Healthy Teleworking: Towards Personalized Exercise Recommendations
Abstract
:1. Introduction
2. Home-Based Teleworking, Sedentary Lifestyle and Ideal Postures
The Ideal Sitting Posture
3. Current Recommendations for Maintaining Fitness Levels at Home during the COVID-19 Lockdown
4. Alternatives to Current Recommendations
4.1. Improving Environmental Affordances
4.2. Exergaming Approach
4.3. Mobile Applications with Fitness Purposes
5. New Perspectives and Practical Recommendations
- -
- The acknowledgment of risks associated with prolonged immobility
- -
- Redefining health and fitness objectives
- -
- Co-designing and co-adapting personalized exercise programs
- -
- Development of user’s somatic awareness
- -
- Creation of personalized working environments limiting sitting and affording exercise and posture variations
- -
- Complementary proposals
6. Limitations and Future Lines of Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parry, S.; Straker, L. The contribution of office work to sedentary behaviour associated risk. BMC Public Health 2013, 13, 296. [Google Scholar] [CrossRef] [Green Version]
- Sprang, G.; Silman, M. Posttraumatic stress disorder in parents and youth after health-related disasters. Disaster Med. Public Health Prep. 2013, 7, 105–110. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Bushman, B.A. Exercise for Prevention of Chronic Diseases. ACSMs Health Fit. J. 2020, 24, 5–10. [Google Scholar] [CrossRef]
- Balagué, N.; Almarcha, M.; Hristovski, R. Updating Exercise Prescription in Health & Disease. Res. Phys. Educ. Sport Heal. 2020, 9, 3–6. [Google Scholar] [CrossRef]
- Sørensen, J.B.; Skovgaard, T.; Puggaard, L. Exercise on prescription in general practice: A systematic review. Scand. J. Prim. Health Care 2006, 24, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, P.; Baumann, F.T.; Oberste, M.; Schmitt, J.; Joisten, N.; Hartig, P.; Schenk, A.; Kuhn, R.; Bloch, W.; Reuss-Borst, M. Influence of Personalized Exercise Recommendations During Rehabilitation on the Sustainability of Objectively Measured Physical Activity Levels, Fatigue, and Fatigue-Related Biomarkers in Patients With Breast Cancer. Integr. Cancer Ther. 2018, 17, 306–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, P.C.H.; Liu, K.K.L.; Bartsch, R.P. Focus on the emerging new fields of network physiology and network medicine. New J. Phys. 2016, 18, 100201. [Google Scholar] [CrossRef] [PubMed]
- Sturmberg, J.P.; Picard, M.; Aron, D.C.; Bennett, J.M.; Bircher, J.; DeHaven, M.J.; Gijzel, S.M.W.; Heng, H.H.; Marcum, J.A.; Martin, C.M.; et al. Health and Disease—Emergent States Resulting From Adaptive Social and Biological Network Interactions. Front. Med. 2019, 6, 59. [Google Scholar] [CrossRef]
- Pol, R.; Balagué, N.; Ric, A.; Torrents, C.; Kiely, J.; Hristovski, R. Training or Synergizing? Complex Systems Principles Change the Understanding of Sport Processes. Sport. Med. Open 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Hristovski, R.; Balagué, N. Theory of Cooperative-Competitive Intelligence: Principles, Research Directions, and Applications. Front. Psychol. 2020, 11, 2220. [Google Scholar] [CrossRef]
- Balagué, N.; Hristovski, R.; Almarcha, M.; Garcia-Retortillo, S.; Ivanov, P.C. Network Physiology of Exercise: Vision and Perspectives. Front. Physiol. 2020, 11, 611550. [Google Scholar] [CrossRef]
- Riebe, D.; Ehrman, J.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription; ACSM: Indianapolis, IN, USA, 2018; ISBN 9781496339065. [Google Scholar]
- Mujika, I.; Halson, S.; Burke, L.M.; Balagué, G.; Farrow, D. An integrated, multifactorial approach to periodization for optimal performance in individual and team sports. Int. J. Sports Physiol. Perform. 2018, 13, 538–561. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.T.; Rouhani, P.; Fischer, K.W. The Science of the Individual. Mind, Brain, Educ. 2013, 7, 152–158. [Google Scholar] [CrossRef]
- Molenaar, P.C.M. A Manifesto on Psychology as Idiographic Science: Bringing the Person Back Into Scientific Psychology, This Time Forever. Meas. Interdiscip. Res. Perspect. 2004, 2, 201–218. [Google Scholar] [CrossRef]
- Nesselroade, J.R.; Molenaar, P.C.M. Analyzing intra-person variation: Hybridizing the ACE Model with P-technique factor analysis and the idiographic filter. Behav. Genet. 2010, 40, 776–783. [Google Scholar] [CrossRef] [Green Version]
- Balagué, N.; Pol, R.; Torrents, C.; Ric, A.; Hristovski, R. On the Relatedness and Nestedness of Constraints. Sport. Med. Open 2019, 5, 6. [Google Scholar] [CrossRef]
- Montull, L.; Vázquez, P.; Rocas, L.; Hristovski, R.; Balagué, N. Flow as an Embodied State. Informed Awareness of Slackline Walking. Front. Psychol. 2020, 10, 2993. [Google Scholar] [CrossRef] [PubMed]
- Torrents, C.; Balagué, N.; Hristovski, R.; Almarcha, M.; Kelso, J.A.S. Metastable Coordination Dynamics of Collaborative Creativity in Educational Settings. Sustainability 2021, 13, 2696. [Google Scholar] [CrossRef]
- Eurofound and the International Labour Office. Working Anytime, Anywhere: The Effects on the World of Work; Eurofound and the International Labour Office: Geneva, Switzerland, 2017. [Google Scholar]
- Barredo, R.D.V.; Mahon, K. The Effects of Exercise and Rest Breaks on Musculoskeletal Discomfort during Computer Tasks: An Evidence-Based Perspective. J. Phys. Ther. Sci. 2007, 19, 151–163. [Google Scholar] [CrossRef]
- Tremblay, M. Letter to the editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl. Physiol. Nutr. Metab. 2012, 37, 540–542. [Google Scholar] [CrossRef]
- Wu, X.Y.; Han, L.H.; Zhang, J.H.; Luo, S.; Hu, J.W.; Sun, K. The influence of physical activity, sedentary behavior on health-related quality of life among the general population of children and adolescents: A systematic review. PLoS ONE 2017, 12, e0187668. [Google Scholar] [CrossRef] [Green Version]
- Dewitt, S.; Hall, J.; Smith, L.; Buckley, J.P.; Biddle, S.J.H.; Mansfield, L.; Gardner, B. Office workers’ experiences of attempts to reduce sitting-time: An exploratory, mixed-methods uncontrolled intervention pilot study. BMC Public Health 2019, 19, 819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Uffelen, J.G.Z.; Wong, J.; Chau, J.Y.; Van Der Ploeg, H.P.; Riphagen, I.; Gilson, N.D.; Burton, N.W.; Healy, G.N.; Thorp, A.A.; Clark, B.K.; et al. Occupational sitting and health risks: A systematic review. Am. J. Prev. Med. 2010, 39, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Biddle, S.J.H.; O’Connell, S.E.; Davies, M.J.; Dunstan, D.; Edwardson, C.L.; Esliger, D.W.; Gray, L.J.; Yates, T.; Munir, F. Reducing sitting at work: Process evaluation of the SMArT Work (Stand More at Work) intervention. Trials 2020, 21, 403. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults a systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef]
- Kravitz, L.; Chantal, A.V. American Collegue of Sports Medicine Reducing Sedentary Behaviors: Sit Less and Move More A Complete Physical Activity Program. Available online: https://www.acsm.org/docs/default-source/files-for-resource-library/reducing-sedentary-behaviors-sit-less-and-move-more.pdf?sfvrsn=4da95909_2 (accessed on 7 January 2021).
- Owen, N.; Sparling, P.B.; Healy, G.N.; Dunstan, D.W.; Matthews, C.E. Sedentary behavior: Emerging evidence for a new health risk. Mayo Clin. Proc. 2010, 85, 1138–1141. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.P.; Locke, C.D. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. J. Sci. Med. Sport 2015, 18, 294–298. [Google Scholar] [CrossRef]
- Shrestha, N.; Kukkonen-Harjula, K.T.; Verbeek, J.H.; Ijaz, S.; Hermans, V.; Bhaumik, S. Workplace interventions for reducing sitting at work. Cochrane Database Syst. Rev. 2016, 2016, CD010912. [Google Scholar] [CrossRef] [Green Version]
- Carnethon, M.; Whitsel, L.P.; Franklin, B.A.; Kris-Etherton, P.; Milani, R.; Pratt, C.A.; Wagner, G.R. Worksite wellness programs for cardiovascular disease prevention: A policy statement from the American Heart Association. Circulation 2009, 120, 1725–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hills, L. Computer ergonomics: The medical practice guide to developing good computer habits. J. Med. Pract. Manage. 2011, 26, 221. [Google Scholar]
- O’Sullivan, K.; O’Sullivan, P.; O’Sullivan, L.; Dankaerts, W. What do physiotherapists consider to be the best sitting spinal posture? Man. Ther. 2012, 17, 432–437. [Google Scholar] [CrossRef]
- Slater, D.; Korakakis, V.; O’Sullivan, P.; Nolan, D.; O’Sullivan, K. “Sit up straight”: Time to Re-evaluate. J. Orthop. Sports Phys. Ther. 2019, 49, 562–564. [Google Scholar] [CrossRef]
- Pol, R.; Hristovski, R.; Medina, D.; Balague, N. From microscopic to macroscopic sports injuries. Applying the complex dynamic systems approach to sports medicine: A narrative review. Br. J. Sports Med. 2019, 53, 1214–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferri, N.; Gamelli, I. Pedagogia del Corpo-Embodied Pedagogy: An Italian perspective. In Proceedings of the a Body of Knowledge-Embodied Cognition and the Arts Conference, Irvine, CA, USA, 8 January 2018. [Google Scholar]
- Korakakis, V.; O’Sullivan, K.; O’Sullivan, P.B.; Evagelinou, V.; Sotiralis, Y.; Sideris, A.; Sakellariou, K.; Karanasios, S.; Giakas, G. Physiotherapist perceptions of optimal sitting and standing posture. Musculoskelet. Sci. Pract. 2019, 39, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Claus, A.P.; Hides, J.A.; Moseley, G.L.; Hodges, P.W. Is “ideal” sitting posture real?: Measurement of spinal curves in four sitting postures. Man. Ther. 2009, 14, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, H.; Mitsuhashi, T.; Sako, S.; Goto, R.; Nakai, T.; Inaba, R. Effects of a dynamic chair on pelvic mobility, fatigue, and work efficiency during work performed while sitting: A comparison of dynamic sitting and static sitting. J. Phys. Ther. Sci. 2016, 28, 1759–1763. [Google Scholar] [CrossRef] [Green Version]
- Loh, R.; Stamatakis, E.; Folkerts, D.; Allgrove, J.E.; Moir, H.J. Effects of Interrupting Prolonged Sitting with Physical Activity Breaks on Blood Glucose, Insulin and Triacylglycerol Measures: A Systematic Review and Meta-analysis. Sport. Med. 2020, 50, 295–330. [Google Scholar] [CrossRef] [Green Version]
- Climie, R.E.; Grace, M.S.; Larsen, R.L.; Dempsey, P.C.; Oberoi, J.; Cohen, N.D.; Owen, N.; Kingwell, B.A.; Dunstan, D.W. Regular brief interruptions to sitting after a high-energy evening meal attenuate glycemic excursions in overweight/obese adults. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Tate, D.F.; Lyons, E.J.; Valle, C.G. High-tech tools for exercise motivation: Use and role of technologies such as the internet, mobile applications, social media, and video games. Diabetes Spectr. 2015, 28, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caljouw, S.R.; De Vries, R.; Withagen, R. RAAAF’s office landscape The End of Sitting: Energy expenditure and temporary comfort when working in non-sitting postures. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Sayed, M.A.; Walsh, K.; Sheikh, Z. COVID-19 and the rise of the full ‘Fitness’ friction burn. Burns 2020, 46, 1717. [Google Scholar] [CrossRef] [PubMed]
- Hristovski, R.; Balagué, N. Harnessing the intrinsic environment brain-body metastability. Toward multi-time-scale load stimulator/simulator systems. Res. Phys. Educ. Sport Heal. 2012, 1, 71–76. [Google Scholar]
- Rietveld, E. Bodily intentionality and social affordances in context. In Consciousness in Interaction: The Role of the Natural and Social Context in Shaping Consciousness; Paglieri, F., Ed.; John Benjamins Publishing Company: Amsterdam, The Netherlands, 2012; pp. 207–226. [Google Scholar]
- Djebbara, Z.; Fich, L.B.; Gramann, K. Architectural Affordance Impacts Human Sensorimotor Brain Dynamics. bioRxiv 2020. [Google Scholar] [CrossRef]
- Abramova, E.; Slors, M. Social cognition in simple action coordination: A case for direct perception. Conscious. Cogn. 2015, 36, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Kiverstein, J.; Miller, M. The embodied brain: Towards a radical embodied cognitive neuroscience. Front. Hum. Neurosci. 2015, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, J.Y.; Davids, K.; Hristovski, R.; Araújo, D.; Passos, P. Nonlinear pedagogy: Learning design for self-organizing neurobiological systems. New Ideas Psychol. 2011, 29, 189–200. [Google Scholar] [CrossRef]
- Withagen, R.; Araújo, D.; de Poel, H.J. Inviting affordances and agency. New Ideas Psychol. 2017, 45, 11–18. [Google Scholar] [CrossRef]
- Hristovski, R.; Davids, K.; Araujo, D. Information for regulating action in sport: Metastability and emergence of tactical solutions under ecological constraints. In Perspectives on Cognition and Action in Sport; Raab, M., Araujo, D., Ripoll, H., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 43–57. ISBN 978-1-60692-390-0. [Google Scholar]
- Frijda, N.H.; Ridderinkhof, K.R.; Rietveld, E. Impulsive action: Emotional impulses and their control. Front. Psychol. 2014, 5, 518. [Google Scholar] [CrossRef] [Green Version]
- Jelić, A.; Tieri, G.; De Matteis, F.; Babiloni, F.; Vecchiato, G. The enactive approach to architectural experience: A neurophysiological perspective on embodiment, motivation, and affordances. Front. Psychol. 2016, 7, 481. [Google Scholar] [CrossRef] [Green Version]
- Davids, K.; Araujo, D.; Hristovski, R.; Passos, P.; Chow, J.Y. Ecological dynamics and motor learning design in sport. In Skill Acquisition in Sport: Research, Theory and Practice; William, N., Ed.; Routledge: London, UK, 2012; pp. 112–130. [Google Scholar]
- Rietveld, E.; Kiverstein, J. A Rich Landscape of Affordances. Ecol. Psychol. 2014, 26, 325–352. [Google Scholar] [CrossRef]
- Withagen, R.; Caljouw, S.R. ‘The End of Sitting’: An Empirical Study on Working in an Office of the Future. Sport. Med. 2016, 46, 1019–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rietveld, E. Situated normativity: The normative aspect of embodied cognition in unreflective action. Mind 2008, 117, 973–997. [Google Scholar] [CrossRef] [Green Version]
- Schultheis, M.T.; Rizzo, A.A. The application of virtual reality technology in rehabilitation. Rehabil. Psychol. 2001, 46, 296–311. [Google Scholar] [CrossRef]
- Riva, G. Virtual reality: An experiential tool for clinical psychology. Br. J. Guid. Couns. 2009, 37, 337–345. [Google Scholar] [CrossRef]
- Lohse, K.; Shirzad, N.; Verster, A.; Hodges, N.; Van Der Loos, H.F.M. Video games and rehabilitation: Using design principles to enhance engagement in physical therapy. J. Neurol. Phys. Ther. 2013, 37, 166–175. [Google Scholar] [CrossRef]
- Pirovano, M.; Surer, E.; Mainetti, R.; Lanzi, P.L.; Alberto Borghese, N. Exergaming and rehabilitation: A methodology for the design of effective and safe therapeutic exergames. Entertain. Comput. 2016, 14, 55–65. [Google Scholar] [CrossRef]
- Barry, G.; Galna, B.; Rochester, L. The role of exergaming in Parkinson’s disease rehabilitation: A systematic review of the evidence. J. Neuroeng. Rehabil. 2014, 11, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laufer, Y.; Dar, G.; Kodesh, E. Does a Wii-based exercise program enhance balance control of independently functioning older adults? A systematic review. Clin. Interv. Aging 2014, 9, 1803–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravenek, K.E.; Wolfe, D.L.; Hitzig, S.L. A scoping review of video gaming in rehabilitation. Disabil. Rehabil. Assist. Technol. 2016, 11, 445–453. [Google Scholar] [CrossRef]
- Ruivo, J.A. Exergames and cardiac rehabilitation. J. Cardiopulm. Rehabil. Prev. 2014, 34, 2–20. [Google Scholar] [CrossRef]
- Thomas, S.; Fazakarley, L.; Thomas, P.W.; Collyer, S.; Brenton, S.; Perring, S.; Scott, R.; Thomas, F.; Thomas, C.; Jones, K.; et al. Mii-vitaliSe: A pilot randomised controlled trial of a home gaming system (Nintendo Wii) to increase activity levels, vitality and well-being in people with multiple sclerosis. BMJ Open 2017, 7, e01696. [Google Scholar] [CrossRef] [PubMed]
- Staiano, A.E.; Beyl, R.A.; Guan, W.; Hendrick, C.A.; Hsia, D.S.; Newton, R.L. Home-based exergaming among children with overweight and obesity: A randomized clinical trial. Pediatr. Obes. 2018, 13, 724–733. [Google Scholar] [CrossRef]
- Nitz, J.C.; Kuys, S.; Isles, R.; Fu, S. Is the Wii FitTM a new-generation tool for improving balance, health and well-being? A pilot study. Climacteric 2010, 13, 487–491. [Google Scholar] [CrossRef]
- Kliem, A.; Wiemeyer, J. Comparison of a Traditional and a Video Game Based Balance Training Program. Int. J. Comput. Sci. Sport 2010, 9, 80–91. [Google Scholar]
- Mhatre, P.V.; Vilares, I.; Stibb, S.M.; Albert, M.V.; Pickering, L.; Marciniak, C.M.; Kording, K.; Toledo, S. Wii Fit Balance Board Playing Improves Balance and Gait in Parkinson Disease. PM R 2013, 5, 769–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-Gómez, J.A.; Lloréns, R.; Alcñiz, M.; Colomer, C. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: A pilot randomized clinical trial in patients with acquired brain injury. J. Neuroeng. Rehabil. 2011, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schatton, C.; Synofzik, M.; Fleszar, Z.; Giese, M.A.; Schöls, L.; Ilg, W. Individualized exergame training improves postural control in advanced degenerative spinocerebellar ataxia: A rater-blinded, intra-individually controlled trial. Park. Relat. Disord. 2017, 39, 80–84. [Google Scholar] [CrossRef]
- Prosperini, L.; Fortuna, D.; Giannì, C.; Leonardi, L.; Marchetti, M.R.; Pozzilli, C. Home-based balance training using the Wii balance board: A randomized, crossover pilot study in multiple sclerosis. Neurorehabil. Neural Repair 2013, 27, 516–525. [Google Scholar] [CrossRef]
- Viana, R.B.; De Lira, C.A.B. Exergames as Coping Strategies for Anxiety Disorders during the COVID-19 Quarantine Period. Games Health J. 2020, 9, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Dettmers, C.; Gruber, M. Exergaming with additional postural demands improves balance and gait in patients with multiple sclerosis as much as conventional balance training and leads to high adherence to home-based balance training. Arch. Phys. Med. Rehabil. 2014, 95, 1803–1809. [Google Scholar] [CrossRef]
- Boyette, L.W.; Lloyd, A.; Manuel, S.; Boyette, J.E.; Echt, K.V. Development of an exercise expert system for older adults. J. Rehabil. Res. Dev. 2001, 38, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulikowski, P.; Zdziebko, T. Deep learning-enhanced framework for performance evaluation of a recommending interface with varied recommendation position and intensity based on eye-tracking equipment data processing. Electronics 2020, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Leavy, J.; Jancey, J. Stand by Me: Qualitative Insights into the Ease of Use of Adjustable Workstations. AIMS Public Heal. 2016, 3, 644–662. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.J.; Boddy, K.; Stein, K.; Whear, R.; Barton, J.; Depledge, M.H. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 2011, 45, 1761–1772. [Google Scholar] [CrossRef]
- Stefani, L.; Klika, R.; Mascherini, G.; Mazzoni, F.; Lunghi, A.; Petri, C.; Petreni, P.; Di Costanzo, F.; Maffulli, N.; Galanti, G. Effects of a home-based exercise rehabilitation program for cancer survivors. J. Sports Med. Phys. Fitness 2019, 59, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Fentem, P.H. Exercise: A prescription for health? Self-medication: The benefits of exercise. Br. J. Sports Med. 1978, 12, 223–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, R.; Kinsella-Shaw, J. The survival value of informed awareness. J. Conscious. Stud. 2007, 14, 137–154. [Google Scholar]
Characteristics | Exercise Physiology | Network Physiology of Exercise |
---|---|---|
Main goal | Calorie expenditure Aerobic endurance and strength development | Functional diversity potential development |
Recommendations | Universal | Personalized |
Method | Programmed repetitions | Challenging variations |
Dose/intensity | Preprogrammed | Contextually co-adapted |
Practice | Monotonous, boring | Enjoyable, motivating |
Monitoring | Based on technical devices | Based on somatic awareness |
Professionals role | Prescribers | Co-designers |
Users’ role | Executers | Co-designers |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarcha, M.; Balagué, N.; Torrents, C. Healthy Teleworking: Towards Personalized Exercise Recommendations. Sustainability 2021, 13, 3192. https://doi.org/10.3390/su13063192
Almarcha M, Balagué N, Torrents C. Healthy Teleworking: Towards Personalized Exercise Recommendations. Sustainability. 2021; 13(6):3192. https://doi.org/10.3390/su13063192
Chicago/Turabian StyleAlmarcha, Maricarmen, Natàlia Balagué, and Carlota Torrents. 2021. "Healthy Teleworking: Towards Personalized Exercise Recommendations" Sustainability 13, no. 6: 3192. https://doi.org/10.3390/su13063192
APA StyleAlmarcha, M., Balagué, N., & Torrents, C. (2021). Healthy Teleworking: Towards Personalized Exercise Recommendations. Sustainability, 13(6), 3192. https://doi.org/10.3390/su13063192