Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation
Abstract
:1. Introduction
2. Background and Previous Studies
2.1. Fragmentation Characteristics
2.1.1. Area
2.1.2. Edge, Core Area and Shape
2.1.3. Contrast
2.1.4. Aggregation
2.1.5. Diversity
2.2. Overview of Forest Fragmentation Effects
2.3. Studies of Forest Fragmentation
3. Materials and Methods
3.1. Location Selection
3.2. Remotely Sensed Imagery
3.3. Image Manipulation
3.4. Classification
3.5. Accuracy Assessment
3.6. Land Cover Change Assessment
3.7. Fragmentation Analysis
4. Results
4.1. Land Cover Change
4.2. Fragmentation Metrics
5. Species Impacts from Different Fragmentation Drivers
5.1. Analysis of Agricultural Expansion Metrics
5.2. Analysis of Commodity-Driven Deforestation Metrics
5.3. Comparison of Metrics Associated with Different Drivers
5.3.1. Area Metrics
5.3.2. Edge Metrics
5.3.3. Shape Metrics
5.3.4. Core Area Metrics
5.3.5. Aggregation Metrics
5.3.6. Contrast Metrics
5.4. Fragmentation Effects on Species
5.4.1. Area Metrics Effects
5.4.2. Edge Metrics Effects
5.4.3. Shape Metrics Effects
5.4.4. Core Area Metrics Effects
5.4.5. Aggregation Metrics Effects
6. Discussion
6.1. Fragmentation Characteristic Changes and Impacts
6.2. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilcove, D.S.; Mclellan, C.; Dobson, A.P. Habitat fragmentation in the temperate zone. Conserv. Biol. 1986, 6, 237–256. [Google Scholar]
- Minnemeyer, S.; Potapov, P.; Laestadius, L. World’s Last Intact Forests Are Becoming Increasingly Fragmented. World Resource Institute. 2017. Available online: https://www.wri.org/blog/2017/01/world-s-last-intact-forests-are-becoming-increasingly-fragmented (accessed on 7 May 2020).
- Potapov, P.; Hansen, M.C.; Laestadius, L.; Turubanova, S.; Yaroshenko, A.; Thies, C.; Smith, W.; Zhuravleva, I.; Komarova, A.; Minnemeyer, S.; et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 2017, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Moomaw, W.R.; Masino, S.A.; Faison, E.K. Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. Front. For. Glob. Chang. 2019, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Betts, M.G.; Wolf, C.; Ripple, W.J.; Phalan, B.; Millers, K.A.; Duarte, A.; Butchart, S.H.M.; Levi, T. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 2017, 547, 441–444. [Google Scholar] [CrossRef] [PubMed]
- WCS. Intact Forests. 2020. Available online: https://www.wcs.org/our-work/solutions/climate-change/intact-forests (accessed on 7 May 2020).
- Schwartz, J. 11 of the World’s Most Threatened Forests. World Wildlife Fund. 2015. Available online: https://www.worldwildlife.org/stories/11-of-the-world-s-most-threatened-forests (accessed on 22 May 2020).
- Kalamandeen, M.; Gloor, E.; Mitchard, E.; Quincey, D.; Ziv, G.; Spracklen, D.; Spracklen, B.; Adami, M.; Aragão, L.E.O.C.; Galbraith, D. Pervasive Rise of Small-scale Deforestation in Amazonia. Sci. Rep. 2018, 8, 1600. [Google Scholar] [CrossRef] [Green Version]
- Harris, N.; Dow Goldman, E.; Weisse, M.; Barrett, A. When a Tree Falls, Is It De forestation? World Resource InstituteViewed 6.5.20. 2018. Available online: https://www.wri.org/blog/2018/09/when-tree-falls-it-deforestation (accessed on 6 May 2020).
- Khoroshev, A.V. Landscape Patterns in a Range of Spatio-Temporal Scales; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Costanza, J.K.; Riitters, K.; Vogt, P.; Wickham, J. Describing and analyzing landscape patterns: Where are we now, and where are we going? Landsc. Ecol. 2019, 34, 2049–2055. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K. ‘Fragstats Help’, University of Massachusetts, Amherst. 2015. Available online: https://www.umass.edu/landeco/research/fragstats/documents/fragstats_documents.html (accessed on 18 July 2020).
- Ethier, K.; Fahrig, L. Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landsc. Ecol. 2011, 26, 865–876. [Google Scholar] [CrossRef]
- Fahrig, L. Ecological Responses to Habitat Fragmentation Per Se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Gibson, L.; Lynam, A.J.; Bradshaw, C.J.A.; He, F.; Bickford, D.P.; Woodruff, D.S.; Bumrungsri, S.; Laurance, W.F. Near-Complete Extinction of Native Small Mammal Fauna 25 Years After Forest Fragmentation. Science 2013, 341, 1508–1510. [Google Scholar] [CrossRef]
- Sisk, T.; Battin, J. Habitat edges and avian ecology: Geographic patterns and insights for western landscapes. Stud. Avian Biol. 2002, 25, 30–48. [Google Scholar]
- Cavitt, J.E.; Martin, T.E. Effects of Forest Fragmentation on Brood Parasitism and Nest predation in Eastern and Western Landscapes; Studies in Avian Biology; USGS: Reston, VA, USA, 2002; pp. 73–80. [Google Scholar]
- Huhta, E.; Aho, T.; Jäntti, A.; Suorsa, P.; Kuitunen, M.; Nikul, A.; Hakkarainen, H. Forest Fragmentation Increases Nest Predation in the Eurasian Treecreeper. Conserv. Biol. 2004, 18, 148–155. [Google Scholar] [CrossRef]
- Martìnez-Morales, M.A. Landscape patterns influencing bird assemblages in a fragmented neotropical cloud forest. Biol. Conserv. 2005, 121, 117–126. [Google Scholar] [CrossRef]
- Edwards, D. Why Forest Fragmentation Risks Mass Extinctions. World Economic Forum. 2015. Available online: https://www.weforum.org/agenda/2015/03/why-forest-fragmentation-risks-mass-extinctions/ (accessed on 21 May 2020).
- Volpe, N.L.; Robinson, W.D.; Frey, S.J.K.; Hadley, A.S.; Betts, M.G. Tropical Forest Fragmentation Limits Movements, but Not Occurrence of a Generalist Pollinator Species. PLoS ONE 2016, 11, e0167513. [Google Scholar] [CrossRef] [Green Version]
- Szacki, J. Spatially structured populations: How much do they match the classicmetapopulation concept? Landsc. Ecol. 1999, 14, 369–379. [Google Scholar] [CrossRef]
- Brittingham, M.C.; Temple, S.A. Have Cowbirds Caused Forest Songbirds to Decline? BioScience 1983, 33, 31–35. [Google Scholar] [CrossRef]
- May, F.; Rosenbaum, B.; Schurr, F.M.; Chase, J.M. The geometry of habitat fragmentation: Effects of species distribution patterns on extinction risk due to habitat conversion. Ecol. Evol. 2019, 9, 2775–2790. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, G.A.; Marquet, P. How Landscapes Change: Human Disturbance and Ecosystem Fragmentation in the Americas; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- USDA. White River National Forest (N.F.), Aspen Highlands Ski Area, Pitkin County: Environmental Impact Statement. 1996. Available online: https://www.fs.usda.gov/wps/portal/fsinternet/cs/projects/whiteriver/landmanagement/projects?sortby=3&archive=1 (accessed on 20 June 2020).
- Lehtinen, R.M.; Ramanamanjato, J.B.; Raveloarison, J.G. Edge effects and extinction proneness in a herpetofauna from Madagascar. Biodivers. Conserv. 2003, 12, 1357–1370. [Google Scholar] [CrossRef]
- Bueno, A.S.; Dantas, S.M.; Henriques, L.M.P.; Peres, C.A. Ecological traits modulate bird species responses to forest fragmentation in an Amazonian anthropogenic archipelago. Divers. Distrib. 2018, 24, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Keinath, D.A.; Doak, D.F.; Hodges, K.E.; Prugh, L.R.; Fagan, W.; Sekercioglu, C.H.; Buchart, S.H.M.; Kauffman, M. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 2017, 26, 115–127. [Google Scholar] [CrossRef]
- Ryser, R.; Häussler, J.; Stark, M.; Brose, U.; Rall, B.C.; Guill, C. The biggest losers: Habitat isolation deconstructs complex food webs from top to bottom. Proc. R. Soc. Biol. Sci. 2019, 286. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.F.; Margules, C.R.; Lawrence, J.F. Which Traits of Species Predict Population Declines in Experimental Forest Fragments? Ecology 2000, 81, 5. [Google Scholar] [CrossRef]
- Ewers, R.M.; Didham, R. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 2006, 81, 117–142. [Google Scholar] [CrossRef]
- National Geographic. Generalist and Specialist Species. 2020. Available online: nationalgeographic.org/encyclopedia/generalist-and-specialist-species/ (accessed on 20 February 2021).
- Hermes, C.; Döpper, A.; Schaefer, H.M.; Segelbacher, G. Effects of forest fragmentation on the morphological and genetic structure of a dispersal-limited, endangered bird species. Nat. Conserv. 2016, 16, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Larrey-Lassalle, P.; Esnouf, A.; Roux, P.; Lopez-Ferber, M.; Rosenbaum, R.K.; Loiseau, E. A methodology to assess habitat fragmentation effects through regional indexes: Illustration with forest biodiversity hotspots. Ecol. Indic. 2018, 89, 543–551. [Google Scholar] [CrossRef] [Green Version]
- WRI. About GFW—Global Forest Watch. 2020. Available online: https://www.globalforestwatch.org/about (accessed on 7 May 2020).
- Vasconcelos, A.; Bernasconi, P.; Guidotti, V.; Silgueiro, V.; Valdiones, A.; Carvalho, T.; Bellfield, H.; Pinto, L.F.G. Illegal Deforestation and Brazilian Soy Exports: The Case of Mato Grosso (No. 4). Trase, Imaflora, ICV. 2020. Available online: http://resources.trase.earth/documents/issuebriefs/TraseIssueBrief4_EN.pdf (accessed on 13 April 2020).
- Strohm, K.; Bedoya, D.V.; Osaki, M. The Typical Farm BR1300MT in Mato Grosso, Brazil, Agri Benchmark. 2012. Available online: http://www.agribenchmark.org/comvosfilelist/198/2FnOmgM6KXahVbKWXS478zl_8UOP-ZFCdqllIPfeGa8-5q3HxUkHbbX0469GYSiCmLwdFVllnAmb4WZZVItvjZjlaGkLrJ6W0yaeShfDRggx99j0X8hn8vCz9BOPOi3Oein1jlukd6Ax7hyAxOSJPA$$/bccf5c922e7d8bc803e92bce33d8ef3d (accessed on 22 February 2021).
- WRI. New Study Finds More Than a Quarter of Global Tree Cover Loss is Commodity-Driven Deforestation. 2018. Available online: https://www.wri.org/news/2018/09/release-new-study-finds-more-quarter-global-tree-cover-loss-commodity-driven (accessed on 8 August 2020).
- Global Ag Media. Rondonia Exports the Most Beef in Brazil. The Cattle Site. 2013. Available online: https://www.thecattlesite.com/processing/news/23203/rondonia-exports-the-most-beef-in-brazil/ (accessed on 22 February 2021).
- Volkoff, B.; Fujita de Castro Mello, F.; Malta Ferreira Maia, S.; Eduardo Pellegrino Cerri, C. Landscape and soil regionalization in southern Brazilian Amazon and contiguous areas: Methodology and relevance for ecological studies. Sci. Agric. 2012, 69, 217–225. [Google Scholar] [CrossRef] [Green Version]
- USGS. EarthExplorer—Home. 2020. Available online: https://earthexplorer.usgs.gov/ (accessed on 8 June 2020).
- Young, N.E.; Anderson, R.S.; Chignell, S.M.; Vorster, A.G.; Lawrence, R.; Evangelista, P.H. A survival guide to Landsat preprocessing. Ecology 2017, 98, 920–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USGS. Using the USGS Landsat Level-1 Data Product. 2020. Available online: https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product (accessed on 16 June 2020).
- Glen, S. Cohen’s Kappa Statistic. 2014. Available online: https://www.statisticshowto.com/cohens-kappa-statistic/ (accessed on 15 June 2020).
- IUCN. The IUCN Red List of Threatened Species. 2020. Available online: https://www.iucnredlist.org/en (accessed on 23 July 2020).
- Gardner, A.L. Armadillo—Mammal. 2020. Available online: https://www.britannica.com/animal/armadillo-mammal (accessed on 29 July 2020).
- National Geographic. Giant Anteater. 2011. Available online: https://www.nationalgeographic.com/animals/mammals/g/giant-anteater/ (accessed on 29 July 2020).
- Animalia. White-Cheeked Spider Monkey—Facts, Diet, Habitat & Pictures. Viewed 27.6.29. 2018. Available online: http://anialia.bio/white-cheeked-spider-monkey (accessed on 25 April 2020).
- Lang, C. Primate Factsheets: Black Spider monkey (Ateles paniscus) Taxonomy, Morphology, & Ecology. 2007. Available online: http://pin.primate.wisc.edu/factsheets/entry/black-spider-monkey (accessed on 29 July 2020).
- NEPC. Red-Handed Howler. 2020. Available online: https://www.neprimateconservancy.org/red-handed-howler.html (accessed on 29 July 2020).
- NEPC. Bearded Capuchin. 2020. Available online: https://www.neprimateconservancy.org/bearded-capuchin.html (accessed on 29 July 2020).
- Rogers, K. Katydid—Description, Facts, & Sound. 2020. Available online: https://www.britannica.com/animal/long-horned-grasshopper (accessed on 29 July 2020).
- Lang, C. Primate Factsheets: Common Marmoset (Callithrix jacchus) Taxonomy, Morphology, & Ecology. 2005. Available online: http://pin.primate.wisc.edu/factsheets/entry/common-marmoset/taxon (accessed on 29 July 2020).
- Lang, C.K. Primate Factsheets: Squirrel Monkey (Saimiri) Taxonomy, Morphology, & Ecology. 2006. Available online: http://pin.primate.wisc.edu/factsheets/entry/squirrel-monkey/taxon (accessed on 29 July 2020).
- Kalkman, V. Studies on Phylogeny and Biogeography of Damselflies (Odonata) with Emphasis on the Argiolestidae. Ph.D. Thesis, Universiteit Leiden, Leiden, The Netherlands, 2013. [Google Scholar]
- Ewers, R.M.; Didham, R.K. The Effect of Fragment Shape and Species’ Sensitivity to Habitat Edges on Animal Population Size. Conserv. Biol. 2007, 21, 926–936. [Google Scholar] [CrossRef]
- Lustig, A.; Stouffer, D.B.; Doscher, C.; Worner, S.P. Landscape metrics as a framework to measure the effect of landscape structure on the spread of invasive insect species. Landsc. Ecol. 2017, 32, 2311–2325. [Google Scholar] [CrossRef]
- Ramirez-Reyes, C.; Sims, K.; Potapov, P.; Radeloof, V. Payments for ecosystem services in Mexico reduce forest fragmentation. Ecol. Appl. 2018, 28, 1982–1987. [Google Scholar] [CrossRef] [PubMed]
- Namirembe, S. Introduction to PES and REDD+. Training Workshop on Payments for Ecosystem Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+), Nairobi, 8 August 2011. Presa. 2011. Available online: https://www.forest-trends.org/wp-content/uploads/imported/IntrotoPES.pdf (accessed on 23 March 2020).
- Wang, X.; Blanchet, F.G.; Koper, N. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. 2014, 5, 634–646. [Google Scholar] [CrossRef]
- Parece, T.; McGee, J.A.; Campbell, J.B. Remote Sensing with ArcGIS Pro. Virginia; Geospatial Consortium: Wayland, MA, USA, 2019. [Google Scholar]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
State | Area (km2) | Elevation (m) | ||
---|---|---|---|---|
Mato Grosso | Itanhang’a | 2898 | 350 | |
Tapurah | 4489 | 393 | ||
Ipiranga do Norte | 3467 | 470 | ||
Lucas de Rio Verde | 3645 | 390 | ||
Rondônia | Espigao d’Oeste | 4518 | 280 | |
Pimenta Bueno | 6241 | 195 | ||
Cacoal | 3793 | 206 |
Category | Metric | Description |
---|---|---|
Area related | Total Class Area | The sum area of all patches of a particular class |
% of Landscape | The proportion of the total landscape taken up by a particular class | |
Mean Patch Area | The average area of all patches of a particular class | |
Standard Deviation of Mean Patch Area | The standard deviation away from the mean forest patch area | |
Edge related | Area-weighted edge length | Total edge length of the forest divided by forest area |
Contrast related | Contrast-weighted edge density | The sum of the lengths of all edge segments of a particular patch type multi- plied by their corresponding contrast weights divided by the area for a particular class. |
Shape related | Mean Radius of Gyration | The mean distance between each cell in the patch and the patch centroid |
Perimeter-Area Fractal Dimension | An indication of the departure of each patch from Euclidean geometry rep- resenting an increase in patch shape complexity | |
Mean Contiguity Index | An indication of the spatial connectedness of cells within a grid-cell patch | |
Core-area related | Total Core Area | The sum of the total core area of all patches of a particular class |
Number of disjunct core areas | The total number of core areas which are disjunct and contained within each patch of a particular class | |
Mean Core Area | The average size over all core area patches for a particular class | |
Aggregation related | Mean Euclidean Nearest Neighbour Distance | The average distance between nearest neighbouring patches of the same land class |
Proximity Index | The mean of the sum of patch areas for a particular land class divided by the closest edge-to-edge distance between a patch and the focal area of all patches of the same class within a specified distance. | |
Clumpiness | The proportional deviation of the proportion of like adjacencies of forest cells from that expected under a completely random spatial distribution |
Fragmentation Driver | Metric | Group | Direction of Change |
---|---|---|---|
Agricultural Expansion | Total Area | Area | Decreasing |
Mean Patch Area | Area | Decreasing | |
Standard Deviation of Patch Area | Area | Decreasing | |
Mean Radius of Gyration | Shape | Increasing | |
Mean Contiguity Index | Shape | Increasing | |
Total Core Area | Core Area | Decreasing | |
Mean Patch Core Area | Core Area | Decreasing | |
Mean Proximity Index | Aggregation | Decreasing | |
Weighted Edge Length | Edge | Increasing | |
Commodity-driven Deforestation | Total Area | Area | Decreasing |
Mean Patch Area | Area | Decreasing | |
Standard Deviation of Patch Area | Area | Decreasing | |
Number of disjunct core areas | Core Area | Increasing | |
Mean Patch Core Area | Core Area | Decreasing | |
Mean Proximity Index | Aggregation | Decreasing | |
Euclidean Nearest Neighbour Distance | Aggregation | Increasing |
Species | Area | Class | Trophic Level | Dispersal Ability | Size (kg) | Niche Breadth | Rarity |
---|---|---|---|---|---|---|---|
Giant armadillo | MG, R | M | Omnivore, few predators | Slightly dispersive | <30 | Generalist, diverse range of habitats | V |
Giant anteater | MG, R | M | Omnivore, few predators | Highly dispersive | <63 | Generalist, but requires forested areas | V |
White-cheeked spider monkey | MG | M | Omnivore, several predators | Slightly dispersive | <6 | Specialist, preferring upper levels of primary rainforest canopy | E |
Black-faced black spider monkey | MG, R | M | Frugivore, several predators | Highly dispersive | <10 | Specialist to primary rainforest, does not utilise edge habitats | E |
Spix’s red-handed howler monkey | MG | M | Folivore or frugivore, few predators | Slightly dispersive | <8 | Specialist, preference for dense forest | V |
Bearded capuchin | MG | M | Omnivore, few predators | Highly dispersive males | <3.5 | Generalist | NT |
Cerrado Rhino Katydid | MG | I | Omnivore, many predators | Sedentary | <0.3 | Specialist, adapted to hide in forests | NT |
Golden-backed squirrel monkey | MG, R | M | Omnivore, few predators | Highly dispersive males | <1.3 | Generalist | NT |
Goeldi’s spider monkey | R | M | Omnivore, many predators | Highly dispersive males | <0.6 | Slight preference for dense vegetation | V |
Perissolestes aculeatus | R | I | Carnivore, many predators | Sedentary | <0.1 | Habitat specialist, requires freshwater in rainforests | V |
Rondon’s marmoset | R | M | Omnivore, few predators | Sedentary | <0.3 | Generalist | V |
Black-and-gold howler monkey | R | M | Folivore, very few predators | Slightly sedentary | <7 | Slight preference for dense vegetation | NT |
Black-headed marmoset | R | M | Omnivore, many predators | Highly dispersive | <0.5 | Generalist | NT |
Driver—Agricultural Expansion | Driver—Commodity-Driven Deforestation | |||||
---|---|---|---|---|---|---|
Effects | Significant Fragmentation Metrics | Specific Traits Influenced | Examples of Impacted Species | Significant Fragmentation Metrics | Specific Traits Influenced | Examples of Impacted Species |
Area | Total area, Mean patch area, Standard deviation of mean path area | Trophic level, Dispersal ability, Body size, Niche breadth, Rarity | Giant anteater | Total area, Mean patch area, Standard deviation of mean patch area | Trophic level, Dispersal ability, Body size, Niche breadth, Rarity | Giant anteater |
Edge | Area-weighted edge length | Dispersal ability | Giant anteaters, Black-faced black spider monkey, Bearded capuchin, Golden-backed squirrel monkey | N/A | N/A | N/A |
Shape | Mean radius of gyration, Mean contiguity index | Dispersal ability | Giant anteaters, Black-faced black spider monkey, Bearded capuchin, Golden-backed squirrel monkey | N/A | N/A | N/A |
Isolation | Mean proximity index | N/A | N/A | Mean proximity index, Euclidean nearest neighbour distance | Trophic level, Dispersal ability, Body size, Niche breadth, Rarity | Black-and-gold howler monkey |
Core area | Total core area, Mean patch core area | Niche breadth | White-cheeked spider monkey, Black-faced black spider monkeys, Spix’s red-handed howler monkeys, Cerrado rhino katydid | Number of disjunct core areas, Mean patch core area | Niche breadth | Perisollestes aculeatus, Black-faced black spider monkey |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slattery, Z.; Fenner, R. Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation. Sustainability 2021, 13, 3246. https://doi.org/10.3390/su13063246
Slattery Z, Fenner R. Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation. Sustainability. 2021; 13(6):3246. https://doi.org/10.3390/su13063246
Chicago/Turabian StyleSlattery, Zoe, and Richard Fenner. 2021. "Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation" Sustainability 13, no. 6: 3246. https://doi.org/10.3390/su13063246
APA StyleSlattery, Z., & Fenner, R. (2021). Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation. Sustainability, 13(6), 3246. https://doi.org/10.3390/su13063246