Do Public–Private Partnership Investment in Energy and Technological Innovation Matter for Environmental Sustainability in the East Asia and Pacific Region? An Application of a Frequency Domain Causality Test
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Techniques Employed
2.2.1. Unit Root Tests
2.2.2. Bayer and Hanck Cointegration
2.2.3. ARDL Approach
2.2.4. Breitung and Candelon Causality Test
3. Findings and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adebayo, T.S.; Odugbesan, J.A. Modeling CO2 emissions in South Africa: Empirical evidence from ARDL based bounds and wavelet coherence techniques. Environ. Sci. Pollut. Res. 2021, 28, 9377–9389. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Akinsola, G.D. Investigating the Causal Linkage Among Economic Growth, Energy Consumption and CO2 Emissions in Thailand: An Application of the Wavelet Coherence Approach. Int. J. Renew. Energy Dev. 2021, 10, 17–26. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Adebayo, T.S. Do renewable energy consumption and financial development matter for en-vironmental sustainability? New global evidence. Sustain. Dev. 2020. [Google Scholar] [CrossRef]
- Odugbesan, J.A.; Adebayo, T.S. The symmetrical and asymmetrical effects of foreign direct investment and financial development on carbon emission: Evidence from Nigeria. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Shahbaz, M.; Shafiullah, M.; Papavassiliou, V.G.; Hammoudeh, S. The CO 2 –growth nexus revisited: A nonparametric analysis for the G7 economies over nearly two centuries. Energy Econ. 2017, 65, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Dinda, S. Production technology and carbon emission: Long-run relation with short-run dynamics. J. Appl. Econ. 2018, 21, 106–121. [Google Scholar] [CrossRef]
- Khan, Z.; Ali, M.; Kirikkaleli, D.; Wahab, S.; Jiao, Z. The impact of technological innovation and public-private partnership investment on sustainable environment in China: Consumption-based carbon emissions analysis. Sustain. Dev. 2020. [Google Scholar] [CrossRef]
- UCSUSA. Resources. 2020. Available online: https://www.ucsusa.org/resources/each-countrys-share-co2-emissions (accessed on 18 February 2020).
- World Bank. World Development Indicators. 2021. Available online: http://data.worldbank.org/ (accessed on 25 October 2020).
- IPCC. Special Report on Global Warming of 1.5 °C. 2018. Available online: https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/ (accessed on 2 January 2021).
- Datta, A. Public-private partnerships in India: A case for reform? Econ. Political Wkly. 2009, 2, 73–78. [Google Scholar]
- David, D.; Venkatachalam, A. A Comparative Study on the Role of Public-Private Partnerships and Green Investment Banks in Boosting Low-Carbon Investments (No. 870); ADBI Working Paper Series; ADBI: Tokyo, Japan, 2018. [Google Scholar]
- Dolla, T.; Laishram, B.S. Procurement of low carbon municipal solid waste infrastructure in India through public-private partnerships. Built Environ. Proj. Asset Manag. 2018, 8, 449–460. [Google Scholar] [CrossRef]
- Patil, N.A.; Laishram, B. Public‒private partnerships from sustainability perspective–a critical analysis of the Indian case. Int. J. Constr. Manag. 2016, 16, 161–174. [Google Scholar] [CrossRef]
- Buonanno, P.; Carraro, C.; Galeotti, M. Endogenous induced technical change and the costs of Kyoto. Resour. Energy Econ. 2003, 25, 11–34. [Google Scholar] [CrossRef] [Green Version]
- Wing, I.S. Induced Technical Change and the Cost of Climate Policy. 2003. Available online: https://dspace.mit.edu/handle/1721.1/3648 (accessed on 22 January 2021).
- Ganda, F. The impact of innovation and technology investments on carbon emissions in selected organisa-tion for economic Co-operation and development countries. J. Clean. Prod. 2019, 217, 469–483. [Google Scholar] [CrossRef]
- Verdolini, E.; Vona, F.; Popp, D. Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion? Energy Policy 2018, 116, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Popp, D.; Hascic, I.; Medhi, N. Technology and the diffusion of renewable energy. Energy Econ. 2011, 33, 648–662. [Google Scholar] [CrossRef]
- Alvarez-Herranz, A.; Balsalobre-Lorente, D.; Shahbaz, M.; Cantos, J.M. Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy 2017, 105, 386–397. [Google Scholar] [CrossRef]
- Shahbaz, M.; Chaudhary, A.; Ozturk, I. Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model. Energy 2017, 122, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Mirza, N.; Vasbieva, D.G.; Abbas, Q.; Xiong, D. The nexus of carbon emissions, financial development, renewable energy consumption, and technological innovation: What should be the priorities in light of COP 21 Agreements? J. Environ. Manag. 2020, 271, 111027. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Adebayo, T.S. Do public-private partnerships in energy and renewable energy consumption matter for consumption-based carbon dioxide emissions in India? Environ. Sci. Pollut. Res. 2021, 1–14. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Kirikkaleli, D.; Adebayo, T.S.; Adeshola, I.; Akinsola, G.D. Modeling CO2 emissions in Malaysia: An application of Maki cointegration and wavelet coherence tests. Environ. Sci. Pollut. Res. 2021, 1–15. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Álvarez-Herranz, A.; Shahbaz, M. The long-term effect of economic growth, energy in-novation, energy use on environmental quality. In Energy and Environmental Strategies in the Era of Globalization; Springer: Cham, Switzerland, 2019; pp. 1–34. [Google Scholar]
- Adebayo, T.S.; Akinsola, G.D.; Odugbesan, J.A.; Olanrewaju, V.O. Determinants of Environmental Deg-radation in Thailand: Empirical Evidence from ARDL and Wavelet Coherence Approaches. Pollution 2021, 7, 181–196. [Google Scholar]
- Umar, M.; Ji, X.; Kirikkaleli, D.; Xu, Q. COP21 Roadmap: Do innovation, financial development, and trans-portation infrastructure matter for environmental sustainability in China? J. Environ. Manag. 2020, 271, 111026. [Google Scholar] [CrossRef]
- Lin, S.; Xiao, L.; Wang, X. Does air pollution hinder technological innovation in China? A perspective of innovation value chain. J. Clean. Prod. 2021, 278, 123326. [Google Scholar] [CrossRef]
- Yu, Y.; Du, Y. Impact of technological innovation on CO2 emissions and emissions trend prediction on ‘New Normal’ economy in China. Atmos. Pollut. Res. 2019, 10, 152–161. [Google Scholar] [CrossRef]
- Adebayo, T.S. Testing the EKC Hypothesis in Indonesia: Empirical Evidence from the ARDL-Based Bounds and Wavelet Coherence Approaches. Appl. Econ. J. 2021, 28, 1–23. [Google Scholar]
- Aydoğan, B.; Vardar, G. Evaluating the role of renewable energy, economic growth and agriculture on CO2 emission in E7 countries. Int. J. Sustain. Energy 2019, 39, 335–348. [Google Scholar] [CrossRef]
- Onyibor, K.; Adebayo, T.S.; Akinsola, G.D. The impact of major macroeconomic variables on foreign direct investment in Nigeria: Evidence from a wavelet coherence technique. SN Bus. Econ. 2021, 1, 1–24. [Google Scholar]
- Kirikkaleli, D.; Athari, S.A. Time-frequency co-movements between bank credit supply and economic growth in an emerging market: Does the bank ownership structure matter? N. Am. J. Econ. Financ. 2020, 54, 101239. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Adebayo, T.S.; Khan, Z.; Ali, S. Does globalization matter for ecological footprint in Turkey? Evidence from dual adjustment approach. Environ. Sci. Pollut. Res. 2020, 1–9. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Kalmaz, D.B. Ongoing Debate Between Foreign Aid and Economic Growth in Nigeria: A Wavelet Analysis. Soc. Sci. Q. 2020, 101, 2032–2051. [Google Scholar] [CrossRef]
- Sadorsky, P. Energy consumption, output and trade in South America. Energy Econ. 2012, 34, 476–488. [Google Scholar] [CrossRef]
- Bekun, F.V.; Alola, A.A.; Sarkodie, S.A. Toward a sustainable environment: Nexus between CO2 emis-sions, resource rent, renewable and nonrenewable energy in 16-EU countries. Sci. Total Environ. 2019, 657, 1023–1029. [Google Scholar] [CrossRef]
- Lee, S.-J.; Yoo, S.-H. Energy consumption, CO2 emission, and economic growth: Evidence from Mexico. Energy Sources, Part. B: Econ. Plan. Policy 2016, 11, 711–717. [Google Scholar] [CrossRef]
- Kalmaz, D.B.; Kirikkaleli, D. Modeling CO2 emissions in an emerging market: Empirical finding from ARDL-based bounds and wavelet coherence approaches. Environ. Sci. Pollut. Res. 2019, 26, 5210–5220. [Google Scholar] [CrossRef]
- Zivot, E.; Andrews, D.W.K. Further evidence on the great crash, the oil-price shock, and the unit-root hy-pothesis. J. Bus. Econ. Stat. 2002, 20, 25–44. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica 1987, 55, 251. [Google Scholar] [CrossRef]
- Boswijk, H.P. Testing for an unstable root in conditional and structural error correction models. J. Econ. 1994, 63, 37–60. [Google Scholar] [CrossRef]
- Banerjee, A.; Dolado, J.J.; Mestre, R. Error-correction Mechanism Tests for Cointegration in a Single-equation Framework. J. Time Ser. Anal. 1998, 19, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Johansen, S. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica 1991, 59, 1551–1580. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y. An autoregressive distributed-lag modelling approach to cointegration analysis. Econ. Soc. Monogr. 1998, 31, 371–413. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smithc, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Adebayo, T.S. Revisiting the EKC hypothesis in an emerging market: An application of ARDL-based bounds and wavelet coherence approaches. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Akadiri, S.S.; Bekun, F.V.; Sarkodie, S.A. Contemporaneous interaction between energy consumption, economic growth and environmental sustainability in South Africa: What drives what? Sci. Total Environ. 2019, 686, 468–475. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Zakari, A. Energy consumption, economic expansion, and CO2 emission in the UK: The role of economic policy uncertainty. Sci. Total Environ. 2020, 738, 140014. [Google Scholar] [CrossRef] [PubMed]
- Ozatac, N.; Gokmenoglu, K.K.; Taspinar, N. Testing the EKC hypothesis by considering trade openness, urbanization, and financial development: The case of Turkey. Environ. Sci. Pollut. Res. 2017, 24, 16690–16701. [Google Scholar] [CrossRef]
- He, X.; Adebayo, T.S.; Kirikkaleli, D.; Umar, M. Analysis of Dual Adjustment Approach: Consump-tion-Based Carbon Emissions in Mexico. Sustain. Prod. Consum. 2021, 8, 22–41. [Google Scholar]
- Adebayo, T.S. Do CO2 emissions, energy consumption and globalization promote economic growth? Empirical evidence from Japan. Environ Sci Pollut Res. 2021. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Kalmaz, D.B. Determinants of CO2 emissions: Empirical evidence from Egypt. Environ. Ecol. Stat. 2021, 1–24. [Google Scholar] [CrossRef]
Indicator | Description | Units | Sources |
---|---|---|---|
CO2 | Environmental Sustainability | Metric Tonnes Per Capita | World Development Indicator, [9] |
TI | Technological Innovation | Measured as the addition of patent applications by residents and patent applications by non-residents | World Development Indicator, [9] |
GDP | Economic Growth | GDP Per Capita Constant $US, 2010 | World Development Indicator, [9] |
REN | Renewable Energy | % of final energy consumption | World Development Indicator, [9] |
PPIE | Public–private partnership investment in energy | Current $US | World Development Indicator, [9] |
Code | CO2 | PPIE | REN | TI | GDP |
---|---|---|---|---|---|
Mean | 0.615011 | 9.746495 | 18.67766 | 5.887427 | 3.790594 |
Median | 0.594831 | 9.773148 | 18.63410 | 5.860891 | 3.772244 |
Maximum | 0.798975 | 10.24854 | 25.61144 | 6.257853 | 3.972720 |
Minimum | 0.437346 | 8.970217 | 13.02167 | 5.615098 | 3.642550 |
Std. Dev. | 0.125308 | 0.290827 | 4.307600 | 0.173711 | 0.099849 |
Skewness | 0.252250 | –0.512254 | 0.028726 | 0.326227 | 0.265700 |
Kurtosis | 1.495902 | 2.827269 | 1.345532 | 2.285823 | 1.777652 |
Jarque-Bera | 10.06732 | 4.317809 | 10.96226 | 3.742977 | 7.106077 |
Probability | 0.006515 | 0.115452 | 0.004165 | 0.153894 | 0.028637 |
I(0) | |||||
---|---|---|---|---|---|
CO2 | PPIE | REN | TI | GDP | |
C&T | −3.000 | −5.061 * | −2.845 | −4.776 | −4.687 |
(2009Q2) | (1999Q2) | (2006Q2) | (2009Q1) | (1997Q4) | |
I(1) | |||||
C&T | −6.664 *** | −14.214 *** | −6.188 *** | −6.139 *** | −5.837 *** |
(2001Q2) | (2000Q2) | (2002Q2) | (2010Q3) | (1999Q4) |
Fisher Statistics | Fisher Statistics | Decision | |
---|---|---|---|
EG-JOH | EG-JOH-BAN-BOS | ||
CO2 = f(GDP PPIE, REN, TI) | 14.304 ** | 26.794 ** | There is cointegration |
CV | CV | ||
5% | 10.576 | 20.143 |
F-Statistics | χ2 ARCH | χ2 RESET | χ2 Normality | χ2 LM | |
---|---|---|---|---|---|
11.76 * | 1.05 (0.42) | 0.19 (0.84) | 0.26 (0.87) | 0.82 (0.69) | |
10% | 5% | 1% | |||
LB | UB | LB | UB | LB | UB |
2.204 | 3.320 | 2.615 | 3.891 | 3.572 | 5.112 |
Variables | Long-Run | Short-Run |
---|---|---|
PPIE | 0.029 | 0.029 |
(4.183) | (7.820) | |
[0.001] *** | [0.000] *** | |
REN | −0.013 | −0.713503 |
(−5.060) | (−7.102) | |
[0.000] *** | [0.000] *** | |
TI | −0.081 | −0.081 |
(−2.501) | (−2.365) | |
[0.024] ** | [0.037] ** | |
GDP | 1.474 | 1.474 |
(5.224) | (7.965) | |
[0.0020] *** | [0.000] *** | |
C | −2.347 | −1.824 |
(−3.191) | (−3.097) | |
[0.008] *** | [0.002] *** | |
ECM | −0.85 | |
(−8.955) | ||
[0.000] *** | ||
R2 | 0.99 | |
Adj-R2 | 0.98 |
Variables | FMOLS | DOLS |
---|---|---|
PPIE | 0.036 | 0.037 |
−4.146 | −2.574 | |
[0.000] *** | [0.012] ** | |
REN | −0.013 | −0.014 |
(−5.060) | (−4.572) | |
[0.000] *** | [0.000] *** | |
TI | −0.242 | −0.239 |
(−2.423) | (−2.114) | |
[0.016] ** | [0.037] ** | |
GDP | 1.016 | 0.987 |
−3.816 | −3.282 | |
[0.002] *** | [0.001] *** | |
C | −1.917 | −1.824 |
(−3.762) | (−3.097) | |
[0.000] *** | [0.002] *** | |
R-squared | 9.991 | 0.994 |
SE. | 0.012 | 0.01 |
Long-Run | Medium-Run | Short-Run | ||||
---|---|---|---|---|---|---|
Causality Path | wi = 0.01 | wi = 0.05 | wi = 1.00 | wi = 1.50 | wi = 2.00 | wi = 2.50 |
PPIE → CO2 | 7.089 *** (0.028) | 7.087 *** (00.028) | 0.285 (0.866) | 0.261 (0.877) | 0.622 (0.732) | 0.807 (0.667) |
REC → CO2 | 12.758 *** (0.001) | 12.743 *** (0.001) | 1.599 (0.449) | 1.636 (0.441) | 1.683 (0.431) | 1.707 (0.425) |
TI → CO2 | 7.195 ** (0.027) | 7.191 ** (0.027) | 0.212 (0.899) | 0.466 (0.792) | 0.003 (0.998) | 0.486 (0.784) |
GDP → CO2 | 7.179 ** (0.027) | 6.684 ** (0.035) | 11.008 *** (0.004) | 15.283 *** (0.000) | 14.798 *** (0.000) | 22.017 *** (0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adebayo, T.S.; Genç, S.Y.; Castanho, R.A.; Kirikkaleli, D. Do Public–Private Partnership Investment in Energy and Technological Innovation Matter for Environmental Sustainability in the East Asia and Pacific Region? An Application of a Frequency Domain Causality Test. Sustainability 2021, 13, 3039. https://doi.org/10.3390/su13063039
Adebayo TS, Genç SY, Castanho RA, Kirikkaleli D. Do Public–Private Partnership Investment in Energy and Technological Innovation Matter for Environmental Sustainability in the East Asia and Pacific Region? An Application of a Frequency Domain Causality Test. Sustainability. 2021; 13(6):3039. https://doi.org/10.3390/su13063039
Chicago/Turabian StyleAdebayo, Tomiwa Sunday, Sema Yılmaz Genç, Rui Alexandre Castanho, and Dervis Kirikkaleli. 2021. "Do Public–Private Partnership Investment in Energy and Technological Innovation Matter for Environmental Sustainability in the East Asia and Pacific Region? An Application of a Frequency Domain Causality Test" Sustainability 13, no. 6: 3039. https://doi.org/10.3390/su13063039
APA StyleAdebayo, T. S., Genç, S. Y., Castanho, R. A., & Kirikkaleli, D. (2021). Do Public–Private Partnership Investment in Energy and Technological Innovation Matter for Environmental Sustainability in the East Asia and Pacific Region? An Application of a Frequency Domain Causality Test. Sustainability, 13(6), 3039. https://doi.org/10.3390/su13063039