.509 | 3.037 | |
Level 2 | 31 | 44.4 | 52.4 | 48.21 | 1.998 | 0.618 | −0.207 | ||
Level 3 | 31 | 44.13 | 52.65 | 47.86 | 2.544 | 0.373 | −0.878 | ||
Crowdedness –People | Overall | 95 | 22 | 412 | 114.737 | 82.604 | 1.627 | 2.17 | |
Green exercise | Level 1 | 33 | 22 | 412 | 93.636 | 74.833 | 2.826 | 9.869 | |
Level 2 | 31 | 42 | 344 | 128.774 | 77.69 | 1.325 | 1.2 | ||
Level 3 | 31 | 30 | 346 | 123.161 | 92.758 | 1.284 | 0.454 | ||
Crowdedness–Automobile | Overall | 95 | 12 | 101 | 38.789 | 17.367 | 1.556 | 3.283 | |
Green exercise | Level 1 | 33 | 13 | 94 | 40.121 | 17.92 | 1.115 | 1.53 | |
Level 2 | 31 | 14 | 87 | 37.129 | 15.022 | 1.31 | 3.231 | ||
Level 3 | 31 | 12 | 101 | 39.032 | 19.288 | 2.071 | 5.193 | ||
Crowdedness–Motorcycle | Overall | 95 | 0 | 27 | 5.295 | 5.345 | 1.48 | 2.356 | |
Green exercise | Level 1 | 33 | 0 | 11 | 3.848 | 3.318 | 0.562 | −0.714 | |
Level 2 | 31 | 0 | 27 | 5.226 | 6.344 | 1.928 | 3.945 | ||
Level 3 | 31 | 0 | 18 | 6.903 | 5.706 | 0.653 | −0.995 | ||
Crowdedness −Bicycle | Overall | 95 | 0 | 22 | 3.968 | 3.802 | 1.58 | 4.354 | |
Green exercise | Level 1 | 33 | 0 | 11 | 4.03 | 3.206 | 0.564 | −0.531 | |
Level 2 | 31 | 0 | 14 | 4.258 | 3.898 | 0.781 | −0.094 | ||
Level 3 | 31 | 0 | 22 | 3.613 | 4.349 | 2.722 | 10.096 | ||
Crowdedness –Totalvehicle | Overall | 95 | 13 | 137 | 48.053 | 20.764 | 1.852 | 4.971 | |
Green exercise | Level 1 | 33 | 22 | 113 | 48 | 19.349 | 1.437 | 3.098 | |
Level 2 | 31 | 22 | 103 | 46.613 | 18.759 | 1.56 | 3.445 | ||
Level 3 | 31 | 13 | 137 | 49.548 | 24.397 | 2.187 | 6.321 | ||
SO2 (ppb) | Overall | 95 | 0.1 | 8.9 | 3.133 | 1.902 | 0.626 | 0.051 | |
Green exercise | Level 1 | 33 | 0.2 | 6.6 | 2.774 | 1.728 | 0.516 | −0.259 | |
Level 2 | 31 | 0.2 | 7.9 | 3.245 | 1.931 | 0.59 | 0.021 | ||
Level 3 | 31 | 0.1 | 8.9 | 3.387 | 2.043 | 0.671 | 0.21 | ||
CO (ppm) | Overall | 95 | 0.3 | 1.5 | 0.671 | 0.29 | 1.335 | 0.952 | |
Green exercise | Level 1 | 33 | 0.33 | 1.4 | 0.646 | 0.256 | 1.595 | 2.415 | |
Level 2 | 31 | 0.3 | 1.5 | 0.658 | 0.288 | 1.322 | 1.379 | ||
Level 3 | 31 | 0.4 | 1.47 | 0.707 | 0.327 | 1.193 | 0.165 | ||
NOx (ppb) | Overall | 95 | 13 | 93 | 31.495 | 16.892 | 1.627 | 2.331 | |
Green exercise | Level 1 | 33 | 13 | 73 | 27.742 | 14.276 | 1.594 | 2.496 | |
Level 2 | 31 | 14 | 93 | 32.207 | 19.531 | 1.908 | 3.553 | ||
Level 3 | 31 | 18 | 71 | 34.581 | 16.472 | 1.282 | 0.272 | ||
NO (ppb) | Overall | 95 | 1.8 | 61 | 8.615 | 11.138 | 2.936 | 9.023 | |
Green exercise | Level 1 | 33 | 1.8 | 48 | 6.916 | 9.378 | 3.584 | 13.503 | |
Level 2 | 31 | 2 | 61 | 10.055 | 14.041 | 2.979 | 8.642 | ||
Level 3 | 31 | 2.1 | 35 | 8.968 | 9.752 | 1.761 | 1.761 | ||
NO2 (ppb) | Overall | 95 | 11 | 45 | 22.857 | 8.298 | 0.686 | −0.223 | |
Green exercise | Level 1 | 33 | 11 | 45 | 20.806 | 8.248 | 1.042 | 0.837 | |
Level 2 | 31 | 11 | 40 | 22.172 | 7.824 | 0.442 | −0.654 | ||
Level 3 | 31 | 14 | 45 | 25.548 | 8.314 | 0.718 | −0.559 | ||
PM10 (μg/m3) | Overall | 95 | 1.7 | 165 | 54.148 | 38.25 | 1.181 | 1.134 | |
Green exercise | Level 1 | 33 | 16 | 165 | 62.276 | 44.314 | 0.88 | −0.002 | |
Level 2 | 31 | 5 | 118 | 46.036 | 25.499 | 0.46 | 1.116 | ||
Level 3 | 31 | 1.7 | 159 | 53.852 | 41.43 | 1.31 | 1.185 | ||
PM2.5 (μg/m3) | Overall | 95 | 2 | 80 | 29.047 | 18.44 | 0.942 | 0.126 | |
Green exercise | Level 1 | 33 | 2 | 72 | 30.621 | 20.754 | 0.763 | −0.638 | |
Level 2 | 31 | 3 | 58 | 25.759 | 14.129 | 0.565 | 0.014 | ||
Level 3 | 31 | 7 | 80 | 30.821 | 19.98 | 1.063 | 0.234 | ||
O3 (ppb) | Overall | 95 | 2.2 | 52 | 25.947 | 12.955 | −0.006 | −0.699 | |
Green exercise | Level 1 | 33 | 2.4 | 49 | 28.648 | 15.058 | −0.467 | −1.105 | |
Level 2 | 31 | 2.2 | 50 | 25.159 | 10.997 | −0.098 | 0.211 | ||
Level 3 | 31 | 2.2 | 52 | 23.984 | 12.318 | 0.503 | 0.179 | ||
Movement Speed (m/s) | Overall | 95 | 0.002 | 1.446 | 0.274 | 0.225 | 1.907 | 7.203 | |
Green exercise | Level 1 | 33 | 0.002 | 0.183 | 0.068 | 0.037 | 1.283 | 2.817 | |
Level 2 | 31 | 0.094 | 1.446 | 0.407 | 0.265 | 2.375 | 7.61 | ||
Level 3 | 31 | 0.174 | 0.706 | 0.362 | 0.119 | 0.874 | 1.137 | ||
Exercise Frequency | Overall | 95 | 0 | 7 | 1.305 | 1.337 | 1.464 | 3.07 | |
Green exercise | Level 1 | 33 | 0 | 4 | 1.182 | 1.185 | 0.947 | 0.193 | |
Level 2 | 31 | 0 | 5 | 1.129 | 1.204 | 1.452 | 2.78 | ||
Level 3 | 31 | 0 | 7 | 1.613 | 1.585 | 1.551 | 3.438 | ||
Total Mood Disturbance −Pretest | Overall | 95 | 69 | 152 | 100.221 | 17.887 | 0.389 | −0.237 | |
Green exercise | Level 1 | 33 | 70 | 131 | 99.758 | 15.379 | 0.026 | −0.473 | |
Level 2 | 31 | 69 | 143 | 99.968 | 19.305 | 0.479 | −0.345 | ||
Level 3 | 31 | 73 | 152 | 100.968 | 19.386 | 0.484 | −0.102 | ||
Total Mood Disturbance −Posttest | Overall | 95 | 60 | 137 | 87.484 | 14.923 | 0.604 | 0.176 | |
Green exercise | Level 1 | 33 | 67 | 107 | 88.121 | 11.578 | −0.142 | −1.05 | |
Level 2 | 31 | 66 | 137 | 88.032 | 17.678 | 0.678 | 0.195 | ||
Level 3 | 31 | 60 | 124 | 86.258 | 15.492 | 0.853 | 0.166 | ||
The Big Five –Extraversion | Overall | 95 | 16 | 37 | 25.705 | 4.199 | 0.321 | −0.169 | |
Green exercise | Level 1 | 33 | 20 | 37 | 26.636 | 4.084 | 0.461 | −0.255 | |
Level 2 | 31 | 16 | 33 | 24.645 | 4.071 | −0.014 | 0.036 | ||
Level 3 | 31 | 19 | 35 | 25.774 | 4.334 | 0.55 | −0.437 | ||
The Big Five –Agreeableness | Overall | 95 | 26 | 42 | 31.621 | 3.304 | 0.458 | 0.224 | |
Green exercise | Level 1 | 33 | 26 | 42 | 31.273 | 3.859 | 0.842 | 0.585 | |
Level 2 | 31 | 27 | 36 | 30.774 | 2.918 | 0.273 | −1.389 | ||
Level 3 | 31 | 27 | 41 | 32.839 | 2.721 | 0.309 | 1.816 | ||
The Big Five –Conscientiousness | Overall | 95 | 20 | 34 | 27.684 | 3.068 | −0.119 | −0.343 | |
Green exercise | Level 1 | 33 | 20 | 34 | 27.424 | 3.527 | −0.189 | −0.467 | |
Level 2 | 31 | 22 | 33 | 27.839 | 2.841 | 0.007 | −0.616 | ||
Level 3 | 31 | 22 | 34 | 27.806 | 2.833 | 0.06 | −0.14 | ||
The Big Five –Neuroticism | Overall | 95 | 17 | 29 | 24.221 | 2.799 | −0.363 | −0.314 | |
Green exercise | Level 1 | 33 | 18 | 29 | 23.939 | 2.957 | −0.338 | −0.467 | |
Level 2 | 31 | 18 | 29 | 24.806 | 2.272 | −0.711 | 1.481 | ||
Level 3 | 31 | 17 | 29 | 23.935 | 3.087 | −0.037 | −0.728 | ||
The Big Five –Openness | Overall | 95 | 23 | 46 | 33.947 | 4.234 | 0.055 | 0.162 | |
Green exercise | Level 1 | 33 | 25 | 41 | 33.606 | 4.286 | −0.231 | −0.79 | |
Level 2 | 31 | 27 | 44 | 33.581 | 4.089 | 0.305 | −0.119 | ||
Level 3 | 31 | 23 | 46 | 34.677 | 4.362 | 0.105 | 1.692 | ||
Companion | Overall | 95 | 0 | 5 | 0.611 | 0.96 | 2.407 | 7.82 | |
Green exercise | Level 1 | 33 | 0 | 5 | 0.697 | 1.262 | 2.602 | 7.043 | |
Level 2 | 31 | 0 | 3 | 0.581 | 0.807 | 1.347 | 1.351 | ||
Level 3 | 31 | 0 | 2 | 0.548 | 0.723 | 0.952 | −0.378 | ||
Spatial Span Forward –Pretest | Overall | 95 | 5 | 13 | 8.589 | 1.653 | −0.197 | −0.064 | |
Green exercise | Level 1 | 33 | 5 | 13 | 8.545 | 1.872 | −0.228 | 0.172 | |
Level 2 | 31 | 6 | 12 | 8.774 | 1.586 | −0.246 | −0.51 | ||
Level 3 | 31 | 6 | 12 | 8.452 | 1.502 | −0.09 | −0.018 | ||
Spatial Span Forward –Posttest | Overall | 95 | 4 | 14 | 9.368 | 1.863 | −0.061 | 0.513 | |
Green exercise | Level 1 | 33 | 4 | 12 | 8.818 | 1.878 | −0.503 | 0.533 | |
Level 2 | 31 | 5 | 14 | 9.323 | 1.869 | 0.118 | 0.85 | ||
Level 3 | 31 | 8 | 13 | 10 | 1.693 | 0.573 | −0.937 | ||
Digit Span Backward –Pretest | Overall | 95 | 2 | 14 | 8.632 | 2.832 | 0.143 | −0.757 | |
Green exercise | Level 1 | 33 | 2 | 14 | 8.727 | 3.43 | −0.089 | −1.193 | |
Level 2 | 31 | 4 | 13 | 8.355 | 2.288 | 0.191 | −0.743 | ||
Level 3 | 31 | 4 | 14 | 8.806 | 2.688 | 0.462 | −0.516 | ||
Digit Span Backward –Posttest | Overall | 95 | 3 | 14 | 9.116 | 3.007 | −0.322 | −0.755 | |
Green exercise | Level 1 | 33 | 3 | 14 | 8.97 | 3.432 | −0.447 | −1.022 | |
Level 2 | 31 | 3 | 14 | 8.806 | 2.96 | −0.046 | −0.747 | ||
Level 3 | 31 | 4 | 14 | 9.581 | 2.579 | −0.211 | −0.561 | ||
Engagement with Nature | Overall | 95 | 8 | 49 | 31.663 | 7.506 | −0.393 | 0.569 | |
Green exercise | Level 1 | 33 | 19 | 49 | 31.606 | 6.451 | 0.576 | 0.779 | |
Level 2 | 31 | 8 | 42 | 28.967 | 8.611 | −0.542 | −0.03 | ||
Level 3 | 31 | 20 | 47 | 34.419 | 6.530 | −0.338 | 0.275 | ||
International Physical Activity Questionnaire | Overall | 95 | 2 | 1093 | 94.224 | 132.479 | 5.338 | 35.968 | |
Green exercise | Level 1 | 33 | 21.97 | 268.5 | 75.377 | 54.412 | 1.794 | 4.923 | |
Level 2 | 31 | 2 | 1093 | 112.5 | 197.386 | 4.415 | 21.589 | ||
Level 3 | 31 | 13.5 | 584.4 | 96.011 | 111.679 | 3.088 | 11.978 | ||
Profile of Mood States(Vitality)–Pretest | Overall | 95 | 0 | 22 | 11.895 | 6.356 | −0.229 | −0.837 | |
Green exercise | Level 1 | 33 | 1 | 22 | 12.424 | 6.892 | −0.197 | −1.207 | |
Level 2 | 31 | 0 | 22 | 11.935 | 5.680 | −0.434 | 0.191 | ||
Level 3 | 31 | 0 | 22 | 11.290 | 6.553 | −0.181 | −0.992 | ||
Profile of Mood States(Vitality)–Posttest | Overall | 95 | 0 | 24 | 12.800 | 6.657 | −0.378 | −0.891 | |
Green exercise | Level 1 | 33 | 0 | 22 | 13.515 | 6.433 | −0.516 | −0.838 | |
Level 2 | 31 | 0 | 23 | 12.161 | 7.221 | −0.182 | −1.065 | ||
Level 3 | 31 | 0 | 24 | 12.677 | 6.447 | −0.478 | −0.580 | ||
Profile of Mood States(Self-esteem)–Pretest | Overall | 95 | 0 | 16 | 8.474 | 3.590 | −0.562 | 0.013 | |
Green exercise | Level 1 | 33 | 0 | 16 | 7.788 | 4.106 | −0.308 | −0.523 | |
Level 2 | 31 | 0 | 14 | 8.774 | 3.364 | −0.679 | 0.283 | ||
Level 3 | 31 | 0 | 15 | 8.903 | 3.208 | −0.664 | 1.056 | ||
Profile of Mood States(Self-esteem)–Posttest | Overall | 95 | 0 | 16 | 8.600 | 4.106 | −0.347 | −0.635 | |
Green exercise | Level 1 | 33 | 0 | 15 | 8 | 4.402 | −0.435 | −0.985 | |
Level 2 | 31 | 0 | 16 | 8.742 | 4.313 | −0.278 | −0.571 | ||
Level 3 | 31 | 2 | 16 | 9.097 | 3.590 | −0.126 | −0.559 | ||
Profile of Mood States(Confusion)–Pretest | Overall | 95 | 0 | 23 | 7.168 | 5.635 | 0.586 | −0.517 | |
Green exercise | Level 1 | 33 | 0 | 18 | 7.697 | 5.382 | 0.351 | −1.120 | |
Level 2 | 31 | 0 | 23 | 7.290 | 6.548 | 0.693 | −0.527 | ||
Level 3 | 31 | 0 | 19 | 6.484 | 4.992 | 0.615 | −0.007 | ||
Profile of Mood States(Confusion)–Posttest | Overall | 95 | 0 | 14 | 3.189 | 3.810 | 1.139 | 0.384 | |
Green exercise | Level 1 | 33 | 0 | 12 | 4.212 | 3.621 | 0.516 | −0.619 | |
Level 2 | 31 | 0 | 14 | 2.806 | 4.159 | 1.650 | 1.910 | ||
Level 3 | 31 | 0 | 12 | 2.484 | 3.520 | 1.475 | 1.174 | ||
Profile of Mood States(Fatigue)–Pretest | Overall | 95 | 0 | 23 | 6.958 | 6.079 | 0.790 | −0.132 | |
Green exercise | Level 1 | 33 | 0 | 14 | 6 | 4.054 | 0.096 | −0.852 | |
Level 2 | 31 | 0 | 17 | 6.161 | 5.973 | 0.648 | −0.961 | ||
Level 3 | 31 | 0 | 23 | 8.774 | 7.584 | 0.556 | −1.012 | ||
Profile of Mood States(Fatigue)–Posttest | Overall | 95 | 0 | 22 | 3.200 | 3.945 | 2.089 | 5.991 | |
Green exercise | Level 1 | 33 | 0 | 12 | 2.788 | 3.059 | 1.176 | 1.158 | |
Level 2 | 31 | 0 | 16 | 3.097 | 3.515 | 1.829 | 4.830 | ||
Level 3 | 31 | 0 | 22 | 3.742 | 5.092 | 2.100 | 4.989 | ||
Profile of Mood States(Anger)–Pretest | Overall | 95 | 0 | 13 | 2.053 | 3.160 | 1.637 | 1.966 | |
Green exercise | Level 1 | 33 | 0 | 10 | 1.818 | 2.789 | 1.791 | 2.443 | |
Level 2 | 31 | 0 | 12 | 2.452 | 3.677 | 1.317 | 0.508 | ||
Level 3 | 31 | 0 | 13 | 1.903 | 3.037 | 1.984 | 4.665 | ||
Profile of Mood States(Anger)–Posttest | Overall | 95 | 0 | 12 | 0.653 | 1.797 | 4.055 | 19.368 | |
Green exercise | Level 1 | 33 | 0 | 7 | 0.606 | 1.391 | 3.441 | 14.028 | |
Level 2 | 31 | 0 | 12 | 0.871 | 2.487 | 3.717 | 14.558 | ||
Level 3 | 31 | 0 | 5 | 0.484 | 1.338 | 2.935 | 7.760 | ||
Profile of Mood States(Tension)–Pretest | Overall | 95 | 0 | 12 | 3.232 | 3.140 | 0.992 | 0.232 | |
Green exercise | Level 1 | 33 | 0 | 11 | 3.273 | 3.034 | 0.802 | −0.198 | |
Level 2 | 31 | 0 | 12 | 3.355 | 3.489 | 1.177 | 0.756 | ||
Level 3 | 31 | 0 | 10 | 3.065 | 2.977 | 0.962 | −0.044 | ||
Profile of Mood States(Tension)–Posttest | Overall | 95 | 0 | 8 | 1.379 | 2.105 | 1.492 | 1.127 | |
Green exercise | Level 1 | 33 | 0 | 7 | 1.667 | 2.245 | 1.098 | −0.219 | |
Level 2 | 31 | 0 | 8 | 1.516 | 2.264 | 1.553 | 1.510 | ||
Level 3 | 31 | 0 | 7 | 0.935 | 1.750 | 2.140 | 4.355 | ||
Profile of Mood States(Depression)–Pretest | Overall | 95 | 0 | 10 | 1.179 | 2.114 | 2.218 | 4.875 | |
Green exercise | Level 1 | 33 | 0 | 10 | 1.182 | 2.338 | 2.406 | 5.915 | |
Level 2 | 31 | 0 | 7 | 1.419 | 2.157 | 1.482 | 1.201 | ||
Level 3 | 31 | 0 | 9 | 0.935 | 1.843 | 3.176 | 12.113 | ||
Profile of Mood States(Depression)–Posttest | Overall | 95 | 0 | 7 | 0.463 | 1.236 | 3.332 | 11.737 | |
Green exercise | Level 1 | 33 | 0 | 5 | 0.364 | 0.994 | 3.652 | 15.111 | |
Level 2 | 31 | 0 | 7 | 0.645 | 1.539 | 2.989 | 9.720 | ||
Level 3 | 31 | 0 | 5 | 0.387 | 1.145 | 3.427 | 11.445 | ||
Intelligent Device for Energy Expenditure and Activity– All posture speed | Overall | 62 | 0.202 | 198.7 | 75.543 | 67.496 | 0.276 | −1.338 | |
Green exercise | Level 2 | 31 | 0.202 | 198.7 | 72.054 | 65.950 | 0.358 | −1.285 | |
Level 3 | 31 | 0.206 | 194.5 | 79.033 | 69.919 | 0.205 | −1.404 | ||
Intelligent Device for Energy Expenditure and Activity– Numbers for ascending and descending stairs | Overall | 62 | 0 | 566 | 82.677 | 90.244 | 2.732 | 12.392 | |
Green exercise | Level 2 | 31 | 3 | 245 | 74.935 | 66.546 | 0.988 | 0.305 | |
Level 3 | 31 | 0 | 566 | 90.419 | 109.576 | 2.846 | 11.384 |
Multivariate Tests | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Effect | Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared | Noncent. Parameter | Observed Power | ||
Between-Subjects | Intercept | Pillai’s Trace | 0.983 | 506.890 | 9.000 | 81.000 | 0.000 | 0.983 | 4562.009 | 1.000 |
Wilks’ Lambda (λ) | 0.017 | 506.890 | 9.000 | 81.000 | 0.000 | 0.983 | 4562.009 | 1.000 | ||
Hotelling’s Trace | 56.321 | 506.890 | 9.000 | 81.000 | 0.000 | 0.983 | 4562.009 | 1.000 | ||
Roy’s Largest Root | 56.321 | 506.890 | 9.000 | 81.000 | 0.000 | 0.983 | 4562.009 | 1.000 | ||
Treatment | Pillai’s Trace | 0.248 | 1.289 | 18.000 | 164.000 | 0.201 | 0.124 | 23.194 | 1.000 | |
Wilks’ Lambda (λ) | 0.767 | 1.279 | 18.000 | 162.000 | 0.208 | 0.124 | 23.020 | 1.000 | ||
Hotelling’s Trace | 0.286 | 1.269 | 18.000 | 160.000 | 0.215 | 0.125 | 22.843 | 1.000 | ||
Roy’s Largest Root | 0.182 | 1.657 | 9.000 | 82.000 | 0.113 | 0.154 | 14.915 | 1.000 | ||
Within- Subjects | Time | Pillai’s Trace | 0.619 | 14.601 | 9.000 | 81.000 | 0.000 | 0.619 | 131.411 | 1.000 |
Wilks’ Lambda (λ) | 0.381 | 14.601 | 9.000 | 81.000 | 0.000 | 0.619 | 131.411 | 1.000 | ||
Hotelling’s Trace | 1.622 | 14.601 | 9.000 | 81.000 | 0.000 | 0.619 | 131.411 | 1.000 | ||
Roy’s Largest Root | 1.622 | 14.601 | 9.000 | 81.000 | 0.000 | 0.619 | 131.411 | 1.000 | ||
Time * Treatment | Pillai’s Trace | 0.204 | 1.035 | 18.000 | 164.000 | 0.424 | 0.102 | 18.623 | 0.711 | |
Wilks’ Lambda (λ) | 0.802 | 1.051 | 18.000 | 162.000 | 0.406 | 0.105 | 18.927 | 0.720 | ||
Hotelling’s Trace | 0.240 | 1.068 | 18.000 | 160.000 | 0.389 | 0.107 | 19.219 | 0.728 | ||
Roy’s Largest Root | 0.206 | 1.876 | 9.000 | 82.000 | 0.067 | 0.171 | 16.883 | 0.788 | ||
ANOVA | ||||||||||
Source | Measure | Type III Sum of Squares | df | Mean Square | F | Sig. | Partial Eta Squared | Noncent. Parameter | Observed Power | |
Time | Spatial Span Forward | Sphericity Assumed | 31.392 | 1 | 31.392 | 16.521 | 0.000 | 0.157 | 16.521 | 0.980 |
Greenhouse-Geisser | 31.392 | 1 | 31.392 | 16.521 | 0.000 | 0.157 | 16.521 | 0.980 | ||
Huynh-Feldt | 31.392 | 1 | 31.392 | 16.521 | 0.000 | 0.157 | 16.521 | 0.980 | ||
Lower-bound | 31.392 | 1 | 31.392 | 16.521 | 0.000 | 0.157 | 16.521 | 0.980 | ||
Digit Span Backward | Sphericity Assumed | 10.190 | 1 | 10.190 | 3.274 | 0.074 | 0.035 | 3.274 | 0.433 | |
Greenhouse-Geisser | 10.190 | 1 | 10.190 | 3.274 | 0.074 | 0.035 | 3.274 | 0.433 | ||
Huynh-Feldt | 10.190 | 1 | 10.190 | 3.274 | 0.074 | 0.035 | 3.274 | 0.433 | ||
Lower-bound | 10.190 | 1 | 10.190 | 3.274 | 0.074 | 0.035 | 3.274 | 0.433 | ||
Vitality | Sphericity Assumed | 49.690 | 1 | 49.690 | 5.704 | 0.019 | 0.060 | 5.704 | 0.656 | |
Greenhouse-Geisser | 49.690 | 1 | 49.690 | 5.704 | 0.019 | 0.060 | 5.704 | 0.656 | ||
Huynh-Feldt | 49.690 | 1 | 49.690 | 5.704 | 0.019 | 0.060 | 5.704 | 0.656 | ||
Lower-bound | 49.690 | 1 | 49.690 | 5.704 | 0.019 | 0.060 | 5.704 | 0.656 | ||
Self-esteem | Sphericity Assumed | 0.521 | 1 | 0.521 | 0.202 | 0.654 | 0.002 | 0.202 | 0.073 | |
Greenhouse-Geisser | 0.521 | 1 | 0.521 | 0.202 | 0.654 | 0.002 | 0.202 | 0.073 | ||
Huynh-Feldt | 0.521 | 1 | 0.521 | 0.202 | 0.654 | 0.002 | 0.202 | 0.073 | ||
Lower-bound | 0.521 | 1 | 0.521 | 0.202 | 0.654 | 0.002 | 0.202 | 0.073 | ||
Confusion | Sphericity Assumed | 775.588 | 1 | 775.588 | 65.739 | 0.000 | 0.425 | 65.739 | 1.000 | |
Greenhouse-Geisser | 775.588 | 1 | 775.588 | 65.739 | 0.000 | 0.425 | 65.739 | 1.000 | ||
Huynh-Feldt | 775.588 | 1 | 775.588 | 65.739 | 0.000 | 0.425 | 65.739 | 1.000 | ||
Lower-bound | 775.588 | 1 | 775.588 | 65.739 | 0.000 | 0.425 | 65.739 | 1.000 | ||
Fatigue | Sphericity Assumed | 720.827 | 1 | 720.827 | 62.562 | 0.000 | 0.413 | 62562 | 1.000 | |
Greenhouse-Geisser | 720.827 | 1 | 720.827 | 62.562 | 0.000 | 0.413 | 62562 | 1.000 | ||
Huynh-Feldt | 720.827 | 1 | 720.827 | 62.562 | 0.000 | 0.413 | 62562 | 1.000 | ||
Lower-bound | 720.827 | 1 | 720.827 | 62.562 | 0.000 | 0.413 | 62562 | 1.000 | ||
Anger | Sphericity Assumed | 94.422 | 1 | 94.422 | 30.615 | 0.000 | 0.256 | 30.615 | 1.000 | |
Greenhouse-Geisser | 94.422 | 1 | 94.422 | 30.615 | 0.000 | 0.256 | 30.615 | 1.000 | ||
Huynh-Feldt | 94.422 | 1 | 94.422 | 30.615 | 0.000 | 0.256 | 30.615 | 1.000 | ||
Lower-bound | 94.422 | 1 | 94.422 | 30.615 | 0.000 | 0.256 | 30.615 | 1.000 | ||
Tension | Sphericity Assumed | 169.114 | 1 | 169.114 | 68.100 | 0.000 | 0.433 | 68.100 | 1.000 | |
Greenhouse-Geisser | 169.114 | 1 | 169.114 | 68.100 | 0.000 | 0.433 | 68.100 | 1.000 | ||
Huynh-Feldt | 169.114 | 1 | 169.114 | 68.100 | 0.000 | 0.433 | 68.100 | 1.000 | ||
Lower-bound | 169.114 | 1 | 169.114 | 68.100 | 0.000 | 0.433 | 68.100 | 1.000 | ||
Depression | Sphericity Assumed | 23.737 | 1 | 23.737 | 16.616 | 0.000 | 0.157 | 16.616 | 0.981 | |
Greenhouse-Geisser | 23.737 | 1 | 23.737 | 16.616 | 0.000 | 0.157 | 16.616 | 0.981 | ||
Huynh-Feldt | 23.737 | 1 | 23.737 | 16.616 | 0.000 | 0.157 | 16.616 | 0.981 | ||
Lower-bound | 23.737 | 1 | 23.737 | 16.616 | 0.000 | 0.157 | 16.616 | 0.981 | ||
Total Mood Disturbance | Sphericity Assumed | 8111.149 | 1 | 8111.149 | 79.864 | 0.000 | 0.473 | 79.864 | 1.000 | |
Greenhouse-Geisser | 8111.149 | 1 | 8111.149 | 79.864 | 0.000 | 0.473 | 79.864 | 1.000 | ||
Huynh-Feldt | 8111.149 | 1 | 8111.149 | 79.864 | 0.000 | 0.473 | 79.864 | 1.000 | ||
Lower-bound | 8111.149 | 1 | 8111.149 | 79.864 | 0.000 | 0.473 | 79.864 | 1.000 | ||
Time * Treatment | Spatial Span Forward | Sphericity Assumed | 14.062 | 2 | 7.031 | 3.700 | 0.029 | 0.077 | 7.400 | 0.666 |
Greenhouse-Geisser | 14.062 | 2 | 7.031 | 3.700 | 0.029 | 0.077 | 7.400 | 0.666 | ||
Huynh-Feldt | 14.062 | 2 | 7.031 | 3.700 | 0.029 | 0.077 | 7.400 | 0.666 | ||
Lower-bound | 14.062 | 2 | 7.031 | 3.700 | 0.029 | 0.077 | 7.400 | 0.666 | ||
Digit Span Backward | Sphericity Assumed | 1.971 | 2 | 0.986 | 0.317 | 0.729 | 0.007 | 0.633 | 0.099 | |
Greenhouse-Geisser | 1.971 | 2 | 0.986 | 0.317 | 0.729 | 0.007 | 0.633 | 0.099 | ||
Huynh-Feldt | 1.971 | 2 | 0.986 | 0.317 | 0.729 | 0.007 | 0.633 | 0.099 | ||
Lower-bound | 1.971 | 2 | 0.986 | 0.317 | 0.729 | 0.007 | 0.633 | 0.099 | ||
Vitality | Sphericity Assumed | 12.580 | 2 | 6.290 | 0.722 | 0.489 | 0.016 | 1.444 | 0.169 | |
Greenhouse-Geisser | 12.580 | 2 | 6.290 | 0.722 | 0.489 | 0.016 | 1.444 | 0.169 | ||
Huynh-Feldt | 12.580 | 2 | 6.290 | 0.722 | 0.489 | 0.016 | 1.444 | 0.169 | ||
Lower-bound | 12.580 | 2 | 6.290 | 0.722 | 0.489 | 0.016 | 1.444 | 0.169 | ||
Self-esteem | Sphericity Assumed | 0.438 | 2 | 0.219 | 0.085 | 0.919 | 0.002 | 0.170 | 0.063 | |
Greenhouse-Geisser | 0.438 | 2 | 0.219 | 0.085 | 0.919 | 0.002 | 0.170 | 0.063 | ||
Huynh-Feldt | 0.438 | 2 | 0.219 | 0.085 | 0.919 | 0.002 | 0.170 | 0.063 | ||
Lower-bound | 0.438 | 2 | 0.219 | 0.085 | 0.919 | 0.002 | 0.170 | 0.063 | ||
Confusion | Sphericity Assumed | 11.322 | 2 | 5.661 | 0.480 | 0.620 | 0.011 | 0.960 | 0.126 | |
Greenhouse-Geisser | 11.322 | 2 | 5.661 | 0.480 | 0.620 | 0.011 | 0.960 | 0.126 | ||
Huynh-Feldt | 11.322 | 2 | 5.661 | 0.480 | 0.620 | 0.011 | 0.960 | 0.126 | ||
Lower-bound | 11.322 | 2 | 5.661 | 0.480 | 0.620 | 0.011 | 0.960 | 0.126 | ||
Fatigue | Sphericity Assumed | 34.975 | 2 | 17.488 | 1.518 | 0.225 | 0.033 | 3.036 | 0.315 | |
Greenhouse-Geisser | 34.975 | 2 | 17.488 | 1.518 | 0.225 | 0.033 | 3.036 | 0.315 | ||
Huynh-Feldt | 34.975 | 2 | 17.488 | 1.518 | 0.225 | 0.033 | 3.036 | 0.315 | ||
Lower-bound | 34.975 | 2 | 17.488 | 1.518 | 0.225 | 0.033 | 3.036 | 0.315 | ||
Anger | Sphericity Assumed | 1.459 | 2 | 0.729 | 0.236 | 0.790 | 0.005 | 0.473 | 0.086 | |
Greenhouse-Geisser | 1.459 | 2 | 0.729 | 0.236 | 0.790 | 0.005 | 0.473 | 0.086 | ||
Huynh-Feldt | 1.459 | 2 | 0.729 | 0.236 | 0.790 | 0.005 | 0.473 | 0.086 | ||
Lower-bound | 1.459 | 2 | 0.729 | 0.236 | 0.790 | 0.005 | 0.473 | 0.086 | ||
Tension | Sphericity Assumed | 2.086 | 2 | 1.043 | 0.420 | 0.658 | 0.009 | 0.84 | 0.116 | |
Greenhouse-Geisser | 2.086 | 2 | 1.043 | 0.420 | 0.658 | 0.009 | 0.84 | 0.116 | ||
Huynh-Feldt | 2.086 | 2 | 1.043 | 0.420 | 0.658 | 0.009 | 0.84 | 0.116 | ||
Lower-bound | 2.086 | 2 | 1.043 | 0.420 | 0.658 | 0.009 | 0.84 | 0.116 | ||
Depression | Sphericity Assumed | 0.780 | 2 | 0.390 | 0.273 | 0.762 | 0.006 | 0.546 | 0.092 | |
Greenhouse-Geisser | 0.780 | 2 | 0.390 | 0.273 | 0.762 | 0.006 | 0.546 | 0.092 | ||
Huynh-Feldt | 0.780 | 2 | 0.390 | 0.273 | 0.762 | 0.006 | 0.546 | 0.092 | ||
Lower-bound | 0.780 | 2 | 0.390 | 0.273 | 0.762 | 0.006 | 0.546 | 0.092 | ||
Total Mood Disturbance | Sphericity Assumed | 97.650 | 2 | 48.825 | 0.481 | 0.620 | 0.011 | 0.961 | 0.126 | |
Greenhouse-Geisser | 97.650 | 2 | 48.825 | 0.481 | 0.620 | 0.011 | 0.961 | 0.126 | ||
Huynh-Feldt | 97.650 | 2 | 48.825 | 0.481 | 0.620 | 0.011 | 0.961 | 0.126 | ||
Lower-bound | 97.650 | 2 | 48.825 | 0.481 | 0.620 | 0.011 | 0.961 | 0.126 | ||
Error (Time) | Spatial Span Forward | Sphericity Assumed | 169.118 | 89 | 1.900 | |||||
Greenhouse-Geisser | 169.118 | 89 | 1.900 | |||||||
Huynh-Feldt | 169.118 | 89 | 1.900 | |||||||
Lower-bound | 169.118 | 89 | 1.900 | |||||||
Digit Span Backward | Sphericity Assumed | 276.979 | 89 | 3.112 | ||||||
Greenhouse-Geisser | 276.979 | 89 | 3.112 | |||||||
Huynh-Feldt | 276.979 | 89 | 3.112 | |||||||
Lower-bound | 276.979 | 89 | 3.112 | |||||||
Vitality | Sphericity Assumed | 775.375 | 89 | 8.712 | ||||||
Greenhouse-Geisser | 775.375 | 89 | 8.712 | |||||||
Huynh-Feldt | 775.375 | 89 | 8.712 | |||||||
Lower-bound | 775.375 | 89 | 8.712 | |||||||
Self-esteem | Sphericity Assumed | 229.262 | 89 | 2.576 | ||||||
Greenhouse-Geisser | 229.262 | 89 | 2.576 | |||||||
Huynh-Feldt | 229.262 | 89 | 2.576 | |||||||
Lower-bound | 229.262 | 89 | 2.576 | |||||||
Confusion | Sphericity Assumed | 1050.013 | 89 | 11.798 | ||||||
Greenhouse-Geisser | 1050.013 | 89 | 11.798 | |||||||
Huynh-Feldt | 1050.013 | 89 | 11.798 | |||||||
Lower-bound | 1050.013 | 89 | 11.798 | |||||||
Fatigue | Sphericity Assumed | 1025.440 | 89 | 11.522 | ||||||
Greenhouse-Geisser | 1025.440 | 89 | 11.522 | |||||||
Huynh-Feldt | 1025.440 | 89 | 11.522 | |||||||
Lower-bound | 1025.440 | 89 | 11.522 | |||||||
Anger | Sphericity Assumed | 274.489 | 89 | 3.084 | ||||||
Greenhouse-Geisser | 274.489 | 89 | 3.084 | |||||||
Huynh-Feldt | 274.489 | 89 | 3.084 | |||||||
Lower-bound | 274.489 | 89 | 3.084 | |||||||
Tension | Sphericity Assumed | 221.015 | 89 | 2.483 | ||||||
Greenhouse-Geisser | 221.015 | 89 | 2.483 | |||||||
Huynh-Feldt | 221.015 | 89 | 2.483 | |||||||
Lower-bound | 221.015 | 89 | 2.483 | |||||||
Depression | Sphericity Assumed | 127.144 | 89 | 1.429 | ||||||
Greenhouse-Geisser | 127.144 | 89 | 1.429 | |||||||
Huynh-Feldt | 127.144 | 89 | 1.429 | |||||||
Lower-bound | 127.144 | 89 | 1.429 | |||||||
Total Mood Disturbance | Sphericity Assumed | 9038.971 | 89 | 101.561 | ||||||
Greenhouse-Geisser | 9038.971 | 89 | 101.561 | |||||||
Huynh-Feldt | 9038.971 | 89 | 101.561 | |||||||
Lower-bound | 9038.971 | 89 | 101.561 | |||||||
Tests of Within-Subjects Effects | ||||||||||
Source | Measure | Time | Type III Sum of Squares | df | Mean Square | F | Sig. | Partial Eta Squared | Noncent. Parameter | Observed Power |
Time | Spatial Span Forward | Linear | 31.392 | 1 | 31.392 | 16.521 | 0.000 | 0.157 | 16.521 | 0.980 |
Digit Span Backward | Linear | 10.190 | 1 | 10.190 | 3.274 | 0.074 | 0.035 | 3.274 | 0.433 | |
Vitality | Linear | 49.690 | 1 | 49.690 | 5.704 | 0.019 | 0.060 | 5.704 | 0.656 | |
Self-esteem | Linear | 0.521 | 1 | 0.521 | 0.202 | 0.654 | 0.002 | 0.202 | 0.073 | |
Confusion | Linear | 775.588 | 1 | 775.588 | 65.739 | 0.000 | 0.425 | 65.739 | 1.000 | |
Fatigue | Linear | 720.827 | 1 | 720.827 | 62.562 | 0.000 | 0.413 | 62.562 | 1.000 | |
Anger | Linear | 94.422 | 1 | 94.422 | 30.615 | 0.000 | 0.256 | 30.615 | 1.000 | |
Tension | Linear | 169.114 | 1 | 169.114 | 68.100 | 0.000 | 0.433 | 68.100 | 1.000 | |
Depression | Linear | 23.737 | 1 | 23.737 | 16.616 | 0.000 | 0.157 | 16.616 | 0.981 | |
Total Mood Disturbance | Linear | 8111.149 | 1 | 8111.149 | 79.864 | 0.000 | 0.473 | 79.864 | 1.000 | |
Time * Treatment | Spatial Span Forward | Linear | 14.062 | 2 | 7.031 | 3.700 | 0.029 | 0.077 | 7.400 | 0.666 |
Digit Span Backward | Linear | 1.971 | 2 | 0.986 | 0.317 | 0.729 | 0.007 | 0.633 | 0.099 | |
Vitality | Linear | 12.580 | 2 | 6.290 | 0.722 | 0.489 | 0.016 | 1.444 | 0.169 | |
Self-esteem | Linear | 0.438 | 2 | 0.219 | 0.085 | 0.919 | 0.002 | 0.170 | 0.063 | |
Confusion | Linear | 11.322 | 2 | 5.661 | 0.480 | 0.620 | 0.011 | 0.960 | 0.126 | |
Fatigue | Linear | 34.975 | 2 | 17.488 | 1.518 | 0.225 | 0.033 | 3.036 | 0.315 | |
Anger | Linear | 1.459 | 2 | 0.729 | 0.236 | 0.790 | 0.005 | 0.473 | 0.086 | |
Tension | Linear | 2.086 | 2 | 1.043 | 0.420 | 0.658 | 0.009 | 0.840 | 0.116 | |
Depression | Linear | 0.780 | 2 | 0.390 | 0.273 | 0.762 | 0.006 | 0.546 | 0.092 | |
Total Mood Disturbance | Linear | 97.650 | 2 | 48.825 | 0.481 | 0.620 | 0.011 | 0.961 | 0.126 | |
Error (Time) | Spatial Span Forward | Linear | 169.118 | 89 | 1.900 | |||||
Digit Span Backward | Linear | 276.979 | 89 | 3.112 | ||||||
Vitality | Linear | 775.375 | 89 | 8.712 | ||||||
Self-esteem | Linear | 229.262 | 89 | 2.576 | ||||||
Confusion | Linear | 1050.013 | 89 | 11.798 | ||||||
Fatigue | Linear | 1025.440 | 89 | 11.522 | ||||||
Anger | Linear | 274.489 | 89 | 3.084 | ||||||
Tension | Linear | 221.015 | 89 | 2.483 | ||||||
Depression | Linear | 127.144 | 89 | 1.429 | ||||||
Total Mood Disturbance | Linear | 9038.971 | 89 | 101.561 | ||||||
Tests of Between-Subjects Effects | ||||||||||
Source | Measure | Type III Sum of Squares | df | Mean Square | F | Sig. | Partial Eta Squared | Noncent. Parameter | Observed Power | |
Intercept | Spatial Span Forward | 14,926.764 | 1 | 14,926.764 | 3499.120 | 0.000 | 0.975 | 3499.120 | 1.000 | |
Digit Span Backward | 14,572.208 | 1 | 14,572.208 | 1017.795 | 0.000 | 0.920 | 1017.795 | 1.000 | ||
Vitality | 27,848.781 | 1 | 27,848.781 | 363.517 | 0.000 | 0.803 | 363.517 | 1.000 | ||
Self-esteem | 13,540.176 | 1 | 13,540.176 | 490.236 | 0.000 | 0.846 | 490.236 | 1.000 | ||
Confusion | 4812.435 | 1 | 4,812.435 | 137.690 | 0.000 | 0.607 | 137.690 | 1.000 | ||
Fatigue | 4749.818 | 1 | 4749.818 | 115.364 | 0.000 | 0.565 | 115.364 | 1.000 | ||
Anger | 320.932 | 1 | 320.932 | 30.822 | 0.000 | 0.257 | 30.822 | 1.000 | ||
Tension | 974.459 | 1 | 974.459 | 79.423 | 0.000 | 0.472 | 79.423 | 1.000 | ||
Depression | 115.368 | 1 | 115.368 | 24.488 | 0.000 | 0.216 | 24.488 | 0.998 | ||
Total Mood Disturbance | 1,613,889.308 | 1 | 1,613,889.308 | 3609.492 | 0.000 | 0.976 | 3609.492 | 1.000 | ||
Treatment | Spatial Span Forward | 7.577 | 2 | 3.788 | 0.888 | 0.415 | 0.020 | 1.776 | 0.199 | |
Digit Span Backward | 11.814 | 2 | 5.907 | 0.413 | 0.663 | 0.009 | 0.825 | 0.115 | ||
Vitality | 10.390 | 2 | 5.195 | 0.068 | 0.934 | 0.002 | 0.136 | 0.060 | ||
Self-esteem | 60.238 | 2 | 30.119 | 1.090 | 0.340 | 0.024 | 2.181 | 0.236 | ||
Confusion | 79.139 | 2 | 39.570 | 1.132 | 0.327 | 0.025 | 2.264 | 0.244 | ||
Fatigue | 122.069 | 2 | 61.035 | 1.482 | 0.233 | 0.032 | 2.965 | 0.309 | ||
Anger | 9.315 | 2 | 4.658 | 0.447 | 0.641 | 0.010 | 0.895 | 0.121 | ||
Tension | 11.333 | 2 | 5.667 | 0.462 | 0.632 | 0.010 | 0.924 | 0.123 | ||
Depression | 5.321 | 2 | 2.661 | 0.565 | 0.571 | 0.013 | 1.129 | 0.141 | ||
Total Mood Disturbance | 61.876 | 2 | 30.938 | 0.069 | 0.933 | 0.002 | 0.138 | 0.060 | ||
Error | Spatial Span Forward | 379.662 | 89 | 4.266 | ||||||
Digit Span Backward | 1274.251 | 89 | 14.317 | |||||||
Vitality | 6818.234 | 89 | 76.609 | |||||||
Self-esteem | 2458.152 | 89 | 27.620 | |||||||
Confusion | 3110.651 | 89 | 34.951 | |||||||
Fatigue | 3664.340 | 89 | 41.172 | |||||||
Anger | 926.700 | 89 | 10.412 | |||||||
Tension | 1091.965 | 89 | 12.269 | |||||||
Depression | 419.303 | 89 | 4.711 | |||||||
Total Mood Disturbance | 39,794.010 | 89 | 447.124 |
Model Summary | |||||||||
Model | R | R Square | Adjusted R Square | Standard Error of the Estimate | Change Statistics | ||||
R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
1 | 0.580 | 0.336 | 0.145 | 4.5506 | 0.336 | 1.761 | 21 | 73 | 0.040 |
ANOVA | |||||||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||||
1 | Regression | 765.732 | 21 | 36.463 | 1.761 | 0.040 | |||
Residual | 1511.700 | 73 | 20.708 | ||||||
Total | 2277.432 | 94 |
Model Summary | |||||||||
Model | R | R Square | Adjusted R Square | Standard Error of the Estimate | Change Statistics | ||||
R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
1 | 0.581 | 0.337 | 0.147 | 13.4051 | 0.337 | 1.769 | 21 | 73 | 0.039 |
ANOVA | |||||||||
Model | Sum of Squares | df | Mean Square | F | Sig. | ||||
1 | Regression | 6674.558 | 21 | 317.836 | 1.769 | 0.039 | |||
Residual | 13,117.864 | 73 | 179.697 | ||||||
Total | 19,792.421 | 94 |
References
- World Health Organization. Physical Inactivity: A Global Public Health Problem. 2020. Available online: https://www.who.int/dietphysicalactivity/factsheet_inactivity/en/ (accessed on 20 July 2020).
- World Health Organization. World Health Report; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Maas, J.; Verheij, R.A. Are health benefits of physical activity in natural environments used in primary care by general practitioners in The Netherlands? Urban For. Urban Green. 2007, 6, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J.; Peacock, J.; Sellengs, M.; Griffen, M. The mental and physical health outcomes of green exercise. Int. J. Environ. Health Res. 2005, 15, 319–337. [Google Scholar] [CrossRef]
- Dibben, G.O.; Dalal, H.M.; Taylor, R.; Doherty, P.; Tang, L.H.; Hillsdon, M. Cardiac rehabilitation and physical activity: Systematic review and meta-analysis. Heart 2018, 104, 1394–1402. [Google Scholar] [CrossRef]
- Li, J.; Siegrist, J. Physical activity and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Int. J. Environ. Res. Public Health 2012, 9, 391–407. [Google Scholar] [CrossRef] [PubMed]
- Cooney, G.M.; Dwan, K.; Greig, C.A.; Lawlor, D.A.; Rimer, J.; Waugh, F.R.; McMurdo, M.; Mead, G.E. Exercise for depression. Cochrane Database Syst. Rev. 2013, 9, CD004366. [Google Scholar] [CrossRef]
- Krogh, J.; Hjorthøj, C.; Speyer, H.; Gluud, C.; Nordentoft, M. Exercise for patients with major depression: A systematic review with meta-analysis and trial sequential analysis. BMJ Open 2017, 7, e014820. [Google Scholar] [CrossRef] [PubMed]
- Harte, J.L.; Eifert, G.H. The effects of running, environment, and attentional focus on athletes’ catecholamine and cortisol levels and mood. Psychophysiology 1995, 32, 49–54. [Google Scholar] [CrossRef]
- Wooller, J.-J.; Barton, J.; Gladwell, V.F.; Micklewright, D. Occlusion of sight, sound and smell during Green Exercise influences mood, perceived exertion and heart rate. Int. J. Environ. Health Res. 2016, 26, 267–280. [Google Scholar] [CrossRef]
- Kinnafick, F.-E.; Thogersen-Ntoumani, C. The effect of the physical environment and levels of activity on affective states. J. Environ. Psychol. 2014, 36, 241–251. [Google Scholar] [CrossRef]
- Ulrich, R.S. Aesthetic and affective response to natural environment. In Behavior and Natural Environments; Altman, I., Wohlwill, J.F., Eds.; Plenum Press: New York, NY, USA, 1983; pp. 85–125. [Google Scholar]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Ulrich, R.S.; Parsons, R. Influences of passive experiences with plants on individual well-being and health. In Role of Horticulture in Human Well-Being and Social Development; Relt, P., Ed.; Timber Press: Oregon, Portland, 1992; pp. 93–105. [Google Scholar]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Hartig, T.; Mang, M.; Evans, G.W. Restorative effects of natural environment experiences. Environ. Behav. 1991, 23, 3–26. [Google Scholar] [CrossRef]
- Hartig, T.; Korpela, K.; Evans, G.W.; Garling, T. A measure of restorative quality in environments. Scand. Hous. Plan. Res. 1997, 14, 175–194. [Google Scholar] [CrossRef]
- Kaplan, S.; Bardwell, L.V.; Slakter, D.B. The museum as a restorative environment. Environ. Behav. 1993, 26, 725–742. [Google Scholar] [CrossRef]
- Han, K.-T. A review: Theories of restorative environments. J. Ther. Hortic. 2001, 12, 30–43. [Google Scholar]
- Rogerson, M.; Brown, D.K.; Sandercock, G.; Wooller, J.J.; Barton, J. A comparison of four typical green exercise environments and prediction of psychological health outcomes. Perspect. Public Health 2016, 136, 171–180. [Google Scholar] [CrossRef]
- Keniger, L.E.; Gaston, K.J.; Irvine, K.N.; Fuller, R. What are the benefits of interacting with nature? Int. J. Environ. Res. Public Health 2013, 10, 913–935. [Google Scholar] [CrossRef] [Green Version]
- Caspersen, C.; Powell, K.; Christensen, G. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Han, K.-T. Restorative Nature: An Overview of the Positive Influences of Natural Landscapes on Humans; Lambert Academic Publishing: Saarbrücken, Germany, 2011. [Google Scholar]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Thompson Coon, J.T.; Boddy, K.; Stein, K.; Whear, R.; Barton, J.; Depledge, M.H. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 2011, 45, 1761–1772. [Google Scholar] [CrossRef]
- Han, K.-T.; Wang, P.-C. Empirical examinations of effects of three-level green exercise on engagement with nature and physical Activity. Int. J. Environ. Res. Public Health 2018, 15, 375. [Google Scholar] [CrossRef] [Green Version]
- Plante, T.G.; Cage, C.; Clements, S.; Stover, A. Psychological benefits of exercise paired with virtual reality: Outdoor exercise energizes while indoor virtual exercise relaxes. Int. J. Stress Manag. 2006, 13, 108–117. [Google Scholar] [CrossRef]
- Park, B.J.; Furuya, K.; Kasetani, T.; Takayama, N.; Kagawa, T.; Miyazaki, Y. Relationship between psychological responses and physical environment in forest settings. Landsc. Urban Plan. 2011, 102, 24–32. [Google Scholar] [CrossRef]
- Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 2014, 38, 1–9. [Google Scholar] [CrossRef]
- Han, K.-T. Influence of passive versus active interaction with indoor plants on the restoration, behavior, and knowledge of students at a junior high school in Taiwan. Indoor Built Environ. 2018, 27, 818–830. [Google Scholar] [CrossRef]
- Lin, W.; Chen, Q.; Jiang, M.; Zhang, X.; Liu, Z.; Tao, J.; Wu, L.; Xu, S.; Kang, Y.; Zeng, Q. The effect of green space behaviour and per capita area in small urban green spaces on psychophysiological responses. Landsc. Urban Plan. 2019, 192, 103637. [Google Scholar] [CrossRef]
- Marselle, M.R.; Irvine, K.N.; Warber, S.L. Walking for well-being: Are group walks in certain types of natural environments better for well-being than group walks in urban environments? Int. J. Environ. Res. Public Health 2013, 10, 5603–5628. [Google Scholar] [CrossRef] [Green Version]
- Barton, J.; Griffin, M.; Pretty, J. Exercise-, nature-, and socially interactive-based initiatives improve mood and self-esteem in the clinical population. Perspect. Public Health 2012, 132, 89–96. [Google Scholar] [CrossRef]
- Marselle, M.R.; Irvine, K.N.; Lorenzo-Arribas, A.; Warber, S.L. Does perceived restorativeness mediate the effects of perceived biodiversity and perceived naturalness on emotional well-being following group walks in nature? J. Environ. Psychol. 2016, 46, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Mackay, G.J.S.; Neill, J.T. The effect of “green exercise” on state anxiety and the role of exercise duration, intensity, and greenness: A quasi-experimental study. Psychol. Sport Exerc. 2010, 11, 238–245. [Google Scholar] [CrossRef]
- Sallis, J.F.; Owen, N. Ecological models. In Health Behavior and Health Education: Theory, Research, and Practice; Glanz, K., Lewis, K.M., Rimer, B.K., Eds.; Jossey-Bass: San Francisco, CA, USA, 1997; pp. 402–403. [Google Scholar]
- Stokols, D. Establishing and maintaining health environment. Am. Psychol. 1992, 47, 6–22. [Google Scholar] [CrossRef]
- Gifford, R. Environmental Psychology: Principles and Practice; Allyn & Bacon: Needham Heights, MA, USA, 1997. [Google Scholar]
- Halpern, D. Mental Health and the Built Environment: More than Bricks and Mortar? Taylor & Francis Ltd.: London, UK, 1995. [Google Scholar]
- Stathopolos, T.; Wu, H.; Zacharias, J. Outdoor human comfort in an urban climate. Energy Build. 2004, 35, 297–305. [Google Scholar] [CrossRef]
- Gómez Martín, M.B. Weather, climate and tourism: A geographical perspective. Ann. Tour. Res. 2005, 32, 571–591. [Google Scholar] [CrossRef]
- Hipp, J.A.; Ogunseitan, O.A. Effect of environmental conditions on perceived psychological restorativeness of coastal parks. J. Environ. Psychol. 2011, 31, 421–429. [Google Scholar] [CrossRef] [Green Version]
- White, M.P.; Cracknell, D.; Corcoran, A.; Jenkinson, G.; Depledge, M.H. Do preferences for waterscapes persist in inclement weather and extend to sub-aquatic scenes? Landsc. Res. 2014, 39, 339–358. [Google Scholar] [CrossRef]
- Fang, Y.-C.; Lin, Y.-J. Influences of microclimate on user’s thermal comfort in urban park. J. Landsc. 2010, 16, 77–99. [Google Scholar]
- Wu, Y.-J. Environmental Thermal Comfort and Visitors’ Adaptive Behavior in Urban Greenway-A Case Study of Jing-Guo Greenway in Taichung City. Master’s Thesis, University of Chung Hsing, Taichung, China, 2011. [Google Scholar]
- Ni, S.-C. The Influences of Thermal Comfort on Physiological Effect, Preference, and Attention Restoration. Unpublished Master’s Thesis, National Taiwan University, Taipei, China, 2011. [Google Scholar]
- Bronzaft, A.L. Noise pollution: A hazard to physical and mental well-being. In Handbook of Environmental Psychology; Bechtel, R.B., Churchman, A., Eds.; John Wiley & Sons: New York, NY, USA, 2002; pp. 499–510. [Google Scholar]
- Parsons, R.J. Environmental psychophysiology. In Handbook of Psychophysiology; Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., Eds.; Cambridge: New York, NY, USA, 2007; pp. 752–788. [Google Scholar]
- Noise (II) The Third Public Nuisance of the Living Environment. Available online: http://www.ch.com.tw/index.aspx?sv=ch_fitness&chapter=AIA900602 (accessed on 17 February 2021).
- Calderón-Garcidueñas, L.; Calderón-Garcidueñas, A.; Torres-Jardón, R.; Avila-Ramírez, J.; Kulesza, R.J.; Angiulli, A.D. Air pollution and your brain: What do you need to know right now. Prim. Health Care Res. Dev. 2015, 16, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Bullinger, M. Psychological effects of air pollution on healthy residents-a time-series approach. J. Environ. Psychol. 1989, 9, 103–118. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Koh, J. Immersed in microclimatic space: Microclimate experience and perception of spatial configurations in Dutch squares. Landsc. Urban Plan. 2010, 95, 1–15. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Nikolopoulou, M. Foreword to the special issue on subjective approaches to thermal perception. Int. J. Biometeorol. 2020, 64, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Saenen, N.D.; Provost, E.B.; Viaene, M.K.; Vanpoucke, C.; Lefebvre, W.; Vrijens, K.; Roels, H.A.; Nawrot, T.S. Recent versus chronic exposure to particulate matter air pollution in association with neurobehavioral performance in a panel study of primary schoolchildren. Environ. Int. 2016, 95, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Sunyer, J.; Suades-González, E.; García-Esteban, R.; Rivas, I.; Pujol, J.; Alvarez-Pedrerol, M.; Forns, J.; Querol, X.; Basagaña, X. Traffic-related Air Pollution and Attention in Primary School Children: Short-term Association. Epidemiology 2017, 28, 181–189. [Google Scholar]
- Chen, S.-Y. Relationship between Crowding and Outdoor Recreation Experience: A Social-psychological Approach. Unpublished Doctoral Dissertation, National Taiwan University, Taipei, China, 1988. [Google Scholar]
- Nordh, H.; Alalouch, C.; Hartig, T. Assessing restorative components of small urban parks using conjoint methodology. Urban For. Urban Green. 2011, 10, 95–103. [Google Scholar] [CrossRef]
- Richardson, C.R.; Faulkner, G.; McDevitt, J.; Skrinar, G.S.; Hutchinson, D.S.; Piette, J.D. Integrating physical activity into mental health services for persons with serious mental illness. Psychiatr. Serv. 2005, 56, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Wendel-Vos, W.; Droomers, M.; Kremers, S.; Brug, J.; van Lenthe, F. Potential environmental determinants of physical activity in adults: A systematic review. Obes. Rev. 2007, 8, 425–440. [Google Scholar] [CrossRef]
- Johansson, M.; Hartig, T.; Staats, H. Psychological benefits of walking: Moderation by company and outdoor environment. Appl. Psychol. Health Well-Being 2011, 3, 261–280. [Google Scholar] [CrossRef]
- Maas, J.; van Dillen, S.M.E.; Verheij, R.A.; Groenewegen, P.P. Social contacts as a possible mechanism behind the relation between green space and health. Health Place 2009, 15, 586–595. [Google Scholar] [CrossRef] [Green Version]
- Zijlema, W.L.; Triguero-Mas, M.; Smith, G.; Cirach, M.; Martinez, D.; Dadvand, P.; Gascon, M.; Jones, M.; Gidlow, C.; Hurst, G.; et al. The relationship between natural outdoor environments and cognitive functioning and its mediators. Environ. Res. 2017, 155, 268–275. [Google Scholar] [CrossRef]
- Berg, M.M.V.D.; Van Poppel, M.; Van Kamp, I.; Ruijsbroek, A.; Triguero-Mas, M.; Gidlow, C.; Nieuwenhuijsen, M.J.; Gražulevičiene, R.; Van Mechelen, W.; Kruize, H.; et al. Do Physical Activity, Social Cohesion, and Loneliness Mediate the Association Between Time Spent Visiting Green Space and Mental Health? Environ. Behav. 2019, 51, 144–166. [Google Scholar] [CrossRef]
- Etnier, J.L.; Salazar, W.; Landers, D.M. The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. J. Sport Exerc. Psychol. 1997, 9, 249–277. [Google Scholar] [CrossRef] [Green Version]
- Lambourne, K.; Tomporowski, P. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Res. 2010, 1341, 12–24. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef]
- Hills, P.; Argyle, M. Musical and religious experiences and their relationship to happiness. Pers. Individ. Differ. 1998, 25, 91–102. [Google Scholar] [CrossRef]
- Kirkcaldy, B.D.; Furnham, A. Extraversion, neuroticism, psychoticism and recreational choice. Pers. Individ. Differ. 1991, 12, 737–745. [Google Scholar] [CrossRef]
- Paunonen, S.V. Big-five factors of personality and replicated predictions of behavior. J. Pers. Soc. Psychol. 2003, 84, 411–424. [Google Scholar] [CrossRef]
- Huang, C.H. A Study of the Influences of Personaity, Fitness Motivation and Exercise Participation Behavior on the Quality of Sexual Life. Unpublished Master’s Thesis, National Cheng Kung University, Tainan, China, 2005. [Google Scholar]
- Rhodes, R.E.; Smith, N.E.I. Personality correlates of physical activity: A review and meta-analysis. Br. J. Sports Med. 2006, 40, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.E.; Dishman, R.K. Personality and physical activity: A systematic review and meta-analysis. Pers. Individ. Differ. 2015, 72, 230–242. [Google Scholar] [CrossRef]
- Sutin, A.R.; Stephan, Y.; Luchetti, M.; Artese, A.; Oshio, A.; Terracciano, A. The five-factor model of personality and physical inactivity: A meta-analysis of 16 samples. J. Res. Pers. 2016, 63, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, E.M.; Goldberg, L.R.; Ashton, M.C.; Lee, K. Profiling the “Pro-Environmental Individual”: A personality perspective. J. Pers. 2012, 80, 81–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisbet, E.K.; Zelenski, J.M.; Murphy, S.A. The Nature Relatedness Scale: Linking individuals’ connection with nature to environmental concern and behavior. Environ. Behav. 2009, 41, 715–740. [Google Scholar] [CrossRef]
- Tam, K.-P. Concepts and measures related to connection to nature: Similarities and differences. J. Environ. Psychol. 2013, 34, 64–78. [Google Scholar] [CrossRef]
- Alizadeh, Z.; Feizi, A.; Rejali, M.; Afshar, H.; Keshteli, A.H.; Adibi, P. The predictive value of personality traits for psychological problems (stress, anxiety and depression): Results from a large population based study. J. Epidemiol. Glob. Health 2018, 8, 124–133. [Google Scholar] [CrossRef]
- Malouff, J.M.; Thorsteinsson, E.B.; Schutte, N.S. The relationship between the five factor model of personality and symptoms of clinic disorders: A meta-analysis. J. Psychopathol. Behav. Assess. 2005, 27, 101–114. [Google Scholar] [CrossRef]
- Kotov, R.; Gamez, W.; Schmidt, F.; Watson, D. Linking “big” personality traits to anxiety, depressive, and substance use disorders: A meta-analysis. Psychol. Bull. 2010, 136, 768–821. [Google Scholar] [CrossRef]
- Carver, C.S.; Scheier, M.F. Dispositional optimism. Trends Cogn. Sci. 2014, 18, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milligan, M. Optimism and the Five-Factor Model of Personality, Coping, and Health Behavior. Unpublished Doctoral Dissertation, Auburn University, Auburn, AL, USA, 2003. [Google Scholar]
- Engin Deniz, M.; Satici, A.S. The relationships between Big Five personality traits and subjective vitality. An. De Psicol. 2017, 33, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Ryan, R.M.; Frederick, C. On energy, personality, and health: Subjective vitality as a dynamic reflection of well-being. J. Pers. 1997, 65, 529–565. [Google Scholar] [CrossRef] [PubMed]
- Han, K.-T. The effect of nature and physical activity on emotions and attention while engaging in green exercise. Urban For. Urban Green. 2017, 24, 5–13. [Google Scholar] [CrossRef]
- Domínguez-Rodrigo, M. Hunting and scavenging by early humans: The state of the debate. J. World Prehist. 2002, 16, 1–54. [Google Scholar] [CrossRef]
- Kansky, J. What’s love got to do with it?: Romantic relationships and well-being. In Handbook of Well-Being; Diener, E., Oishi, S., Tay, L., Eds.; DEF Publishers: Salt Lake City, UT, USA, 2018; pp. 1–24. [Google Scholar]
- Calkins, M.; Szmerekovsky, J.G.; Biddle, S. Effect of Increased Time Spent Outdoors on Individuals with Dementia Residing in Nursing Homes. J. Hous. Elder. 2007, 21, 211–228. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [Green Version]
- Stone, K.L.; Ancoli-Israel, S. Actigraphy. In Principles and Practice of Sleep Medicine; Kryger, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Zhang, K.; Werner, P.; Sun, M.; Pi-Sunyer, F.X.; Boozer, C. Measurement of human daily physical activity. Obes. Res. 2003, 11, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffiuletti, N.A.; Gorelick, M.; Kramers-de Quervain, I.; Bizzini, M.; Munzinger, J.P.; Tomasetti, S.; Stacoff, A. Concurrent validity and intrasession reliability of the IDEEA accelerometry system for the quantification of spatiotemporal gait parameters. Gait Posture 2008, 27, 160–163. [Google Scholar] [CrossRef]
- Zhang, K.; Pi-Sunyer, F.X.; Boozer, C.N. Improving energy expenditure estimation for physical activity. Med. Sci. Sports Exerc. 2004, 36, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.T., Jr.; McCrae, R.R. Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychol. Assess. 1992, 4, 5–13. [Google Scholar] [CrossRef]
- Huang, Y.-C. The Relationship between Personality, Sales Skill, Selling-customer Orientation and Sales Performance of Part-time Salespeople. Unpublished Master’s Thesis, National Sun Yat-sen University, Kaohsiung, China, 2010. [Google Scholar]
- John, O.P.; Donahue, E.M.; Kentle, R.L. The Big Five Inventory--Versions 4a and 54; Institute of Personality and Social Research: Berkeley, CA, USA, 1991. [Google Scholar]
- Manning, R.E.; Lime, D.W.; Friemund, W.A. Use of visual research methods to measure standards of quality for parks and outdoor recreation. J. Leis. Res. 2004, 36, 552–579. [Google Scholar] [CrossRef]
- Brager, G.S.; Fountain, M.E.; Benton, C.C.; Arens, E.A.; Bauman, F.S. A comparison of methods for assessing thermal sensation and acceptability in the field. In Proceeding of Thermal Comfort: Past, Present and Future; Oseland, N.A., Ed.; British Research Establishment: Garston, Hertfordshire, UK, 1993; pp. 17–39. [Google Scholar]
- Wu, M.-L.; Chang, Y.-R. SPSS and Statistical Analysis Application; Wunan Press: Taipei, China, 2011. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Air Pollution Control Act. Available online: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=o0020001 (accessed on 17 February 2021).
- Liou, Y.-M. Development and Verification of Validity and Reliability of the International Physical Activity Questionnaire Taiwan Version. Unpublished Doctoral Dissertation, National Taiwan University, Taipei, China, 2004. [Google Scholar]
- Liou, Y.-M.; Wu, J.-S. The appraisal and questionnaire of physical activity. Taiwan. Assoc. Diabetes Educ. Newsl. Sept. 2009, 11–17. [Google Scholar]
- Simon, H.A. Comments. In Affect and Cognition; Clark, M.S., Fiske, S.T., Eds.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1982; pp. 333–342. [Google Scholar]
- Ekman, P. Expression and the Nature of Emotion. In Approaches to Emotion; Scherer, K., Ekman, P., Eds.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1984; pp. 319–343. [Google Scholar]
- Chang, Y.-C.; Lu, J.-H. The revised report of Profile of Mood State (POMS). Sports Exerc. Res. 2001, 3, 47–55. [Google Scholar]
- McNair, D.M.; Lorr, M.; Droppleman, L.F. Revised Manual for the Profile of Mood States; Educational and Industrial Testing Service: San Diego, CA, USA, 1992. [Google Scholar]
- Hsu, P.-Y.; Chang, Y.-C.; Lu, J.-H. The re-revised Profile of Mood States (PMOS). Sports Exerc. Res. 2003, 5, 85–95. [Google Scholar]
- Heuchert, J.P.; McNair, D.M. Profile of Mood States 2nd Edition-Youth. Poms 2-Y Assess. Rep. Derrick Smith 2012, 1–6. [Google Scholar]
- Anderson, J.R. Cognitive Psychology and Its Implications, 6th ed.; Worth Publishers: New York, NY, USA, 2004. [Google Scholar]
- Lezak, M.D. Neuropsychological Assessment, 3rd ed.; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Wechsler, D. Manual for the Wechsler Adult Intelligence Scale; Psychological Corporation: New York, NY, USA, 1955. [Google Scholar]
- Gupta, S.K. Intention-to-treat concept: A review. Perspect. Clin. Res. 2011, 2, 109–112. [Google Scholar] [CrossRef]
- Chiou, H.-J. Quantitative Research and Statistical Analysis in Social and Behavioral Sciences; Wunan: Taipei, China, 2004. [Google Scholar]
- DeVellis, R.F. Scale Development Theory and Applications; Sage: London, UK, 1991. [Google Scholar]
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Bamberg, J.; Hitchings, R.; Latham, A. Enriching green exercise research. Landsc. Urban Plan. 2018, 178, 270–275. [Google Scholar] [CrossRef]
- Oberauer, K. Working memory and attention–a conceptual analysis and review. J. Cogn. 2019, 2, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partington, J.; Leiter, J.E.; Graydon, R. Partington’s Pathways Test. Psychol. Serv. Cent. J. 1949, 1, 11–20. [Google Scholar]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef]
- Stevenson, M.P.; Schilhab, T.; Bentsen, P. Attention restoration theory II: A systematic review to clarify attention processes affected by exposure to natural environments. J. Toxicol. Environ. Health-Pt B Crit. Rev. 2018, 21, 227–268. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health. Available online: http://apps.who.int/iris/bitstream/10665/44399/1/9789241599979_eng.pdf (accessed on 25 May 2018).
- Tok, S.; Morali, S.L. Trait emotional intelligence, the big five personality dimensions and academic success in physical education teacher candidates. Soc. Behav. Pers. 2009, 37, 921–932. [Google Scholar] [CrossRef]
- Takemura, K.; Hasegawa, M.; Tamura, S.; Takishita, Y.; Matsuoka, T.; Iwawaki, Y.; Yamanaka, R. The association between burnout syndrome and personality in Japanese nursing students. Int. J. Recent Sci. Res. 2015, 6, 5545–5549. [Google Scholar]
- Kitamura, H.; Shindo, M.; Tachibana, A.; Honma, H.; Someya, T. Personality and resilience associated with perceived fatigue of local government employees responding to disasters. J. Occup. Health 2013, 55, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ode, S.; Robinson, M.D. Agreeableness and the self-regulation of negative affect: Findings involving the neuroticism/somatic distress relationship. Pers. Individ. Differ. 2007, 43, 2137–2148. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef]
- Noise Control Act. Available online: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=o0030001 (accessed on 17 February 2021).
- Staats, H.; Hartig, T. Alone or with a friend: A social context for psychological restoration and environmental preferences. J. Environ. Psychol. 2004, 24, 199–211. [Google Scholar] [CrossRef]
- Staats, H.; van Germerden, E.; Hartig, T. Preference for restorative situations: Interactive effects of attentional state, activity-in-environment and social context. Leis. Sci. 2010, 32, 401–417. [Google Scholar] [CrossRef]
- Bringslimark, T.; Hartig, T.; Patil, G.G. The psychological benefits of indoor plants: A critical review of the experimental literature. J. Environ. Psychol. 2009, 29, 422–433. [Google Scholar] [CrossRef]
- Smardon, R.C. Perception and aesthetics of the urban environment: Review of the role of vegetation. Landsc. Urban Plan. 1988, 15, 85–106. [Google Scholar] [CrossRef]
Personality Traits(predictor variable) Personality characteristics: the self-reported Big Five Test (questionnaire) |
SocialEnvironment(predictor variable) Number of companions: number of companions accompanying the participants in the green exercise (questionnaire) Crowdedness: the number of other people and vehicles during the green exercise (photo records) |
PhysicalEnvironment(predictor variable) Thermal comfort (physiologically equivalent temperature, PET; standard effective temperature, SET): environmental conditions (weather instruments: temperature, humidity, wind speed, and average radiant temperature); and human conditions (questionnaire: metabolic heat and clothing quantity) Noise: the mean value of environmental sound during green exercise (decibel meter) Air pollution: SO2, CO, O3, PM10, PM2.5, NOX, NO, and NO2 (Air Quality Station) |
Daily PhysicalActivity(predictor variable) Physical activity: self-reported Chinese version of the International Physical Activity Questionnaire (IPAQ), which assesses physical activity over the past 7 days (questionnaire) Activity frequency: self-reported frequency of physical activity over the past 7 days (questionnaire) |
ExperimentalTreatment (independent and predictor variable) Engagement with nature: self-reported degree of engagement with nature (questionnaire) Physical activity: body movement speed (global positioning system watch, GPS), hand activity (MicroMini-Motionlogger Actigraph), limb activity, posture, posture change, gait, and energy expenditure (Intelligent Device for Energy Expenditure and Activity, IDEEA) |
Emotions and Attention (dependent variable) Emotions: the self-reported Profile of Mood States (POMS) and total mood disturbance (TMD) (questionnaire) Attention: spatial span forward (SSF) test and digit span backward (DSB) test |
Effect | Variable | F | P | ηp2 | Observed Power | Mean (SD) | Mean Diff. | 95% Conf. Int. for the Diff. | Post hoc | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||||||
Treatment a * Time | SSF Interaction | 3.700 | 0.029 | 0.077 | 0.666 | ||||||
L1 | 0.529 | 0.472 | 0.016 | 0.109 | Pre | 8.545 (1.872) | Pre-Post | −1.037 | 0.491 | ||
Post | 8.181 (1.878) | ||||||||||
L2 | 4.686 | 0.038 * | 0.135 | 0.554 | Pre | 8.774 (1.586) | Pre-Post | −1.066 | −0.031 | Post > Pre | |
Post | 9.323 (1.869) | ||||||||||
L3 | 16.434 | 0.000 *** | 0.354 | 0.975 | Pre | 8.452 (1.502) | Pre-Post | −2.328 | −0.768 | Post > Pre | |
Post | 1.000 (1.693) | ||||||||||
Time (pre-post) | SSF | 16.521 | 0.000 | 0.157 | 0.980 | Pre | 8.600 (0.176) | Pre-Post | −1.231 | −0.423 | Post > Pre |
Post | 9.427 (0.190) | ||||||||||
Vigour | 5.704 | 0.019 | 0.060 | 0.656 | Pre | 11.792 (0.675) | Pre-Post | −1.905 | −0.175 | Post > Pre | |
Post | 12.832 (0.688) | ||||||||||
Confusion | 65.739 | 0.000 | 0.425 | 1.000 | Pre | 7.173 (0.597) | Pre-Post | 3.102 | 5.116 | Pre > Post | |
Post | 3.063 (0.390) | ||||||||||
Fatigue | 62.562 | 0.000 | 0.413 | 1.000 | Pre | 7.065 (0.633) | Pre-Post | 2.996 | 4.957 | Pre > Post | |
Post | 3.104 (0.415) | ||||||||||
Anger | 3.615 | 0.000 | 0.256 | 1.000 | Pre | 2.039 (0.334) | Pre-Post | 0.919 | 1.949 | Pre > Post | |
Post | 0.605 (0.188) | ||||||||||
Anxiety | 68.100 | 0.000 | 0.433 | 1.000 | Pre | 3.262 (0.334) | Pre-Post | 1.457 | 2.381 | Pre > Post | |
Post | 1.344 (0.221) | ||||||||||
Depression | 16.616 | 0.000 | 0.157 | 0.981 | Pre | 1.152 (0.224) | Pre-Post | 0.368 | 1.069 | Pre > Post | |
Post | 0.433 (0.129) | ||||||||||
TMD | 79.864 | 0.000 | 0.473 | 1.000 | Pre | 100.368 (1.900) | Pre-Post | 10.334 | 16.243 | Pre > Post | |
Post | 87.079 (1.537) |
Predictor | Depend Variable: Fatigue | Depend Variable: TMD | ||||||
---|---|---|---|---|---|---|---|---|
B (SE) | Beta | t | p | B(SE) | Beta | t | p | |
Constant | 17.439 (14.95) | 1.166 | 0.247 | 59.820 (44.039) | 1.358 | 0.179 | ||
Transportation-related physical activity | −0.046 (0.016) | −0.337 | −2.96 | 0.004 ** | −0.107 (0.046) | −0.265 | −2.332 | 0.022 * |
Engagement with nature | −0.149 (0.070) | −0.227 | −2.126 | 0.037 * | −0.617 (0.206) | −0.319 | −2.994 | 0.004 ** |
Agreeableness | −0.348 (0.159) | −0.234 | −2.186 | 0.032 * | ||||
F | 1.761 * | 1.769 * | ||||||
R2 | 0.336 | 0.337 | ||||||
∆R2 | 0.145 | 0.147 | ||||||
Power | 0.981 | 0.982 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.-T. Effects of Three Levels of Green Exercise, Physical and Social Environments, Personality Traits, Physical Activity, and Engagement with Nature on Emotions and Attention. Sustainability 2021, 13, 2686. https://doi.org/10.3390/su13052686
Han K-T. Effects of Three Levels of Green Exercise, Physical and Social Environments, Personality Traits, Physical Activity, and Engagement with Nature on Emotions and Attention. Sustainability. 2021; 13(5):2686. https://doi.org/10.3390/su13052686
Chicago/Turabian StyleHan, Ke-Tsung. 2021. "Effects of Three Levels of Green Exercise, Physical and Social Environments, Personality Traits, Physical Activity, and Engagement with Nature on Emotions and Attention" Sustainability 13, no. 5: 2686. https://doi.org/10.3390/su13052686
APA StyleHan, K.-T. (2021). Effects of Three Levels of Green Exercise, Physical and Social Environments, Personality Traits, Physical Activity, and Engagement with Nature on Emotions and Attention. Sustainability, 13(5), 2686. https://doi.org/10.3390/su13052686