Semantic Crowdsourcing of Soundscapes Heritage: A Mojo Model for Data-Driven Storytelling
Abstract
:1. Introduction
“Soundscape is an acoustic environment as perceived or experienced and/or understood by a person or people, in context.”
1.1. Related Work
1.2. Project Motivation and Research Objectives
2. Materials and Methods
2.1. Integration of State-of-the-Art Audio and Soundscape Semantics on the Cloud
2.2. The Implemented Sound Heritage and Storytelling Model
2.3. The Proposed Model Architecture
2.4. Experimental Setup
2.4.1. Concept Validation: Preparation of a Questionnaire Survey
2.4.2. Configuration and Validation of the Audio-Semantic Modalities
3. Experimental Results
3.1. Concept Validation: Audience Analysis Results
3.2. Audio Classification Results
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, D.; Zhang, K.; Wang, L.; Law, R.; Zhang, M. From Religious Belief to Intangible Cultural Heritage Tourism: A Case Study of Mazu Belief. Sustainability 2020, 12, 4229. [Google Scholar] [CrossRef]
- Pollice, F.; Rinella, A.; Epifani, F.; Miggiano, P. Placetelling® as a Strategic Tool for Promoting Niche Tourism to Islands: The Case of Cape Verde. Sustainability 2020, 12, 4333. [Google Scholar] [CrossRef]
- Carta, M.; Ronsivalle, D. Neoanthropocene Raising and Protection of Natural and Cultural Heritage: A Case Study in Southern Italy. Sustainability 2020, 12, 4186. [Google Scholar] [CrossRef]
- Doulamis, A.; Voulodimos, A.; Protopapadakis, E.; Doulamis, N.; Makantasis, K. Automatic 3D Modeling and Reconstruction of Cultural Heritage Sites from Twitter Images. Sustainability 2020, 12, 4223. [Google Scholar] [CrossRef]
- Dimoulas, C.; Kalliris, G.; Chatzara, E.; Tsipas, N.; Papanikolaou, G. Audiovisual production, restoration-archiving and content management methods to preserve local tradition and folkloric heritage. J. Cult. Herit. 2014, 15, 234–241. [Google Scholar] [CrossRef]
- Chatzara, E.; Kotsakis, R.; Tsipas, N.; Vrysis, L.; Dimoulas, C. Machine-Assisted Learning in Highly-Interdisciplinary Media Fields: A Multimedia Guide on Modern Art. Educ. Sci. 2019, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- Psomadaki, O.; Dimoulas, C.; Kalliris, G.; Paschalidis, G. Digital storytelling and audience engagement in cultural heritage management: A collaborative model based on the Digital City of Thessaloniki. J. Cult. Herit. 2019, 36, 12–22. [Google Scholar] [CrossRef]
- Oomen, J.; Ordelman, R. Accessing Audiovisual Heritage: A Roadmap for Collaborative Innovation. IEEE Multimed. 2011, 18, 4–10. [Google Scholar] [CrossRef]
- Liew, C.L. Digital audiovisual heritage: An exploration of challenges and a community-based approach to preservation. In Proceedings of the 9th International Conference on Communities & Technologies-Transforming Communities, Vienna, Austria, 3–7 June 2019; pp. 76–80. [Google Scholar]
- Dimoulas, C.; Veglis, A.; Kalliris, G. Application of mobile cloud based technologies in news reporting: Current trends and future perspectives. In Mobile Networks and Cloud Computing Convergence for Progressive Services and Applications; Rodrigues, J., Lin, K., Lloret, J., Eds.; IGI Global: Hershey, PA, USA, 2014; Chapter 17; pp. 320–343. [Google Scholar]
- Sidiropoulos, E.A.; Vryzas, N.; Vrysis, L.; Avraam, E.; Dimoulas, C.A. Collecting and Delivering Multimedia Content during Crisis. In Proceedings of the EJTA Teacher’s Conference 2018: Crisis Reporting, Thessaloniki, Greece, 18–19 October 2018. [Google Scholar]
- Vryzas, N.; Sidiropoulos, E.; Vrysis, L.; Avraam, E.; Dimoulas, C.A. A mobile cloud computing collaborative model for the support of on-site content capturing and publishing. J. Media Crit. [JMC] 2018, 4, 349–364. [Google Scholar]
- Vrysis, L.; Tsipas, N.; Dimoulas, C.; Papanikolaou, G. Mobile Audio Intelligence: From Real Time Segmentation to Crowd Sourced Semantics. In Proceedings of the 10th Audio Mostly (A Conference on Interaction with Sound), Thessaloniki, Greece, 7–9 October 2015. [Google Scholar]
- Dimoulas, C.A.; Symeonidis, A.L. Syncing Shared Multimedia through Audiovisual Bimodal Segmentation. IEEE Multimed. 2015, 22, 26–42. [Google Scholar] [CrossRef]
- Vrysis, L.; Tsipas, N.; Dimoulas, C.; Papanikolaou, G. Crowdsourcing Audio Semantics by Means of Hybrid Bimodal Segmentation with Hierarchical Classification. J. Audio Eng. Soc. 2016, 64, 1042–1054. [Google Scholar] [CrossRef]
- Vryzas, N.; Sidiropoulos, E.; Vrysis, L.; Avraam, E.; Dimoulas, C. jReporter: A Smart Voice-Recording Mobile Application. In Proceedings of the 146th Audio Engineering Society Convention, Dublin, Ireland, 20–23 March 2019. [Google Scholar]
- Aiello, L.M.; Schifanella, R.; Quercia, D.; Aletta, F. Chatty maps: Constructing sound maps of urban areas from social media data. R. Soc. Open Sci. 2016, 3, 150690. [Google Scholar] [CrossRef] [Green Version]
- Bollini, L.; Della Fazia, I. Situated Emotions: The Role of the Soundscape in a Geo-Based Multimodal Application in the Field of Cultural Heritage. In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; Springer: Cagliari, Italy, 2020; pp. 805–819. [Google Scholar]
- Krause, B. Anatomy of the soundscape: Evolving perspectives. J. Audio Eng. Soc. 2008, 56, 73–80. [Google Scholar]
- International Organization for Standardization (ISO). ISO/DIS 12913-1 Acoustics—Soundscape—Part 1: Definition and Conceptual Framework; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- Comunità, M.; Gerino, A.; Lim, V.; Picinali, L. Web-based binaural audio and sonic narratives for cultural heritage. In Audio Engineering Society Conference: 2019 AES International Conference on Immersive and Interactive Audio, York, UK, 27–29 March 2019; Audio Engineering Society: York, UK, 2019. [Google Scholar]
- Chourmouziadou, K.; Sakantamis, K. Soundscape: Investigation and application of an innovative urban design parameter. In Proceedings of International Conference on “Changing Cities”: Spatial, Morphological, Formal & Socio-Economic Dimensions, Thessaloniki, Greece, 18–21 March 2013; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2013. [Google Scholar]
- Sidiropoulos, E.; Vryzas, N.; Vrysis, L.; Avraam, E.; Dimoulas, C. Growing Media Skills and Know-How in Situ: Technology-Enhanced Practices and Collaborative Support in Mobile News-Reporting. Educ. Sci. 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Vryzas, N.; Sidiropoulos, E.; Vrysis, L.; Avraam, E.; Dimoulas, C. Machine-assisted reporting in the era of Mobile Journalism: The MOJO-mate platform. Strategy Dev. Rev. 2019, 9, 22–43. [Google Scholar] [CrossRef]
- Suárez, R.; Alonso, A.; Sendra, J.J. Intangible cultural heritage: The sound of the Romanesque cathedral of Santiago de Compostela. J. Cult. Herit. 2015, 16, 239–243. [Google Scholar] [CrossRef]
- Bijsterveld, K. (Ed.) Soundscapes of the Urban Past: Staged Sound as Mediated Cultural Heritage; Sound Studies; Transcript Verlag: Bielefeld, Germany, 2013. [Google Scholar]
- Bartalucci, C.; Luzzi, S. The soundscape in cultural heritage. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 949, p. 012050. [Google Scholar]
- Maffei, L.; Brambilla, G.; Di Gabriele, M. Soundscape as part of the cultural heritage. In Soundscape and the Built Environment; Kang, J., Schulte-Fortkamp, B., Eds.; CRC Press: Cleveland, OH, USA, 2015. [Google Scholar]
- Masullo, M.; Castanò, F.; Toma, R.A.; Maffei, L. Historical Cloisters and Courtyards as Quiet Areas. Sustainability 2020, 12, 2887. [Google Scholar] [CrossRef] [Green Version]
- Berkouk, D.; Bouzir, T.A.K.; Maffei, L.; Masullo, M. Examining the Associations between Oases Soundscape Components and Walking Speed: Correlation or Causation? Sustainability 2020, 12, 4619. [Google Scholar] [CrossRef]
- Torresin, S.; Albatici, R.; Aletta, F.; Babich, F.; Kang, J. Assessment Methods and Factors Determining Positive Indoor Soundscapes in Residential Buildings: A Systematic Review. Sustainability 2019, 11, 5290. [Google Scholar] [CrossRef] [Green Version]
- Torresin, S.; Aletta, F.; Babich, F.; Bourdeau, E.; Harvie-Clark, J.; Kang, J.; Lavia, L.; Radicchi, A.; Albatici, R. Acoustics for Supportive and Healthy Buildings: Emerging Themes on Indoor Soundscape Research. Sustainability 2020, 12, 6054. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y.; Hou, Y. Residents’ Spatial Perceptions of Urban Gardens Based on Soundscape and Landscape Differences. Sustainability 2020, 12, 6809. [Google Scholar] [CrossRef]
- Hong, X.-C.; Zhu, Z.-P.; Liu, J.; Geng, D.-H.; Wang, G.-Y.; Lan, S.-R. Perceived Occurrences of Soundscape Influencing Pleasantness in Urban Forests: A Comparison of Broad-Leaved and Coniferous Forests. Sustainability 2019, 11, 4789. [Google Scholar] [CrossRef] [Green Version]
- Calleri, C.; Astolfi, A.; Pellegrino, A.; Aletta, F.; Shtrepi, L.; Bo, E.; Di Stefano, M.; Orecchia, P. The Effect of Soundscapes and Lightscapes on the Perception of Safety and Social Presence Analyzed in a Laboratory Experiment. Sustainability 2019, 11, 3000. [Google Scholar] [CrossRef] [Green Version]
- Zuo, L.; Zhang, J.; Zhang, R.J.; Zhang, Y.; Hu, M.; Zhuang, M.; Liu, W. The Transition of Soundscapes in Tourist Destinations from the Perspective of Residents’ Perceptions: A Case Study of the Lugu Lake Scenic Spot, Southwestern China. Sustainability 2020, 12, 1073. [Google Scholar] [CrossRef] [Green Version]
- Sztubecka, M.; Skiba, M.; Mrówczyńska, M.; Mathias, M. Noise as a Factor of Green Areas Soundscape Creation. Sustainability 2020, 12, 999. [Google Scholar] [CrossRef] [Green Version]
- Gasco, L.; Schifanella, R.; Aiello, L.M.; Quercia, D.; Asensio, C.; de Arcas, G. Social media and open data to quantify the effects of noise on health. Front. Sustain. Cities 2020, 2, 41. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Haklay, M. Participatory soundscape sensing. Landsc. Urban Plan. 2018, 173, 64–69. [Google Scholar] [CrossRef]
- Brambilla, G.; Pedrielli, F. Smartphone-Based Participatory Soundscape Mapping for a More Sustainable Acoustic Environment. Sustainability 2020, 12, 7899. [Google Scholar] [CrossRef]
- Yelmi, P.; Kuşcu, H.; Yantaç, A.E. Towards a sustainable crowdsourced sound heritage archive by public participation: The soundsslike project. In Proceedings of the 9th Nordic Conference on Human-Computer Interaction, Gothenburg, Sweden, 23–27 October 2016; pp. 1–9. [Google Scholar]
- Yelmi, P.; Kakı, S. Designing an Experiential Exhibition for Raising Public Awareness of Cultural Sounds to Safeguard Sonic Intangible Cultural Heritage Values. Int. J. Soc. Sci. Humanit. 2019, 9. [Google Scholar] [CrossRef]
- Dumyahn, S.L.; Pijanowski, B.C. Soundscape conservation. Landsc. Ecol. 2011, 26, 1327. [Google Scholar] [CrossRef]
- Radicchi, A. Hush City: A new mobile application to crowdsource and assess ‘everyday quiet areas’ in cities. In Proceedings of the Invisible Places: The International Conference on Sound, Urbanism and the Sense of Place, São Miguel Island, Portugal, 7–9 April 2017; pp. 7–9. [Google Scholar]
- Luna, S.; Gold, M.; Albert, A.; Ceccaroni, L.; Claramunt, B.; Danylo, O.; Haklay, M.; Kottmann, R.; Kyba, C.; Piera, J.; et al. Developing mobile applications for environmental and biodiversity citizen science: Considerations and recommendations. In Multimedia Tools and Applications for Environmental & Biodiversity Informatics; Springer: Cham, Switzerland, 2018; pp. 9–30. [Google Scholar]
- Milone, F.; Camarda, D. Modeling Knowledge in Environmental Analysis: A New Approach to Soundscape Ecology. Sustainability 2017, 9, 564. [Google Scholar] [CrossRef] [Green Version]
- Hristova, D.; Aiello, L.M.; Quercia, D. The new urban success: How culture pays. Front. Phys. 2018, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Katsaounidou, A.; Dimoulas, C.; Veglis, A. Cross-Media Authentication and Verification: Emerging Research and Opportunities; IGI Global: Hershey, PA, USA, 2018. [Google Scholar]
- Dimoulas, C.; Avdelidis, K.; Kalliris, G.; Papanikolaou, G. Sound Source Localization and B-Format Enhancement Using Sound Field Microphone Sets. In Proceedings of the 122nd AES Convention, Vienna, Austria, 5–8 May 2007. [Google Scholar]
- Dimoulas, C.; Kalliris, G.; Avdelidis, K.; Papanikolaou, G. Improved Localization of Sound Sources Using Multi-Band Processing of Ambisonic Components. In Proceedings of the 126th AES Convention, Munich, Germany, 7–10 May 2009. [Google Scholar]
- Dimoulas, C.; Kalliris, G.; Avdelidis, K.; Papanikolaou, G. Spatial Audio Content Management within the MPEG-7 standard of Ambisonic Localization and Visualization Descriptions. In Proceedings of the 126th AES Convention, Munich, Germany, 7–10 May 2009. [Google Scholar]
- Salamon, J.; Bello, J.P. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Process. Lett. 2017, 24, 279–283. [Google Scholar] [CrossRef]
- Abdoli, S.; Cardinal, P.; Koerich, A.L. End-to-end environmental sound classification using a 1D convolutional neural network. Expert Syst. Appl. 2019, 136, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Bountourakis, V.; Vrysis, L.; Konstantoudakis, K.; Vryzas, N. An Enhanced Temporal Feature Integration Method for Environmental Sound Recognition. Acoustics 2019, 1, 410–422. [Google Scholar] [CrossRef] [Green Version]
- Salamon, J.; Jacoby, C.; Bello, J.P. A dataset and taxonomy for urban sound research. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 18–19 November 2014; pp. 1041–1044. [Google Scholar]
- Vrysis, L.; Dimoulas, C.; Kalliris, G.; Papanikolaou, G. Mobile Audio Measurements Platform: Towards Audio Semantic Intelligence into Ubiquitous Computing Environments. Audio Eng. Soc. Conv. 2013, 134, 8912. [Google Scholar]
- Vrysis, L.; Tsipas, N.; Dimoulas, C.; Papanikolaou, G. Extending Temporal Feature Integration for Semantic Audio Analysis. Audio Eng. Soc. Conv. 2017, 142, 9808. [Google Scholar]
- Vrysis, L.; Thoidis, I.; Dimoulas, C.; Papanikolaou, G. Experimenting with 1D CNN Architectures for Generic Audio Classification. Audio Eng. Soc. Conv. 2020, 148, 10329. [Google Scholar]
- Vrysis, L.; Tsipas, N.; Thoidis, I.; Dimoulas, C. 1D/2D Deep CNNs vs. Temporal Feature Integration for General Audio Classification. J. Audio Eng. Soc. 2020, 68, 66–77. [Google Scholar] [CrossRef]
- Vryzas, N.; Vrysis, L.; Matsiola, M.; Kotsakis, R.; Dimoulas, C.; Kalliris, G. Continuous Speech Emotion Recognition with Convolutional Neural Networks. J. Audio Eng. Soc. 2020, 68, 14–24. [Google Scholar] [CrossRef]
- Kotsakis, R.; Dimoulas, C.; Kalliris, G.; Veglis, A. Emotional Prediction and Content Profile Estimation in Evaluating Audiovisual Mediated Communication. Int. J. Monit. Surveill. Technol. Res. (IJMSTR) 2014, 2, 62–80. [Google Scholar] [CrossRef] [Green Version]
- Wenbin, C.X.; Fan, R.; Xiong, D. Zhao. Visual Relationship Embedding Network for Image Paragraph Generation. IEEE Trans. Multimed. 2020, 22, 2307–2320. [Google Scholar]
- Wang, C.; Liaw, P.; Liang, K.; Wang, J.; Chang, P. Video Captioning Based on Joint Image–Audio Deep Learning Techniques. In Proceedings of the 9th International Conference on Consumer Electronics, Berlin, Germany, 8–11 September 2019. [Google Scholar]
- Drossos, K.; Adavanne, S.; Virtanen, T. Automated audio captioning with recurrent neural networks. In Proceedings of the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 15–18 October 2017; pp. 374–378. [Google Scholar]
- Drossos, K.; Lipping, S.; Virtanen, T. Clotho: An Audio Captioning Dataset. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 736–740. [Google Scholar]
- Vrysis, L.; Tsipas, N.; Thoidis, I.; Dimoulas, C. Enhanced Temporal Feature Integration in Audio Semantics. J. Audio Eng. Soc. 2021. [Google Scholar] [CrossRef]
- Tsipas, N.; Vrysis, L.; Konstantoudakis, K.; Dimoulas, C. Semi-supervised audio-driven TV-news speaker diarization using deep neural embeddings. J. Acoust. Soc. Am. 2020, 148, 3751–3761. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.F.; Murphy, D.; Farina, A. The Past Has Ears (PHE): XR Explorations of Acoustic Spaces as Cultural Heritage. In International Conference on Augmented Reality, Virtual Reality and Computer Graphics; Springer: Cham, Switzerland, 2020; pp. 91–98. [Google Scholar]
- Aletta, F.; Kang, J. Historical acoustics: Relationships between people and sound over time. Acoustics 2020, 2, 128–130. [Google Scholar] [CrossRef] [Green Version]
- Suárez, R.; Alonso, A.; Sendra, J.J. Archaeoacoustics of intangible cultural heritage: The sound of the Maior Ecclesia of Cluny. J. Cult. Herit. 2016, 19, 567–572. [Google Scholar] [CrossRef]
- Kytö, M.; Rémy, N.; Uimonen, H.; Acquier, F.; Bérubé, G.; Chelkoff, G.; Said, N.G.; Laroche, S.; Mcoisans, J.; Tixier, N.; et al. European Acoustic Heritage. Ph.D. Thesis, Tampere University of Applied Sciences, Tampere, Finland, 2012; p. 108. [Google Scholar]
- Gasco, L.; Clavel, C.; Asensio, C.; de Arcas, G. Beyond sound level monitoring: Exploitation of social media to gather citizens subjective response to noise. Sci. Total Environ. 2019, 658, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Davies, W.J.; Bruce, N.S.; Murphy, J.E. Soundscape reproduction and synthesis. Acta Acust. United Acust. 2014, 100, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Dimoulas, C.; Vegiris, C.; Avdelidis, K.; Kalliris, G.; Papanikolaou, G. Automated audio detection, segmentation, and indexing with application to postproduction editing. In Proceedings of the 122nd Audio Engineering Society Convention, Vienna, Austria, 5–8 May 2007. [Google Scholar]
- Vegiris, C.; Dimoulas, C.; Papanikolaou, G. Audio Content Annotation, Description, and Management Using Joint Audio Detection, Segmentation, and Classification Techniques. In Proceedings of the 126th Audio Engineering Society Convention, Munich, Germany, 7–10 May 2009. [Google Scholar]
# | Question (Indicative Answers—Range) |
---|---|
1 | Age (intervals: <18, 18–25, 26–35, 36–45, 46–55, >55) |
2 | Gender (Male, Female, N/A) |
3 | Education (Secondary, University, Master, Student, PhD) |
4 | Profession (Employee, Freelancer, Student, Unemployed, Retired) |
5 | Knowledge of what a soundscape is (Yes, Probably Yes, Probably No, No, Don’t know) |
6 | Frequency of soundscape search last year (<5, 5–10, 10–20, >20) |
7 | Interest in soundscape heritage (1–5) |
8 | Yearly participation frequency in cultural events containing soundscapes (<3, 3–5, 5–10) |
9 | Soundscape capturing frequency (Never, Rarely, Sometimes, Frequently, Very often) |
10 | Most preferred soundscapes to capture (Culture, Environment, People, Urban, Other) |
11 | Privacy and/or copyright (Both, Privacy only, Copyright only, None) |
12 | Probability of using the app for soundscape capturing and sharing (1–5) |
13 | Probability of using the app for own soundscape re-production (1–5) |
14 | Probability of using the app for others’ soundscape re-production (1–5) |
15 | Technological maturity (Yes, No, Don’t know) |
16 | App capability for soundscape sustainability (1–5) |
17 | App extra usability features and modalities (6 suggestions: Soundscape search from soundscape, image search from soundscape, soundscape recommendations, given soundscape’s related subjects, augmented reality, user sharing and combination) |
LVLib-v3 | UrbanSound8k | |
---|---|---|
ETi | 84.4 ± 4.1 | 68.4 ± 3.9 |
CNN | 86.4 ± 3.9 | 72.2 ± 5.9 |
Number of Parameters | Complexity | |
---|---|---|
ETi | 15k | 1× |
CNN | 100k | 2× |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamatiadou, M.E.; Thoidis, I.; Vryzas, N.; Vrysis, L.; Dimoulas, C. Semantic Crowdsourcing of Soundscapes Heritage: A Mojo Model for Data-Driven Storytelling. Sustainability 2021, 13, 2714. https://doi.org/10.3390/su13052714
Stamatiadou ME, Thoidis I, Vryzas N, Vrysis L, Dimoulas C. Semantic Crowdsourcing of Soundscapes Heritage: A Mojo Model for Data-Driven Storytelling. Sustainability. 2021; 13(5):2714. https://doi.org/10.3390/su13052714
Chicago/Turabian StyleStamatiadou, Marina Eirini, Iordanis Thoidis, Nikolaos Vryzas, Lazaros Vrysis, and Charalampos Dimoulas. 2021. "Semantic Crowdsourcing of Soundscapes Heritage: A Mojo Model for Data-Driven Storytelling" Sustainability 13, no. 5: 2714. https://doi.org/10.3390/su13052714
APA StyleStamatiadou, M. E., Thoidis, I., Vryzas, N., Vrysis, L., & Dimoulas, C. (2021). Semantic Crowdsourcing of Soundscapes Heritage: A Mojo Model for Data-Driven Storytelling. Sustainability, 13(5), 2714. https://doi.org/10.3390/su13052714