Deploying Resilience Enablers to Mitigate Risks in Sustainable Fashion Supply Chains
Abstract
:1. Introduction
2. Literature Review
2.1. Sustainable Fashion Supply Chain Risk
2.2. Sustainable Fashion Supply Chain Resilience
3. Methodology
3.1. HoQ 1: Connecting Supply Chain Risks and RCs
3.2. HoQ 2: Connecting RCs to RFs
3.3. KJ Method
3.4. FMEA
3.5. FDM
3.6. VIKOR
4. Results and Discussions
4.1. Stage I of the First HoQ: Identification of Supply Chain Risks Using the KJ Method
4.2. Stage II of the First HoQ: Relational Matrix between the Risks and RCs Using FMEA
4.3. Stage III of the First HoQ: Ranking Weights for RCs Using VIKOR
4.4. Stage I for the Second HoQ: Selection of RFs Using FDM
4.5. Stage II for the Second HOQ: Compromise Ranking of the RFs Using VIKOR
4.6. Implications and Recommendations
4.6.1. Supply Chain Risks and RCs in the First HoQ
4.6.2. RCs and RFs in the Second HoQ
5. Conclusions
- The top-three risks are, respectively, ‘delays in supplier delivery due to accidents’, ‘natural disasters and political instability’ and ‘problematic supplier materials affecting the customers’.
- The top-three RCs: Agility and adaptability were the most important, followed by flexibility and collaboration. Velocity and information sharing were also important in this context.
- The top-three RFs are, respectively, ‘reconfiguring company resources’ and ‘on-site risk monitoring and responsibility sharing’ and ‘real-time sharing of job information’ and ‘establishing a feasible incentive system’.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, T.Y.; Hong, Y. Unveiling the structure of supply networks: Case studies in Honda, Acura, and DaimlerChrysler. J. Oper. Manag. 2002, 20, 469–493. [Google Scholar] [CrossRef]
- Guo, S.; Choi, T.-M.; Shen, B. Green product development under competition: A study of the fashion apparel industry. Eur. J. Oper. Res. 2020, 280, 523–538. [Google Scholar] [CrossRef]
- Valinejad, F.; Rahmani, D. Sustainability risk management in the supply chain of telecommunication companies: A case study. J. Clean. Prod. 2018, 203, 53–67. [Google Scholar] [CrossRef]
- Brydges, T. Closing the loop on take, make, waste: Investigating circular economy practices in the Swedish fashion industry. J. Clean. Prod. 2021, 293, 126245. [Google Scholar] [CrossRef]
- Pedersen, E.R.G.; Gwozdz, W.; Hvass, K.K. Exploring the relationship between business model innovation, corporate sustainability, and organisational values within the fashion industry. J. Bus. Ethic 2018, 149, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Colucci, M.; Tuan, A.; Visentin, M. An empirical investigation of the drivers of CSR talk and walk in the fashion industry. J. Clean. Prod. 2020, 248, 119200. [Google Scholar] [CrossRef]
- Bick, R.; Halsey, E.; Ekenga, C.C. The global environmental injustice of fast fashion. Environ. Health 2018, 17, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Fung, Y.-N.; Chan, H.-L.; Choi, T.-M.; Liu, R. Sustainable product development processes in fashion: Supply chains structures and classifications. Int. J. Prod. Econ. 2021, 231, 107911. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Zhou, P. Consumer attitude towards sustainability of fast fashion products in the UK. Sustainability 2021, 13, 1646. [Google Scholar] [CrossRef]
- Nayak, R.; Akbari, M.; Far, S.M. Recent sustainable trends in Vietnam’s fashion supply chain. J. Clean. Prod. 2019, 225, 291–303. [Google Scholar] [CrossRef]
- Koberg, E.; Longoni, A. A systematic review of sustainable supply chain management in global supply chains. J. Clean. Prod. 2019, 207, 1084–1098. [Google Scholar] [CrossRef]
- Dong, Q.; Cooper, O. An orders-of-magnitude AHP supply chain risk assessment framework. Int. J. Prod. Econ. 2016, 182, 144–156. [Google Scholar] [CrossRef]
- Chang, A.Y.; Cheng, Y.T. Analysis model of the sustainability development of manufacturing small and medium-sized en-terprises in Taiwan. J. Clean. Prod. 2019, 207, 458–473. [Google Scholar] [CrossRef]
- D’Adamo, I.; Lupi, G. Sustainability and resilience after COVID-19: A circular premium in the fashion industry. Sustainability 2021, 13, 1861. [Google Scholar] [CrossRef]
- Souza, V.D.; Bloemhof-Ruwaard, J.; Borsato, M. Exploring ecosystem network analysis to balance resilience and performance in sustainable supply chain design. Int. J. Adv. Oper. Manag. 2019, 11, 26–45. [Google Scholar] [CrossRef]
- Mandal, S.; Dubey, R.K. Role of tourism IT adoption and risk management orientation on tourism agility and resilience: Impact on sustainable tourism supply chain performance. Int. J. Tour. Res. 2020, 22, 800–813. [Google Scholar] [CrossRef]
- He, L.; Wu, Z.; Xiang, W.; Goh, M.; Xu, Z.; Song, W.; Ming, X.; Wu, X. A novel Kano-QFD-DEMATEL approach to optimise the risk resilience solution for sustainable supply chain. Int. J. Prod. Res. 2020, 1–22. [Google Scholar] [CrossRef]
- Mari, S.I.; Lee, Y.H.; Memon, M.S. Sustainable and resilient garment supply chain network design with fuzzy multi-objectives under uncertainty. Sustainability 2016, 8, 1038. [Google Scholar] [CrossRef] [Green Version]
- Chopra, S.; Sodhi, M.S. Reducing the risk of supply chain disruptions. MIT Sloan Manag. Rev. 2014, 55, 73. [Google Scholar]
- Hasan, M.; Jiang, D.; Ullah, A.S.; Alam, N.-E. Resilient supplier selection in logistics 4.0 with heterogeneous information. Expert Syst. Appl. 2020, 139, 112799. [Google Scholar] [CrossRef]
- Tang, C.S. Robust strategies for mitigating supply chain disruptions. Int. J. Logist. Res. Appl. 2006, 9, 33–45. [Google Scholar] [CrossRef]
- Jüttner, U.; Maklan, S. Supply chain resilience in the global financial crisis: An empirical study. Supply Chain Manag. Int. J. 2011, 16, 246–259. [Google Scholar] [CrossRef]
- Rezapour, S.; Farahani, R.Z.; Pourakbar, M. Resilient supply chain network design under competition: A case study. Eur. J. Oper. Res. 2017, 259, 1017–1035. [Google Scholar] [CrossRef] [Green Version]
- Ghavamifar, A.; Makui, A.; Taleizadeh, A. Designing a resilient competitive supply chain network under disruption risks: A real-world application. Transp. Res. Part E Logist. Transp. Rev. 2018, 115, 87–109. [Google Scholar] [CrossRef]
- Hosseini, S.; Ivanov, D.; Dolgui, A. Review of quantitative methods for supply chain resilience analysis. Transp. Res. Part. E Logist. Transp. Rev. 2019, 125, 285–307. [Google Scholar] [CrossRef]
- Hauser, J.; Clausing, D. The house of quality. Harv. Bus. Rev. 1988, 66, 63–73. [Google Scholar]
- Lam, J.S.L.; Bai, X. A quality function deployment approach to improve maritime supply chain resilience. Transp. Res. Part. E Logist. Transp. Rev. 2016, 92, 16–27. [Google Scholar] [CrossRef]
- Hsu, C.H.; Chang, A.Y.; Kuo, H.M. Data mining QFD for the dynamic forecasting of life cycle under green supply chain. WSEAS Trans. Comput. 2012, 11, 1–10. [Google Scholar]
- Ayağ, Z.; Samanlioglu, F.; Büyüközkan, G. A fuzzy QFD approach to determine supply chain management strategies in the dairy industry. J. Intell. Manuf. 2013, 24, 1111–1122. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Quaddus, M.A. A multiple objective optimization based QFD approach for efficient resilient strategies to mitigate supply chain vulnerabilities: The case of garment industry of Bangladesh. Omega 2015, 57, 5–21. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chang, A.-Y.; Luo, W. Identifying key performance factors for sustainability development of SMEs—Integrating QFD and fuzzy MADM methods. J. Clean. Prod. 2017, 161, 629–645. [Google Scholar] [CrossRef]
- Sharma, N.; Singhi, R. Logistics and supply chain management quality improvement of supply chain process through vendor managed inventory: A QFD approach. J. Supply Chain Manag. Syst. 2018, 7, 23–33. [Google Scholar]
- Rafi-Ul-Shan, P.M.; Grant, D.B.; Perry, P.; Ahmed, S. Relationship between sustainability and risk management in fashion supply chains: A systematic literature review. Int. J. Retail Distrib. Manag. 2018, 46, 466–486. [Google Scholar] [CrossRef] [Green Version]
- Mukendi, A.; Davies, I.; Glozer, S.; McDonagh, P. Sustainable fashion: Current and future research directions. Eur. J. Mark. 2020, 54, 2873–2909. [Google Scholar] [CrossRef]
- Sheffi, Y. Building a resilient organization. Bridge J. Natl. Acad. Sci. 2007, 37, 30–38. [Google Scholar]
- Sorensen, L.B. How risk and uncertainty is used in supply chain management: A literature study. Int. J. Integr. Supply Manag. 2005, 1, 387. [Google Scholar] [CrossRef] [Green Version]
- Colicchia, C.; Strozzi, F. Supply chain risk management: A new methodology for a systematic literature review. Supply Chain Manag. Int. J. 2012, 17, 403–418. [Google Scholar] [CrossRef]
- Ho, W.; Zheng, T.; Yildiz, H.; Talluri, S. Supply chain risk management: A literature review. Int. J. Prod. Res. 2015, 53, 5031–5069. [Google Scholar] [CrossRef]
- Prakash, S.; Soni, G.; Rathore, A.P.S. A critical analysis of supply chain risk management content: A structured literature review. J. Adv. Manag. Res. 2017, 14, 69–90. [Google Scholar] [CrossRef]
- Hamdi, F.; Ghorbel, A.; Masmoudi, F.; Dupont, L. Optimization of a supply portfolio in the context of supply chain risk management: Literature review. J. Intell. Manuf. 2015, 29, 763–788. [Google Scholar] [CrossRef]
- Shekarian, M.; Mellat Parast, M. An integrative approach to supply chain disruption risk and resilience management: A lit-erature review. Int. J. Logist. Res. Appl. 2020, 1–29. [Google Scholar] [CrossRef]
- Wang, X.; Chan, H.K.; Yee, R.W.; Diaz-Rainey, I. A two-stage fuzzy-AHP model for risk assessment of implementing green initiatives in the fashion supply chain. Int. J. Prod. Econ. 2012, 135, 595–606. [Google Scholar] [CrossRef]
- Choi, T.M. Game theoretic analysis of a multi-period fashion supply chain with a risk averse retailer. Int. J. Inven. Res. 2013, 2, 63. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Q.; Ouyang, L. Coordinating contracts for two-stage fashion supply chain with risk-averse retailer and price-dependent demand. Math. Probl. Eng. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Mehrjoo, M.; Pasek, Z.J. Risk assessment for the supply chain of fast fashion apparel industry: A system dynamics frame-work. Int. J. Prod. Res. 2016, 5, 28–48. [Google Scholar] [CrossRef]
- Martino, G.; Fera, M.; Iannone, R.; Miranda, S. Supply chain risk assessment in the fashion retail industry: An analytic network process approach. Int. J. Appl. Eng. Res. 2017, 12, 140–154. [Google Scholar]
- Choi, T.-M. Impacts of retailer’s risk averse behaviors on quick response fashion supply chain systems. Ann. Oper. Res. 2016, 268, 239–257. [Google Scholar] [CrossRef]
- Fierro Hernandez, D.; Haddud, A. Value creation via supply chain risk management in global fashion organizations out-sourcing production to China. J. Global Oper. Strateg. Sourc. 2018, 11, 250–272. [Google Scholar] [CrossRef]
- McMaster, M.; Nettleton, C.; Tom, C.; Xu, B.; Cao, C.; Qiao, P. Risk management: Rethinking fashion supply chain management for multinational corporations in light of the COVID-19 outbreak. J. Risk Financ. Manag. 2020, 13, 173. [Google Scholar] [CrossRef]
- Choi, T.-M.; Chiu, C.-H. Mean-downside-risk and mean-variance newsvendor models: Implications for sustainable fashion retailing. Int. J. Prod. Econ. 2012, 135, 552–560. [Google Scholar] [CrossRef]
- Xu, M.; Cui, Y.; Hu, M.; Xu, X.; Zhang, Z.; Liang, S.; Qu, S. Supply chain sustainability risk and assessment. J. Clean. Prod. 2019, 225, 857–867. [Google Scholar] [CrossRef]
- Boussemart, J.-P.; Leleu, H.; Shen, Z.; Valdmanis, V. Performance analysis for three pillars of sustainability. J. Prod. Anal. 2020, 53, 305–320. [Google Scholar] [CrossRef]
- Iddrisu, I.; Bhattacharyya, S.C. Sustainable energy development index: A multi-dimensional indicator for measuring sus-tainable energy development. Renew. Sustain. Energy Rev. 2015, 50, 513–530. [Google Scholar] [CrossRef] [Green Version]
- Moktadir, A.; Dwivedi, A.; Khan, N.S.; Paul, S.K.; Khan, S.A.; Ahmed, S.; Sultana, R. Analysis of risk factors in sustainable supply chain management in an emerging economy of leather industry. J. Clean. Prod. 2021, 283, 124641. [Google Scholar] [CrossRef]
- Kamalahmadi, M.; Parast, M.M. A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. Int. J. Prod. Econ. 2016, 171, 116–133. [Google Scholar] [CrossRef]
- Elleuch, H.; Dafaoui, E.; Elmhamedi, A.; Chabchoub, H. Resilience and vulnerability in supply chain: Literature review. IFA PapersOnLine 2016, 49, 1448–1453. [Google Scholar] [CrossRef]
- Ali, A.; Mahfouz, A.; Arisha, A. Analysing supply chain resilience: Integrating the constructs in a concept mapping framework via a systematic literature review. Supply Chain Manag. Int. J. 2017, 22, 16–39. [Google Scholar] [CrossRef]
- Yuqi, W.; Yan, G.; Chunxian, T. Literature review and research prospects of supply chain resilience under disrup-tion. Manag. Rev. 2017, 12, 20. [Google Scholar]
- Karl, A.A.; Micheluzzi, J.; Leite, L.R.; Pereira, C.R. Supply chain resilience and key performance indicators: A systematic literature review. Production 2018, 28. [Google Scholar] [CrossRef] [Green Version]
- Kochan, C.G.; Nowicki, D.R. Supply chain resilience: A systematic literature review and typological framework. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 842–865. [Google Scholar] [CrossRef]
- Ribeiro, J.P.; Barbosa-Povoa, A. Supply chain resilience: Definitions and quantitative modelling approaches—A literature review. Comput. Ind. Eng. 2018, 115, 109–122. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Ciarapica, F.; Marcucci, G. Supply chain resilience research trends: A literature overview. IFAC PapersOnLine 2019, 52, 2821–2826. [Google Scholar] [CrossRef]
- Hosseini, S.; Ivanov, D. Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review. Expert Syst. Appl. 2020, 161, 113649. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.; Olmo, J.L.D.; Berlanga, V. Supply chain resilience and agility: A theoretical literature review. Int. J. Supply Chain Oper. Resil. 2020, 4, 37–69. [Google Scholar] [CrossRef]
- Han, Y.; Chong, W.K.; Li, D. A systematic literature review of the capabilities and performance metrics of supply chain resilience. Int. J. Prod. Res. 2020, 58, 4541–4566. [Google Scholar] [CrossRef]
- Golan, M.S.; Jernegan, L.H.; Linkov, I. Trends and applications of resilience analytics in supply chain modeling: Systematic literature review in the context of the COVID-19 pandemic. Environ. Syst. Decis. 2020, 40, 222–243. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Ciarapica, F.E.; Marcucci, G.; Mazzuto, G. Fuzzy cognitive maps approach for analysing the domino effect of factors affecting supply chain resilience: A fashion industry case study. Int. J. Prod. Res. 2019, 58, 6370–6398. [Google Scholar] [CrossRef]
- Christopher, M.; Peck, H. Building the resilient supply chain. Int. J. Logist. Manag. 2004, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sheffi, Y.; Rice, J.B., Jr. A supply chain view of the resilient enterprise. MIT Sloan Manag. Rev. 2005, 47, 41–48. [Google Scholar]
- Priya Datta, P.P.; Christopher, M.; Allen, P. Agent-based modelling of complex production/distribution systems to improve resilience. Int. J. Logist. Res. Appl. 2007, 10, 187–203. [Google Scholar] [CrossRef]
- Pereira, J.V. The new supply chain’s frontier: Information management. Int. J. Inf. Manag. 2009, 29, 372–379. [Google Scholar] [CrossRef]
- Ponis, S.T.; Koronis, E. Supply chain resilience: Definition of concept and its formative elements. J. Appl. Bus. Res. 2012, 28, 921–930. [Google Scholar] [CrossRef]
- Carvalho, H.; Azevedo, S.G.; Cruz-Machado, V. Agile and resilient approaches to supply chain management: Influence on performance and competitiveness. Logist. Res. 2012, 4, 49–62. [Google Scholar] [CrossRef]
- Simangunsong, E.; Hendry, L.; Stevenson, M. Supply-chain uncertainty: A review and theoretical foundation for future research. Int. J. Prod. Res. 2012, 50, 4493–4523. [Google Scholar] [CrossRef]
- Pettit, T.J.; Croxton, K.L.; Fiksel, J. Ensuring supply chain resilience: Development and implementation of an assessment tool. J. Bus. Logist. 2013, 34, 46–76. [Google Scholar] [CrossRef]
- Soni, U.; Jain, V.; Kumar, S. Measuring supply chain resilience using a deterministic modeling approach. Comput. Ind. Eng. 2014, 74, 11–25. [Google Scholar] [CrossRef]
- Rajesh, R.; Ravi, V. Supplier selection in resilient supply chains: A grey relational analysis approach. J. Clean. Prod. 2015, 86, 343–359. [Google Scholar] [CrossRef]
- Rajesh, R. Forecasting supply chain resilience performance using grey prediction. Electron. Commer. Res. Appl. 2016, 20, 42–58. [Google Scholar] [CrossRef]
- Sahu, A.K.; Datta, S.; Mahapatra, S. Evaluation of performance index in resilient supply chain: A fuzzy-based approach. Benchmarking Int. J. 2017, 24, 118–142. [Google Scholar] [CrossRef]
- Jain, V.; Kumar, S.; Soni, U.; Chandra, C. Supply chain resilience: Model development and empirical analysis. Int. J. Prod. Res. 2017, 55, 6779–6800. [Google Scholar] [CrossRef]
- Chowdhury, M.M.H.; Quaddus, M. Supply chain resilience: Conceptualization and scale development using dynamic capa-bility theory. Int. J. Prod. Econ. 2017, 188, 185–204. [Google Scholar] [CrossRef]
- Yazdanparast, R.; Tavakkoli-Moghaddam, R.; Heidari, R.; Aliabadi, L. A hybrid Z-number data envelopment analysis and neural network for assessment of supply chain resilience: A case study. Cent. Eur. J. Oper. Res. 2018, 1–21. [Google Scholar] [CrossRef]
- Sabahi, S.; Parast, M.M. Firm innovation and supply chain resilience: A dynamic capability perspective. Int. J. Logist. Res. Appl. 2020, 23, 254–269. [Google Scholar] [CrossRef]
- Singh, C.S.; Soni, G.; Badhotiya, G.K. Performance indicators for supply chain resilience: Review and conceptual frame-work. J. Ind. Eng. Int. 2019, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- López, C.; Ishizaka, A. A hybrid FCM-AHP approach to predict impacts of offshore outsourcing location decisions on supply chain resilience. J. Bus. Res. 2019, 103, 495–507. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.A. The Five Principles of Organizational Resilience; Gartner Research: Stamford, CT, USA, 2002. [Google Scholar]
- Rice, J.B.; Caniato, F. Building a secure and resilient supply network. Supply Chain Manag. Rev. 2003, 7, 22–30. [Google Scholar]
- Baramichai, M.; Zimmers, E.W., Jr.; Marangos, C.A. Agile supply chain transformation matrix: An integrated tool for creating an agile enterprise. Supply Chain Manag. Int. J. 2007, 12, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Iakovou, E.; Vlachos, D.; Xanthopoulos, A. An analytical methodological framework for the optimal design of resilient supply chains. Int. J. Logist. Econ. Glob. 2007, 1, 1–20. [Google Scholar] [CrossRef]
- Vugrin, E.D.; Warren, D.E.; Ehlen, M.A. A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Saf. Prog. 2011, 30, 280–290. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Ciarapica, F.; Marcucci, G.; Mazzuto, G. Conceptual model for analysing domino effect among concepts affecting supply chain resilience. Supply Chain Forum Int. J. 2018, 19, 282–299. [Google Scholar] [CrossRef]
- Kumar, S.; Anbanandam, R. An integrated Delphi—Fuzzy logic approach for measuring supply chain resilience: An illustrative case from manufacturing industry. Meas. Bus. Excel. 2019, 23, 350–375. [Google Scholar] [CrossRef]
- Adobor, H. Supply chain resilience: A multi-level framework. Int. J. Logist. Res. Appl. 2018, 22, 533–556. [Google Scholar] [CrossRef]
- Sanchis, R.; Canetta, L.; Poler, R. A conceptual reference framework for enterprise resilience improvement. Sustainability 2020, 12, 1464. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S.; Anbanandam, R. Theory building on supply chain resilience: A SAP–LAP analysis. Glob. J. Flex. Syst. Manag. 2020, 21, 113–133. [Google Scholar] [CrossRef]
- Awasthi, A.; Chauhan, S.S. A hybrid approach integrating affinity diagram, AHP and fuzzy TOPSIS for sustainable city logistics planning. Appl. Math. Model. 2012, 36, 573–584. [Google Scholar] [CrossRef]
- Bhuvanesh Kumar, M.; Parameshwaran, R. Fuzzy integrated QFD, FMEA framework for the selection of lean tools in a manufacturing organization. Prod. Plan. Control. 2018, 29, 403–417. [Google Scholar] [CrossRef]
- Rejab, M.M.; Firdaus, N.; Chuprat, S. Fuzzy delphi method for evaluating HyTEE Model (Hybrid software change management tool with test effort estimation). Int. J. Adv. Comput. Sci. Appl. 2019, 10, 529–535. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Jung, K.; Song, M.; Park, H.J. The dynamics of an interorganizational emergency management network: Interdependent and independent risk hypotheses. Public Adm. Rev. 2018, 79, 225–235. [Google Scholar] [CrossRef]
- Kuper, G.; Massacci, F.; Shim, W.; Williams, J. Who should pay for interdependent risk? Policy implications for security interdependence among airports. Risk Anal. 2020, 40, 1001–1019. [Google Scholar] [CrossRef]
- Erdil, A. An evaluation on lifecycle of products in textile industry of turkey through quality function deployment and pareto analysis. Procedia Comput. Sci. 2019, 158, 735–744. [Google Scholar] [CrossRef]
- Norrman, A.; Wieland, A. The development of supply chain risk management over time: Revisiting Ericsson. Int. J. Phys. Distrib. Logist. Manag. 2020, 50, 641–666. [Google Scholar] [CrossRef]
- Shen, B.; Chen, C. Quality management in outsourced global fashion supply chains: An exploratory case study. Prod. Plan. Control. 2019, 31, 757–769. [Google Scholar] [CrossRef]
- Kaufmann, D.; Kraay, A.; Mastruzzi, M. The Worldwide Governance Indicators: Methodology and Analytical Issues; The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Macchion, L.; Da Giau, A.; Caniato, F.; Caridi, M.; Danese, P.; Rinaldi, R.; Vinelli, A. Strategic approaches to sustainability in fashion supply chain management. Prod. Plan. Control. 2018, 29, 9–28. [Google Scholar] [CrossRef]
Christopher and Peck (2004) [68] | Sheffi and Rice (2005) [69] | Priya Datta et al. (2007) [70] | Pereira (2009) [71] | Jüttner and Maklan (2011) [22] | Ponis and Koronis (2012) [72] | Carvalho et al.(2012) [73] | Simangunsong et al. (2012) [74] | Pettit et al.(2013) [75] | Soni et al. (2014) [76] | Rajesh and Ravi (2015) [77] | Rajesh (2016) [78] | Kamalahmadi and Parast (2016) [55] | Sahu et al. (2017) [79] | Ali et al. (2017) [57] | Jain et al. (2017) [80] | Chowdhury and Quaddus (2017) [81] | Yazdanparast et al.(2018) [82] | Kochan and Nowicki (2018) [60] | Karl et al.(2018) [59] | Sabahi and Parast (2019) [83] | Singh et al. (2019) [84] | López and Ishizaka (2019) [85] | Shekarian and Mellat Parast (2020) [41] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Risk awareness | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||
Security | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||
Information sharing | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||
Collaboration | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||
Adaptability | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||
Velocity | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||
Flexibility | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||
Visibility | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||
Agility | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||
Capacity | ● | ● | ● | ● | ● | |||||||||||||||||||
Redundancy | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | ● | |||||||||||
Knowledge | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||
Responsiveness | ● | ● | ● | ● | ||||||||||||||||||||
Efficiency | ● | ● | ● | |||||||||||||||||||||
Financial strength | ● | ● | ● | ● | ● | ● | ● | |||||||||||||||||
Market position | ● | ● | ● | ● | ● | ● | ● | ● | ||||||||||||||||
Anticipation | ● | ● | ● | |||||||||||||||||||||
Recovery | ● | ● | ● | ● | ||||||||||||||||||||
Dispersion | ● | ● | ● | ● | ● |
Dimension | Resilience-Enhancing Feature | Dimension | Resilience-Enhancing Feature |
---|---|---|---|
Management | 1. Reconfiguring company resources | Relationship | 14. Maintain communication and cooperation with customers and suppliers |
2. Strengthen staff training and leadership | System | 15. Upgrade information systems that integrate resources | |
3. Construct risk emergency mechanism | 16. Upgrade system functionality and transaction automation | ||
4. Establishing a feasible incentive system | 17. Establish and train cross-functional organisations | ||
5. Employ multiple supplier sources | 18. Develop standard operating procedures | ||
Enterprise culture | 6. Encourage non-hierarchical communication | 19. Improve product design and development | |
7. Enliven culture of trust and accountability | 20. Share real-time job information | ||
8. Foster awareness of environmental protection and social responsibility | Logistics | 21. Implement concurrent engineering strategy | |
9. Strictly abide by the rules and develop self-discipline | 22. Maintain and update equipment | ||
Relationship | 10. On-site risk monitoring and responsibility sharing | 23. Improve facility layout | |
11. Recruit experts for improvement | 24. Arrange and reorganize storage space | ||
12. Strengthen the linkage between production site and support | 25. Maintain adequate buffer stock | ||
13. Improve and summarize customer feedback | 26. Optimize transportation modes and routes |
Risk Type | Supply Chain Risk |
---|---|
Production risk | Equipment failure or damage |
Poor product design or manufacturing processes | |
Product safety and quality is not up to standard | |
Outdated equipment or methods lead to waste of resources | |
Management risk | Low work efficiency leads to low labor productivity |
Lack of skilled employees | |
Poor organisational management at the top | |
Poor coordination caused delay in delivery | |
Insufficient incentives for employees | |
Information risk | Information system failure or intrusion |
Loss of data leads to loss of information | |
Abnormal information about customer orders leads to cognitive errors | |
Supply and demand risk | Delays in supplier delivery due to an accident |
Problematic materials from the suppliers affecting the customers | |
Insufficient customer credit | |
Customers change orders temporarily | |
Environmental risk | Economic downturns or technology changes |
Failure to grasp sustainable trends leads to sales problems | |
Failure to fulfil corporate social responsibility | |
Natural disasters and political instability | |
Abnormal logistics resulted in delayed delivery | |
Diseases and epidemics |
No. | Key Supply Chain Risk | RPN | Order |
---|---|---|---|
Risk 1 | Delays in supplier delivery due to an accident | 37.939 | 1 |
Risk 2 | Natural disasters and political instability | 28.125 | 2 |
Risk 3 | Problematic materials from the suppliers affecting the customers | 23.766 | 3 |
Risk 4 | Lack of skilled employees | 23.203 | 4 |
Risk 5 | Insufficient incentives for employees | 21.875 | 5 |
Risk 6 | Poor product design or manufacturing processes | 19.824 | 6 |
Risk 7 | Abnormal information about customer orders leads to cognitive errors | 19.141 | 7 |
Risk 8 | Information system failure or intrusion | 15.984 | 8 |
Risk 9 | Poor coordination caused delay in delivery | 15.188 | 9 |
Risk 10 | Customers change orders temporarily | 14.625 | 10 |
Risk 1 | Risk 2 | Risk 3 | Risk 4 | Risk 5 | Risk 6 | Risk 7 | Risk 8 | Risk 9 | Risk 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Risk 1 | 0.0 | 0.0 | 2.6 | 0.0 | 0.0 | 1.0 | 2.2 | 1.0 | 1.4 | 1.8 |
Risk 2 | 2.4 | 0.0 | 3.0 | 0.0 | 0.0 | 0.2 | 0.0 | 2.2 | 0.0 | 1.8 |
Risk 3 | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.2 |
Risk 4 | 2.4 | 0.0 | 2.6 | 0.0 | 2.0 | 2.6 | 3.0 | 2.2 | 2.4 | 1.2 |
Risk 5 | 0.2 | 0.0 | 0.2 | 3.0 | 0.0 | 2.0 | 0.2 | 0.0 | 2.0 | 0.0 |
Risk 6 | 2.2 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 2.0 |
Risk 7 | 2.2 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 1.0 |
Risk 8 | 2.4 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 |
Risk 9 | 3.0 | 0.0 | 3.0 | 2.2 | 2.0 | 1.8 | 3.0 | 1.8 | 0.0 | 1.2 |
Risk 10 | 1.4 | 0.0 | 2.2 | 0.0 | 0.0 | 2.0 | 2.0 | 0.0 | 0.4 | 0.0 |
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | RC7 | RC8 | RC9 | RC10 | |
---|---|---|---|---|---|---|---|---|---|---|
RC1 | 0.0 | 2.1 | 1.3 | 2.0 | 1.3 | 2.3 | 1.9 | 2.1 | 1.0 | 1.3 |
RC2 | 2.1 | 0.0 | 1.0 | 2.3 | 1.4 | 2.1 | 2.3 | 1.6 | 0.9 | 1.5 |
RC3 | 1.3 | 1.0 | 0.0 | 1.4 | 2.3 | 1.3 | 1.6 | 1.6 | 2.3 | 1.6 |
RC4 | 2.0 | 2.3 | 1.4 | 0.0 | 1.5 | 1.9 | 1.9 | 2.4 | 1.1 | 1.5 |
RC5 | 1.3 | 1.4 | 2.3 | 1.5 | 0.0 | 1.9 | 1.6 | 1.3 | 2.4 | 1.6 |
RC6 | 2.3 | 2.1 | 1.3 | 1.9 | 1.9 | 0.0 | 1.6 | 2.0 | 1.8 | 2.3 |
RC7 | 1.9 | 2.3 | 1.6 | 1.9 | 1.6 | 1.6 | 0.0 | 2.1 | 1.5 | 1.8 |
RC8 | 2.1 | 1.6 | 1.6 | 2.4 | 1.3 | 2.0 | 2.1 | 0.0 | 1.3 | 2.1 |
RC9 | 1.0 | 0.9 | 2.3 | 1.1 | 2.4 | 1.8 | 1.5 | 1.3 | 0.0 | 1.6 |
RC10 | 1.3 | 1.5 | 1.6 | 1.5 | 1.6 | 2.3 | 1.8 | 2.1 | 1.6 | 0.0 |
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | RC7 | RC8 | RC9 | RC10 | |
---|---|---|---|---|---|---|---|---|---|---|
Risk 1 | 1.9 | 1.9 | 2.0 | 1.6 | 1.5 | 2.3 | 1.8 | 1.3 | 2.5 | 1.6 |
Risk 2 | 0.1 | 0.6 | 1.0 | 0.0 | 1.8 | 1.1 | 1.1 | 0.4 | 1.6 | 0.6 |
Risk 3 | 1.9 | 1.8 | 1.4 | 2.5 | 1.1 | 2.3 | 1.5 | 2.4 | 1.3 | 1.3 |
Risk 4 | 1.8 | 1.8 | 1.1 | 1.8 | 1.1 | 1.1 | 2.0 | 2.5 | 1.0 | 0.9 |
Risk 5 | 0.8 | 0.5 | 0.5 | 1.6 | 0.8 | 0.9 | 1.3 | 2.1 | 1.1 | 0.8 |
Risk 6 | 2.0 | 2.0 | 1.9 | 1.8 | 2.0 | 1.4 | 1.8 | 2.5 | 1.3 | 1.3 |
Risk 7 | 1.6 | 1.5 | 1.6 | 1.4 | 1.6 | 1.4 | 1.8 | 1.8 | 1.6 | 2.3 |
Risk 8 | 1.9 | 1.4 | 1.8 | 1.3 | 2.3 | 1.3 | 1.8 | 2.8 | 1.8 | 2.1 |
Risk 9 | 1.9 | 1.8 | 1.3 | 2.4 | 1.5 | 1.3 | 1.3 | 2.5 | 0.9 | 0.9 |
Risk 10 | 1.9 | 2.1 | 1.3 | 1.0 | 0.9 | 1.5 | 1.4 | 2.0 | 1.4 | 1.6 |
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | RC7 | RC8 | RC9 | RC10 | |
---|---|---|---|---|---|---|---|---|---|---|
Risk 1 | 260.53 | 258.00 | 239.61 | 274.49 | 254.26 | 292.36 | 279.61 | 269.79 | 231.03 | 259.72 |
Risk 2 | 259.20 | 256.74 | 240.81 | 274.44 | 259.69 | 288.01 | 278.13 | 272.01 | 229.28 | 261.59 |
Risk 3 | 162.96 | 161.08 | 153.08 | 173.53 | 165.95 | 183.39 | 174.65 | 175.62 | 147.30 | 165.64 |
Risk 4 | 470.10 | 467.83 | 437.64 | 492.93 | 460.96 | 527.87 | 501.65 | 487.59 | 418.22 | 471.94 |
Risk 5 | 193.69 | 191.35 | 175.40 | 202.65 | 182.70 | 218.05 | 204.95 | 195.49 | 169.51 | 196.11 |
Risk 6 | 267.15 | 264.16 | 246.60 | 280.95 | 269.44 | 295.96 | 285.15 | 284.34 | 235.16 | 266.12 |
Risk 7 | 196.03 | 192.83 | 179.29 | 205.73 | 195.72 | 215.72 | 209.39 | 206.48 | 172.69 | 198.65 |
Risk 8 | 228.76 | 226.79 | 211.67 | 239.33 | 228.85 | 253.82 | 243.54 | 243.06 | 204.12 | 230.01 |
Risk 9 | 457.54 | 455.13 | 425.64 | 480.49 | 451.80 | 511.33 | 484.43 | 475.80 | 403.96 | 459.09 |
Risk 10 | 216.64 | 214.82 | 199.21 | 225.75 | 213.82 | 240.39 | 230.62 | 227.82 | 192.90 | 217.15 |
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | RC7 | RC8 | RC9 | RC10 | |
---|---|---|---|---|---|---|---|---|---|---|
0.017 | 0.017 | 0.016 | 0.018 | 0.017 | 0.019 | 0.018 | 0.018 | 0.015 | 0.017 | |
0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.007 | 0.006 | 0.006 | 0.005 | 0.006 |
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | RC7 | RC8 | RC9 | RC10 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Risk 1 | 0.1727 | 0.1178 | 0.1181 | 0.1202 | 0.1181 | 0.1210 | 0.1181 | 0.1173 | 0.1206 | 0.1193 | 0.1197 |
Risk 2 | 0.1280 | 0.0879 | 0.0881 | 0.0886 | 0.0876 | 0.0873 | 0.0891 | 0.0875 | 0.0885 | 0.0893 | 0.0879 |
Risk 3 | 0.1082 | 0.1082 | 0.1082 | 0.1082 | 0.1082 | 0.1082 | 0.1082 | 0.1082 | 0.1082 | 0.1082 | 0.1082 |
Risk 4 | 0.1056 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Risk 5 | 0.0996 | 0.0896 | 0.0898 | 0.0918 | 0.0905 | 0.0939 | 0.0896 | 0.0904 | 0.0932 | 0.0914 | 0.0897 |
Risk 6 | 0.0902 | 0.0596 | 0.0599 | 0.0606 | 0.0599 | 0.0586 | 0.0608 | 0.0597 | 0.0588 | 0.0610 | 0.0606 |
Risk 7 | 0.0871 | 0.0778 | 0.0781 | 0.0791 | 0.0784 | 0.0783 | 0.0790 | 0.0779 | 0.0785 | 0.0790 | 0.0777 |
Risk 8 | 0.0728 | 0.0572 | 0.0572 | 0.0578 | 0.0578 | 0.0572 | 0.0579 | 0.0574 | 0.0570 | 0.0575 | 0.0575 |
Risk 9 | 0.0691 | 0.0028 | 0.0029 | 0.0029 | 0.0027 | 0.0021 | 0.0033 | 0.0036 | 0.0026 | 0.0036 | 0.0029 |
Risk 10 | 0.0666 | 0.0549 | 0.0549 | 0.0558 | 0.0557 | 0.0558 | 0.0556 | 0.0552 | 0.0554 | 0.0554 | 0.0554 |
- | 0.6559 | 0.6572 | 0.6649 | 0.6588 | 0.6626 | 0.6615 | 0.6572 | 0.6629 | 0.6647 | 0.6596 | |
- | 0.1178 | 0.1181 | 0.1202 | 0.1181 | 0.1210 | 0.1181 | 0.1173 | 0.1206 | 0.1193 | 0.1197 |
Coefficient v = 0.5 | RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | RC7 | RC8 | RC9 | RC10 |
---|---|---|---|---|---|---|---|---|---|---|
Q | 0.0766 | 0.1883 | 0.8905 | 0.2750 | 0.8712 | 0.4170 | 0.0730 | 0.8303 | 0.7638 | 0.5267 |
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | RC7 | RC8 | RC9 | RC10 | |
---|---|---|---|---|---|---|---|---|---|---|
0.6559 | 0.6572 | 0.6649 | 0.6588 | 0.6626 | 0.6615 | 0.6572 | 0.6629 | 0.6647 | 0.6596 | |
0.1178 | 0.1181 | 0.1202 | 0.1181 | 0.1210 | 0.1181 | 0.1173 | 0.1206 | 0.1193 | 0.1197 | |
0.0766 | 0.1883 | 0.8905 | 0.2750 | 0.8712 | 0.4170 | 0.0730 | 0.8303 | 0.7638 | 0.5267 | |
Ranking | 1 | 2 | 10 | 4 | 7 | 6 | 3 | 8 | 9 | 5 |
Ranking | 2 | 5 | 8 | 4 | 10 | 3 | 1 | 9 | 6 | 7 |
Ranking | 2 | 3 | 10 | 4 | 9 | 5 | 1 | 8 | 7 | 6 |
Ranking weight (1−) | 0.9234 | 0.8117 | 0.1095 | 0.7250 | 0.1288 | 0.5830 | 0.9270 | 0.1697 | 0.2362 | 0.4733 |
Compromise ranking | 1 | 2 | 5 | 2 | 5 | 3 | 1 | 5 | 4 | 3 |
Dimension | Resilience-Enhancing Feature | Gi | Rank | Selected Feature |
---|---|---|---|---|
Management | Reconfiguring company resources | 8.190 | 1 | RF1 |
Strengthen staff training and leadership | 7.691 | 2 | RF2 | |
Construct risk emergency mechanism | 6.203 | 14 | ||
Establishing a feasible incentive system | 6.747 | 8 | RF3 | |
Employ multiple supplier sources | 6.274 | 12 | ||
Enterprise culture | Encourage non-hierarchical communication | 6.378 | 11 | |
Enliven culture of trust and accountability | 6.379 | 10 | RF4 | |
Foster awareness of environmental protection and social responsibility | 3.633 | 24 | ||
Strictly abide by the rules and develop self-discipline | 5.909 | 16 | ||
Relationship | On-site risk monitoring and responsibility sharing | 7.453 | 3 | RF5 |
Recruit experts for improvement | 5.047 | 17 | ||
Strengthen the linkage between production site and support | 3.771 | 21 | ||
Improve and summarize customer feedback | 3.443 | 25 | ||
Maintain communication and cooperation with customers and suppliers | 6.249 | 13 | ||
System | Upgrade information systems that integrate resources | 6.144 | 15 | |
Upgrade system functionality and transaction automation | 3.693 | 22 | ||
Establish and train cross-functional organisations | 5.047 | 18 | ||
Develop standard operating procedures | 6.888 | 6 | RF6 | |
Improve product design and development | 3.687 | 23 | ||
Sharing real-time job information | 7.125 | 4 | RF7 | |
Implement concurrent engineering strategy | 6.511 | 9 | RF8 | |
Logistics | Maintain and update equipment | 2.604 | 26 | |
Improve facility layout | 6.842 | 7 | RF9 | |
Arrange and reorganize storage space | 7.033 | 5 | RF10 | |
Maintain adequate buffer stock | 4.027 | 20 | ||
Optimize transportation modes and routes | 4.145 | 19 |
RF1 | RF2 | RF3 | RF4 | RF5 | RF6 | RF7 | RF8 | RF9 | RF10 | |
---|---|---|---|---|---|---|---|---|---|---|
2.5787 | 2.6353 | 2.6123 | 2.6819 | 2.5562 | 2.6311 | 2.5963 | 2.7042 | 2.6523 | 2.6990 | |
0.5983 | 0.6245 | 0.6172 | 0.6304 | 0.6003 | 0.6274 | 0.6097 | 0.6486 | 0.6241 | 0.6435 | |
0.0760 | 0.5278 | 0.3778 | 0.7434 | 0.0200 | 0.5422 | 0.2494 | 1.0000 | 0.5808 | 0.9315 | |
Ranking | 2 | 6 | 4 | 8 | 1 | 5 | 3 | 10 | 7 | 9 |
Ranking | 1 | 6 | 4 | 8 | 2 | 7 | 3 | 10 | 5 | 9 |
Ranking | 2 | 5 | 4 | 8 | 1 | 6 | 3 | 10 | 7 | 9 |
Compromise ranking | 1 | 4 | 3 | 5 | 1 | 4 | 2 | 6 | 4 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-H.; Chang, A.-Y.; Zhang, T.-Y.; Lin, W.-D.; Liu, W.-L. Deploying Resilience Enablers to Mitigate Risks in Sustainable Fashion Supply Chains. Sustainability 2021, 13, 2943. https://doi.org/10.3390/su13052943
Hsu C-H, Chang A-Y, Zhang T-Y, Lin W-D, Liu W-L. Deploying Resilience Enablers to Mitigate Risks in Sustainable Fashion Supply Chains. Sustainability. 2021; 13(5):2943. https://doi.org/10.3390/su13052943
Chicago/Turabian StyleHsu, Chih-Hung, An-Yuan Chang, Ting-Yi Zhang, Wei-Da Lin, and Wan-Ling Liu. 2021. "Deploying Resilience Enablers to Mitigate Risks in Sustainable Fashion Supply Chains" Sustainability 13, no. 5: 2943. https://doi.org/10.3390/su13052943
APA StyleHsu, C.-H., Chang, A.-Y., Zhang, T.-Y., Lin, W.-D., & Liu, W.-L. (2021). Deploying Resilience Enablers to Mitigate Risks in Sustainable Fashion Supply Chains. Sustainability, 13(5), 2943. https://doi.org/10.3390/su13052943