Knowledge Management for Sustainable Development in the Era of Continuously Accelerating Technological Revolutions: A Framework and Models
Abstract
:1. Introduction
1.1. The Current State
1.2. Methodology
2. The Padkos Model of Knowledge Management for Sustainable Developments
2.1. The Meta-System Layers
2.2. Knowledge Management Mesosystem Model
2.2.1. Knowledge/Human Layer
2.2.1.1. Learning
2.2.1.2. Decision Making
2.2.1.3. Human Actors and Knowledge-Based Systems
2.2.2. Time
2.2.3. Yin-Yang New/Sharing Knowledge Layer
2.2.4. Data/Machine Layer
2.2.4.1. Learning
2.2.4.2. Decision Making
2.2.4.3. Systems
2.2.4.4. Human Actors
2.2.4.5. Additions
2.2.5. Ethics
Homo-Technologicus—“a symbiotic creature in which biology and technology intimately interact”, so that what results is “not simply ‘homo sapiens plus technology’, but rather homo sapiens transformed by ‘technology’ into ‘a new evolutionary unit, undergoing a new kind of evolution in a new environment’” (Longo [177], p. 23), driven by cost efficiencies and instrumental effectiveness within the techno-economic, universal and ontocentric perspectives and expecting adaptation of the ‘homo sapiens’ to the technology.Homo sustainabiliticus—a symbiotic being in which biology, technology and morality intimately interact driven by optimization and balance of costs of the technology solution while modifying it to optimize the user’s adaptation, especially regarding her abilities and the social acceptance recognizing cultural and symbolic differences and environmental responsibilities based on biocentric ethics and the socio-philosophical point of view within her cultural, social, physical, logistic and legal context and cognizant of the ethical dilemmas of adapting the technology to her needs, specifically at the design stage.
- Technologies design and use for Homo Sustainabiliticus should be optimized for the effectiveness from the user/adaptor’s perspective, and NOT (like in the case of Homo Technologicus) for the efficiencies (profit) from the technology creator/provider’s perspective.
- Specifically, such design/use should provide the user/adaptor with “space” for using/adopting the technology within their values and morals, in the autopoietic meaning-self organizing “her context”.
- For an effective design and use to happen, there is a need for transparency (especially at the design, development stage), the user must be educated appropriately to make educated choices about the potential tradeoffs (some of which were discussed above) and have the legal rights to do so, as long as they do not break other laws.
2.2.6. Cybersecurity
2.3. Managing Knowledge Boundaries
3. Implications for the Future—The Macro Trends
3.1. The Macro Trends
3.2. Implications for Research-Theory Building and Model Testing
3.3. Implications for Policy Making
3.4. Implications for Practitioners
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyer, L. Are you Ready for the Fourth Industrial Revolution? Predict. Available online: https://medium.com/predict/are-you-ready-for-the-fourth-industrial-revolution-5ce767ebc16 (accessed on 10 April 2018).
- Keidanren. Toward Realization of the New Economy and Society: Reform of the Economy and Society by the Deepening of “Society 5.0”. Available online: http://www.keidanren.or.jp/en/policy/2016/029_outline.pdf (accessed on 19 April 2016).
- Thompson, W.R. The Kondratieff Waves As Global Social Processes, World System History, Encyclopedia of Life Support Systems, UNESCO; Modelski, G., Denmark, R.A., Eds.; EOLSS Publishers: Oxford, UK, 2009; pp. 174–195. ISBN 978-1-84826-668. [Google Scholar]
- Reinhart, C.M.; Rogoff, K.S. This Time is Different: A Panoramic View of Eight Centuries of Financial Crises; No. w13882; National Bureau of Economic Research: Cambridge, MA, USA, 2008. [Google Scholar]
- Diana, F. The Third Tipping Point. Available online: https://frankdiana.net/2020/07/23/the-third-tipping-point/#more-8510 (accessed on 23 July 2020).
- Russ, M. The probable foundations of Sustainabilism: Information, energy and entropy based definition of capital, Homo Sustainabiliticus and the need for a “new gold”. Ecol. Econ. 2016, 130, 328–338. [Google Scholar] [CrossRef]
- Singularity (ND). Canonical Milestones, Page 20. Available online: http://www.singularity.com/charts/page20.html (accessed on 10 July 2020).
- Roser, M.; Ortiz-Ospina, E.; Ritchie, R. Life Expectancy. Our World in Data. 2019. Available online: https://ourworldindata.org/life-expectancy (accessed on 10 July 2020).
- Prentice, T. Health, History and hard Choices: Funding Dilemmas in a Fast-Changing World. University of Indiana, 2006. Available online: https://www.who.int/global_health_histories/seminars/presentation07.pdf (accessed on 10 July 2020).
- Kronicle, K. World Social Indicators: Life Expectancy. 2017. Available online: https://www.krusekronicle.com/kruse_kronicle/2017/10/world-social-indicators-life-expectancy.html#.X0hG9chKhPZ (accessed on 10 July 2020).
- García-Valls, M.; Dubey, A.; Botti, V. Introducing the new paradigm of social dispersed computing: Applications, technologies and challenges. J. Syst. Archit. 2018, 91, 83–102. [Google Scholar] [CrossRef]
- Uppada, V.; Gokara, M.; Rasineni, G.K. Diagnosis and therapy with CRISPR advanced CRISPR based tools for point of care diagnostics and early therapies. Gene 2018, 656, 22–29. [Google Scholar] [CrossRef]
- Roy Choudhury, A.; Gupta, S.; Chaturvedi, P.K.; Kumar, N.; Pandey, D. Mechanobiology of Cancer Stem Cells and Their Niche. Cancer Microenviron. Off. J. Int. Cancer Microenviron. Soc. 2019, 12, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Alfonseca, M.; Cebrian, M.; Anta, A.F.; Coviello, L.; Abeliuk, A.; Rahwan, I. Superintelligence cannot be contained: Lessons from computability theory. J. Artif. Intell. Res. 2021, 70, 65–76. [Google Scholar] [CrossRef]
- Satell, G. 3 Reasons to Believe the Singularity is Near. Forbes. 2016. Available online: https://www.forbes.com/sites/gregsatell/2016/06/03/3-reasons-to-believe-the-singularity-is-near/#6dce47057b39 (accessed on 12 July 2020).
- Colacino, C. Medicine in a Changing World. Harvard.edu. 2017. Available online: https://hms.harvard.edu/news/medicine-changing-world#:~:text=In%20science%2C%20the%20term%20%E2%80%9Chalf,will%20be%20only%2073%20days (accessed on 12 July 2020).
- Saracco, R. What Would Education be like in 2050. IEEE. 2018. Available online: https://cmte.ieee.org/futuredirections/2018/02/20/what-would-education-be-like-in-2050 (accessed on 12 July 2020).
- Pelster, B.; Stempel, J.; van der Vyver, B. Careers and Learning: Real Time, all the Time. Deloitte.com. 2017. Available online: https://www2.deloitte.com/us/en/insights/focus/human-capital-trends/2017/learning-in-the-digital-age.html (accessed on 12 July 2020).
- Longo, G.O. Homo Technologicus; Meltemi: Roma, Italy, 2001. [Google Scholar]
- Grau, C.; Ginhoux, R.; Riera, A.; Nguyen, T.L.; Chauvat, H.; Berg, M.; Ruffini, G. Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS ONE 2014, 9, e105225. [Google Scholar] [CrossRef]
- Martone, R. Scientist Demonstrate Direct Brain-to-Brain Communication in Humans. Scientific Americam.com. Available online: https://www.scientificamerican.com/article/scientists-demonstrate-direct-brain-to-brain-communication-in-humans/ (accessed on 29 October 2019).
- Martone, R. A successful Artificial Memory has been Created. Scientific American.com. Available online: https://www.scientificamerican.com/article/a-successful-artificial-memory-has-been-created/ (accessed on 27 August 2019).
- Srikameswaran, A. Man with Spinal cord Injury Uses Brain-Computer Interface to Move Prosthetic arm with his Thought. Pitt Chronicle. Available online: https://www.chronicle.pitt.edu/story/man-spinal-cord-injury-uses-brain-computer-interface-move-prosthetic-arm-his-thoughts (accessed on 17 October 2011).
- Ramirez, V.B. MIT’s New Voiceless Interface can Read the Words in your Head. Singularity Hub. Available online: https://singularityhub.com/2018/04/11/mits-new-voiceless-interface-can-read-the-words-in-your-head/ (accessed on 11 April 2018).
- Matyus, A. Elon Musk Says we’re about to Get a Live Look at the Neuralink Brain-Chip Device. Digitaltrends. Available online: https://www.digitaltrends.com/news/elon-musk-neuralink-friday-live-demo-announcement/ (accessed on 26 August 2020).
- Eichacker, N. Financial liberalization and the onset of financial crisis in Western European states between 1983 and 2011: An econometric investigation. N. Am. J. Econ. Financ. 2015, 34, 323–343. [Google Scholar] [CrossRef]
- Reid, J.; Nicol, C.; Burns, N.; Chanda, S. Long-Term Asset Return Study: The Next Financial Crisis. Deutsche Bank Market Research, Deutsche Banks. 2017. Available online: http://www.tramuntalegria.com/wp-content/uploads/2017/09/Long-Term-Asset-Return-Study-The-Next-Financial-Crisis-db.pdf (accessed on 10 July 2020).
- Chareonsuk, C.; Chansa-ngavej, C. Intangible asset management framework for long-term financial performance. Ind. Manag. Data Syst. 2008, 108, 812–828. [Google Scholar] [CrossRef]
- Gu, F.; Lev, B. Time to change your investment model. Financ. Anal. J. 2017, 73, 23–33. [Google Scholar] [CrossRef]
- Lev, B.I.; Srivastava, A. Explaining the Recent Failure of Value Investing NYU Stern School of Business. Available online: https://ssrn.com/abstract=3442539 (accessed on 25 October 2019).
- Demmou, L.; Stefanescu, I.; Arquie, A. Productivity growth and finance: The role of intangible assets—a sector level analysis. In OECD Economics Department Working Papers; No. 1547; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Lev, B. Ending the accounting-for-intangibles status quo. Eur. Account. Rev. 2019, 28, 713–736. [Google Scholar] [CrossRef]
- Arthur, W.B. Positive feedbacks in the economy. Sci. Am. 1990, 262, 92–99. [Google Scholar] [CrossRef]
- Autor, D.; Dorn, D.; Katz, L.F.; Patterson, C.; Van Reenen, J. The fall of the labor share and the rise of superstar firms. Q. J. Econ. 2020, 135, 645–709. [Google Scholar] [CrossRef] [Green Version]
- Roser, M.; Ortiz-Ospina, E. Income Inequality. Our World in Data. 2016. Available online: https://ourworldindata.org/income-inequality (accessed on 10 July 2020).
- Alfani, G. Economic inequality in northwestern Italy: A long-term view (fourteenth to eighteenth centuries). J. Econ. Hist. 2015, 75, 1058–1096. [Google Scholar] [CrossRef] [Green Version]
- Do Something.Org (ND). 11 Facts about Global Poverty. Available online: https://www.dosomething.org/us/facts/11-facts-about-global-poverty (accessed on 12 July 2020).
- Reich, R.B. Aftershock: The Next Economy and America’s Future; Vintage: New York, NY, USA, 2013. [Google Scholar]
- Ferruzza, A.; Baldazzi, B.; Costanzo, L.; Patteri, P.; Tagliacozzo, G.; Ungaro, P. Statistics for Measuring Sustainable Development Goals: Challenges, Opportunities Progress and Innovations. In Proceedings of the 16th Conference of IAOS, Paris, France, 19–21 September 2018. [Google Scholar]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 9 March 2021).
- Bellamy, D. Humans have Now Consumed the Earth’s Natural Resources for the Year. Euronews.com. Available online: https://www.euronews.com/2020/08/22/humans-have-now-consumed-the-earth-s-natural-resources-for-the-year (accessed on 22 August 2020).
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Hodson, A.J. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef] [Green Version]
- Kolbert, E. The Sixth Extinction: An Unnatural History; Henry Holt and Company: New York, NY, USA, 2014. [Google Scholar]
- GAO. Climate Change: Activities of Selected Agencies to Address Potential Impact on Global Migration. Report to Congressional Requesters, US GAO; January 2019. Available online: https://www.gao.gov/assets/700/696460.pdf (accessed on 12 July 2020).
- Carnes, B.A.; Staats, D.; Willcox, B.J. Impact of climate change on elder health. J. Gerontol. Ser. ABiol. Sci. Med Sci. 2014, 69, 1087–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scientific American. The Impact of Global Warming on Human Fatality Rates. Available online: https://www.scientificamerican.com/article/global-warming-and-health/#:~:text=Some%20of%20the%20ways%20global,and%20severity%20of%20heat%20waves%2C (accessed on 17 June 2009).
- Bradley, C.; Hirt, M.; Hudson, S.; Northcote, N.; Smit, S. The Great Acceleration. McKinsey & Company, 2020. Available online: https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Strategy%20and%20Corporate%20Finance/Our%20Insights/The%20great%20acceleration/The-great-acceleration.pdf (accessed on 12 July 2020).
- Leach, M.; MacGregor, H.; Scoones, I.; Wilkinson, A. Post-pandemic transformations: How and why COVID-19 requires us to rethink development. World Dev. 2020, 138, 105233. [Google Scholar] [CrossRef]
- Miles, M.B.; Huberman, A.M. Qualitative Data Analysis: An Expanded Sourcebook; Sage Publications: Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Russ, M. Introduction and a theoretical framework for Knowledge Management for Sustainable Water Systems. In Handbook of Knowledge Management for Sustainable Water Systems; Russ, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Russ, M. The Trifurcation of the Labor Markets in the Networked, Knowledge-Driven, Global Economy. J. Knowl. Econ. 2017, 8, 672–703. [Google Scholar] [CrossRef]
- Heidegger, M. The question concerning technology. In Technology and Values: Essential Readings; Hanks, C., Ed.; Wiley-Blackwell: West Sussex, UK, 1954; pp. 99–113. [Google Scholar]
- Torraco, R.J. Writing integrative literature reviews: Guidelines and examples. Hum. Resour. Dev. Rev. 2005, 4, 356–367. [Google Scholar] [CrossRef]
- Buyya, R.; Calheiros, R.N.; Dastjerdi, A.V. (Eds.) Big Data: Principles and Paradigms; Morgan Kaufmann: Cambridge, MA, USA, 2016. [Google Scholar]
- Liang, Q.; Hainan, N.C. Adaptive learning model and implementation based on big data. In Proceedings of the 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 25–28 May 2019; pp. 183–186. [Google Scholar] [CrossRef]
- Soto-Acosta, P. COVID-19 pandemic: Shifting digital transformation to a high-speed gear. Inf. Syst. Manag. 2020, 37, 260–266. [Google Scholar] [CrossRef]
- Partelow, S. Coevolving Ostrom’s social–ecological systems (SES) framework and sustainability science: Four key co-benefits. Sustain. Sci. 2016, 11, 399–410. [Google Scholar] [CrossRef]
- Vogt, J.M.; Epstein, G.B.; Mincey, S.K.; Fischer, B.C.; McCord, P. Putting the “E” in SES: Unpacking the ecology in the Ostrom social–ecological system framework. Ecol. Soc. 2015, 20, 55. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.Y.; Fan, C.; Lin, Y.P. Development and Deployment of Green Technologies for Sustainable Environment. Environments 2019, 6, 114. [Google Scholar] [CrossRef] [Green Version]
- Sauvé, S.; Bernard, S.; Sloan, P. Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research. Environ. Dev. 2016, 17, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Cash, D.W.; Clark, W.C.; Alcock, F.; Dickson, N.M.; Eckley, N.; Guston, D.H.; Mitchell, R.B. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 2003, 100, 8086–8091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchis, R.; Sanchis-Gisbert, M.R.; Poler, R. Conceptualisation of the three-dimensional matrix of collaborative knowledge barriers. Sustainability 2020, 12, 1279. [Google Scholar] [CrossRef] [Green Version]
- Senge, P. The Fifth Discipline: The Art and Practice of the Learning Organisation; Crown Business: New York, NY, USA, 2006; ISBN 978-0385517256. [Google Scholar]
- Pryshlakivsky, J.; Searcy, C. Sustainable development as a wicked problem. In Managing and Engineering in Complex Situations, Topics in Safety, Risk, Reliability and Quality 21; Kovacic, S.F., Sousa-Poza, A., Eds.; Springer: Dordrecht, the Netherlands, 2013; pp. 109–128. [Google Scholar] [CrossRef]
- Yolles, M. Towards a general hybrid theory in wicked problem structuring, part 2: The relational agency paradigm. Kybernets 2020. [Google Scholar] [CrossRef]
- General Assemply, United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; Division for Sustainable Development Goals: New York, NY, USA, 2015; Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 7 March 2021).
- Elkington, J. ‘Enter the triple bottom line’. In The Triple Bottom Line, Does it All Add Up? Henriques, A., Richardson, J., Eds.; Earthscan Publications: London, UK, 2004; pp. 1–16. [Google Scholar]
- Slaper, T.F.; Hall, T.J. The triple bottom line: What is it and how does it work. Indiana Bus. Rev. 2011, 86, 4–8. [Google Scholar]
- Sivapalan, M.; Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 2015, 51, 6988–7022. [Google Scholar] [CrossRef] [Green Version]
- Garmestani, A.; Twidwell, D.; Angeler, D.G.; Sundstrom, S.; Barichievy, C.; Chaffin, B.C.; Eason, T.; Graham, N.; Granholm, D.; Gunderson, L.; et al. Panarchy: Opportunities and challenges for ecosystem management. Front. Ecol. Environ. 2020, 18, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Russ, M. Knowledge Management Strategies for Business Development; Business Science Reference: Hershey, PA, USA, 2010. [Google Scholar]
- Russ, M.; Fineman, R.; Jones, J.K. Conceptual theory: What do you know? In Knowledge Management Strategies for Business Development; Russ, M., Ed.; Business Science Reference: Hershey, PA, USA, 2010; pp. 1–22. [Google Scholar]
- Botha, D. Knowledge Management and the Digital Native Enterprise. Deloitte & Touche, South Africa. Available online: https://www2.deloitte.com/content/dam/Deloitte/za/Documents/technology-media-telecommunications/za_chapter_on_KM_and_DNEs.pdf (accessed on 29 July 2019).
- Li, J.; Herd, A.M. Shifting practices in digital workplace learning: An integrated approach to learning, knowledge management, and knowledge sharing. Hum. Resour. Dev. Int. 2017, 20, 185–193. [Google Scholar] [CrossRef]
- McGowen, H.E. Human Capital Era Reality: The Skills Gap May Never Close. Forbes.com. Available online: https://www.forbes.com/sites/heathermcgowan/2021/02/03/human-capital-era-reality-the-skills-gap-may-never-close/?sh=440cbd8d2eb0 (accessed on 3 February 2021).
- Prabowo, H.; Cenggoro, T.W.; Budiarto, A.; Perbangsa, A.S.; Muljo, H.H.; Pardamean, B. Utilizing mobile-based deep learning model for managing video in knowledge management system. Int. J. Interact. Mob. Technol. 2018, 12, 62–73. [Google Scholar] [CrossRef]
- Sahay, S.K.; Goel, N.; Patil, V.; Jadliwala, M. Secure Knowledge Management. In Proceedings of the Artificial Intelligence Era. 8th International Conference, SKM 2019, Goa, India, 21–22 December 2019. [Google Scholar]
- Värk, A.; Reino, A. Practice ecology of knowledge management—connecting the formal, informal and personal. J. Doc. 2020, 77. [Google Scholar] [CrossRef]
- Secundo, G.; Schiuma, G.; Jones, P. Strategic knowledge management models and tools for entrepreneurial universities. Manag. Decis. 2019, 57, 3217–3225. [Google Scholar] [CrossRef]
- Samiei, E.; Habibi, J. The mutual relation between Enterprise Resource Planning and Knowledge Management: A review. Glob. J. Flex. Syst. Manag. 2020, 21, 53–66. [Google Scholar] [CrossRef]
- Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid-19 vaccines at pandemic speed. New Engl. J. Med. 2020, 382, 1969–1973. [Google Scholar] [CrossRef]
- Korobiichuk, I.; Fedushko, S.; Juś, A.; Syerov, Y. Methods of determining information support of web community user personal data verification system. In Advances in Intelligent Systems and Computing; Automation 2017. ICA 2017; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; Volume 550, pp. 144–150. [Google Scholar] [CrossRef]
- Kolb, D.A. Management and the learning process. Calif. Manag. Rev. 1976, 18, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Niccolini, F.; Bartolacci, C.; Cristalli, C.; Isidori, D. Virtual and inter-organizational processes of knowledge creation and Ba for sustainable management of rivers. In Handbook of Knowledge Management for Sustainable Water Systems; Russ, M., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 261–285. [Google Scholar]
- Argyris, C. Double-loop learning, teaching, and research. Acad. Manag. Learn. Educ. 2002, 1, 206–218. [Google Scholar] [CrossRef]
- Tosey, P.; Visser, M.; Saunders, M.N. The origins and conceptualizations of ‘triple-loop’ learning: A critical review. Manag. Learn. 2012, 43, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Daft, R. Management, 11th ed.; Cengage Learning: South-Western, UK, 2014. [Google Scholar]
- Wilson, C.; Dowlatabadi, H. Models of decision making and residential energy use. Annu. Rev. Environ. Resour. 2007, 32, 169–203. [Google Scholar] [CrossRef]
- Lau, R.R. Models of decision-Making. In Oxford Handbook of Political Psychology; Sears, D.O., Huddy, L., Jervis, R., Eds.; Oxford University Press: Oxford, UK, 2003; pp. 19–59. Available online: https://psycnet.apa.org/record/2003-88243-002 (accessed on 29 July 2019).
- Milner, T.; Rosenstreich, D. A review of consumer decision-making models and development of a new model for financial services. J. Financ. Serv. Mark. 2013, 18, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Simon, H.A. Administrative decision making. Public Adm. Rev. 1965, 25, 31–37. [Google Scholar] [CrossRef]
- Luoma, J. Model-based organizational decision making: A behavioral lens. Eur. J. Oper. Res. 2016, 249, 816–826. [Google Scholar] [CrossRef]
- Cohen, M.D.; March, J.G.; Olsen, J.P. ‘A garbage can model’ at forty: A solution that still attracts problems. Res. Sociol. Organ. 2012, 36, 19–30. [Google Scholar]
- Russ, M. What kind of an asset is human capital, how should it be measured, and in what markets. In Management, Valuation, and Risk for Human Capital and Human Assets: Building the Foundation for a Multi-Disciplinary, Multi-Level Theory; Russ, M., Ed.; Palgrave-Macmillan: New York, NY, USA, 2014; pp. 1–33. [Google Scholar]
- Russ, M.; Jones, J.G.; Jones, J.K. Knowledge-based strategies and systems: A systematic review. In Knowledge Management Strategies: A Handbook of Applied Technologies; Lytras, M., Russ, M., Maier, R., Naeve, A., Eds.; IGI Publishing: Hershey, PA, USA, 2018; pp. 1–62. [Google Scholar]
- Elliot, S. Transdisciplinary perspectives on environmental sustainability: A resource base and framework for IT-enabled business transformation. Mis Q. 2011, 35, 197–236. [Google Scholar] [CrossRef] [Green Version]
- Myllykoski, J. Strategic Change Emerging in Time. Dissertation at the University of Oulu Graduate School; University of Oulu. Acta Univ. Oul. G 91. 2017. Available online: http://jultika.oulu.fi/files/isbn9789526215426.pdf (accessed on 27 July 2019).
- Albareda, L.; Campos, J.A. Complexity, collective action and water management: The case of Bilbao ria. In Handbook of Knowledge Management for Sustainable Water Systems; Russ, M., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 221–260. [Google Scholar]
- Cohen, M.D.; March, J.G.; Olsen, J.P. A garbage can model of organizational choice. Adm. Sci. Q. 1972, 17, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hernes, T. A Process Theory of Organization; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Tsoukas, H. Don’t simplify, complexify: From disjunctive to conjunctive theorizing in organization and management studies. J. Manag. Stud. 2017, 54, 132–153. [Google Scholar] [CrossRef] [Green Version]
- Kotler, P. Marketing Management; Pearson Education: Boston, MA, USA, 2009. [Google Scholar]
- MacMillan, I.C.; Zemann, L.; Subbanarasimha, P.N. Criteria distinguishing successful from unsuccessful ventures in the venture screening process. J. Bus. Ventur. 1987, 2, 123–137. [Google Scholar] [CrossRef]
- Porter, M.E. The five competitive forces that shape strategy. Harv. Bus. Rev. 2008, 86, 25–40. [Google Scholar]
- Mauborgne, R.; Kim, W.C. Blue Ocean Strategy; Harvard Business School Pub. Corp.: Boston, MA, USA, 2004. [Google Scholar]
- Gudem, M.; Steinert, M.; Welo, T. From lean product development to lean innovation: Searching for a more valid approach for promoting utilitarian and emotional value. Int. J. Innov. Technol. Manag. 2014, 11, 1450008. [Google Scholar] [CrossRef]
- Russ, M.; Jones, J.K.; Fineman, R. Toward a taxonomy of knowledge-based strategies: Early findings. Int. J. Knowl. Learn. 2006, 2, 1–40. [Google Scholar] [CrossRef]
- Agostini, L.; Nosella, A.; Filippini, R. Ambidextrous organisation and knowledge exploration and exploitation: The mediating role of internal networking. Int. J. Bus. Innov. Res. 2017, 14, 122–138. [Google Scholar] [CrossRef]
- Johnsen, T.E. Supplier involvement in new product development and innovation: Taking stock and looking to the future. J. Purch. Supply Manag. 2009, 15, 187–197. [Google Scholar] [CrossRef]
- Solaimani, S.; Talab, A.H.; van der Rhee, B. An integrative view on Lean innovation management. J. Bus. Res. 2019, 105, 109–120. [Google Scholar] [CrossRef]
- Russ, M.; Camp, M.S. Strategic alliance and technology transfer: An extended paradigm. Int. J. Technol. Manag. 1997, 14, 513–527. [Google Scholar] [CrossRef]
- Cegarra-Sánchez, J.; Cegarra-Navarro, J.G.; Chinnaswamy, A.K.; Wensley, A. Exploitation and exploration of knowledge: An ambidextrous context for the successful adoption of telemedicine technologies. Technol. Forecast. Soc. Chang. 2020, 157, 120089. [Google Scholar] [CrossRef]
- Deloitte. Knowledge Management & Big Data. Deloitte.com. 2018. Available online: https://www2.deloitte.com/content/dam/Deloitte/in/Documents/technology-media-telecommunications/in-tmt-knowledge-management-and-big-data-noexp.pdf (accessed on 28 March 2018).
- Ekambaram, A.; Sørensen, A.Ø.; Bull-Berg, H.; Olsson, N.O. The role of big data and knowledge management in improving projects and project-based organizations. Procedia Comput. Sci. 2018, 138, 851–858. [Google Scholar] [CrossRef]
- Lin, Y.C.; Yeh, C.C.; Chen, W.H.; Liu, W.C.; Wang, J.J. The Use of Big Data for Sustainable Development in Motor Production Line Issues. Sustainability 2020, 12, 5323. [Google Scholar] [CrossRef]
- Zhang, L. Big data, knowledge mapping for sustainable development: A water quality index case study. Emerg. Sci. J. 2019, 3, 249–254. [Google Scholar] [CrossRef] [Green Version]
- OECD. OECD Future of Education and Skills 2030. 2019. Available online: http://www.oecd.org/education/2030-project/contact/OECD_Learning_Compass_2030_Concept_Note_Series.pdf (accessed on 16 July 2020).
- World Economic Forum. We Need a Reskilling Revolution: Here’s How to Make it Happen. 2019. Available online: https://www.weforum.org/agenda/2019/04/skills-jobs-investing-in-people-inclusive-growth/ (accessed on 16 July 2020).
- Deloitte. Preparing Tomorrow’s Workforce for the Fourth Industrial Revolution. 2018. Available online: https://www2.deloitte.com/content/dam/Deloitte/global/Documents/About-Deloitte/gx-preparing-tomorrow-workforce-for-4IR.pdf (accessed on 16 July 2020).
- World Economic Forum. Schools of the Future: Defining new Models of Education for the Fourth Industrial Revolution. 2020. Available online: http://www3.weforum.org/docs/WEF_Schools_of_the_Future_Report_2019.pdf (accessed on 16 July 2020).
- Mabbott, A.; Bull, S. Alternative views on knowledge: Presentation of open learner models. In International Conference on Intelligent Tutoring Systems; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Bull, S.; Ginon, B.; Boscolo, C.; Johnson, M. Introduction of learning visualisations and metacognitive support in a persuadable open learner model. In Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, Edinburgh, UK, 25–29 April 2016; pp. 30–39. [Google Scholar]
- Bulathwela, S.; Pérez-Ortiz, M.; Yilmaz, E.; Shawe-Taylor, J. Towards an Integrative Educational Recommender for Lifelong Learners (Student Abstract). Proc. Aaai Conf. Artif. Intell. 2020, 34, 13759–13760. [Google Scholar] [CrossRef]
- Bodily, R.; Kay, J.; Aleven, V.; Jivet, I.; Davis, D.; Xhakaj, F.; Verbert, K. Open learner models and learning analytics dashboards: A systematic review. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge, Sydney, NSW, Australia, 7–9 March 2018; pp. 41–50. Available online: https://research.ou.nl/ws/files/9583293/LAK18_OLM_preprint.pdf (accessed on 16 July 2020).
- Nosratabadi, S.; Mosavi, A.; Duan, P.; Ghamisi, P.; Filip, F.; Band, S.S.; Gandomi, A.H. Data science in economics: Comprehensive review of advanced machine learning and deep learning methods. Mathematics 2020, 8, 1799. [Google Scholar] [CrossRef]
- Ren, C.; Kim, D.K.; Jeong, D. A survey of deep learning in agriculture: Techniques and their applications. J. Inf. Process. Syst. 2020, 16, 1015–1033. [Google Scholar]
- Woschank, M.; Rauch, E.; Zsifkovits, H. A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics. Sustainability 2020, 12, 3760. [Google Scholar] [CrossRef]
- Chen, I.Y.; Joshi, S.; Ghassemi, M.; Ranganath, R. Probabilistic Machine Learning for Healthcare. arXiv 2020, arXiv:2009.11087. [Google Scholar]
- Brynjolfsson, E.; Mitchell, T. What can machine learning do? Workforce implications. Science 2017, 358, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J. Former Go champion beaten by DeepMind retires after declaring AI invincible. The Verge. Available online: https://www.theverge.com/2019/11/27/20985260/ai-go-alphago-lee-se-dol-retired-deepmind-defeat (accessed on 27 November 2019).
- Papernot, N.; McDaniel, P.; Sinha, A.; Wellman, M. SoK: Towards the Science of Security and Privacy in Machine Learning. 2016. Available online: https://arxiv.org/pdf/1611.03814.pdf (accessed on 22 July 2020).
- Kelleher, J.D. Deep Learning; The MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Kostoska, O.; Kocarev, L. A novel ICT framework for sustainable development goals. Sustainability 2019, 11, 1961. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Iansiti, M.; Lakhani, K.R. Competing in the Age of AI; Harvard Business Review Press: Boston, MA, USA, 2020. [Google Scholar]
- Araujo, T.; Helberger, N.; Kruikemeier, S.; De Vreese, C.H. In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI Soc. 2020, 35, 611–623. [Google Scholar]
- Jarrahi, M.H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horiz. 2018, 61, 577–586. [Google Scholar] [CrossRef]
- Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 337–339. [Google Scholar] [CrossRef]
- Colson, E. What AI-Driven Decision Making Looks Like. HBR.org. Available online: https://hbr.org/2019/07/what-ai-driven-decision-making-looks-like (accessed on 8 July 2019).
- Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Khan, S.U. The rise of “big data” on cloud computing: Review and open research issues. Inf. Syst. 2015, 47, 98–115. [Google Scholar] [CrossRef]
- De Mauro, A.; Greco, M.; Grimaldi, M. Understanding Big Data through a systematic literature review: The ITMI model. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1433–1461. [Google Scholar] [CrossRef]
- Gautam, A.; Chatterjee, I. Big Data and Cloud Computing: A Critical Review. Int. J. Oper. Res. Inf. Syst. (Ijoris) 2020, 11, 19–38. [Google Scholar] [CrossRef]
- Worden, D. Next Generation Storage & Networks: A Guide to 5G, BlockChain, IoT, Intercloud, AI, and Big Data Emerging Technologies; Early Manuscript Submitted for Review; Apress, Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Colombo, A.W.; Stamatis, K.; Okyay, K.; Shi, Y.; Shen, Y. Industrial cyberphysical systems: A backbone of the Fourth Industrial Revolution. Ieee Iem 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Fass, D.; Gechter, F. Toward a theory for Bio-Cyber Physical Systems Modelling. arXiv 2016, arXiv:1601.06962. [Google Scholar]
- Pacalo, C.A. Learning style and entrepreneurial operations: A small business research study. Doctoral dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2014. Available online: https://vtechworks.lib.vt.edu/bitstream/handle/10919/64401/Pacalo_CA_D_2014.pdf?sequence=1&isAllowed=y (accessed on 22 July 2020).
- Sobie, C.; Freitas, C.; Nicolai, M. Simulation-driven machine learning: Bearing fault classification. Mech. Syst. Signal Process. 2018, 99, 403–419. [Google Scholar] [CrossRef]
- Yu, B.; Kumbier, K. Veridical data science. Proc. Natl. Acad. Sci. USA 2020, 117, 3920–3929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, T.H.; Foutty, J. AI-Driven Leadership. MIT.edu. Available online: https://sloanreview.mit.edu/article/ai-driven-leadership/ (accessed on 10 August 2018).
- Devenport, T.H.; Mittal, N.; Saif, I. What Separates Analytical Leaders from Laggards? MIT.edu. Available online: https://sloanreview.mit.edu/article/what-separates-analytical-leaders-from-laggards/ (accessed on 3 February 2020).
- Redman, T.C. Top-Down Leadership for Data: Seven Ways to Get Started. MIT.edu. Available online: https://sloanreview.mit.edu/article/top-down-leadership-for-data-seven-ways-to-get-started/ (accessed on 2 December 2020).
- Langhe, B.; Puntoni, S. Leading with Decision-Driven Data Analytics. MIT.edu. Available online: https://sloanreview.mit.edu/article/leading-with-decision-driven-data-analytics/ (accessed on 7 December 2020).
- Shilton, K.; Heidenblad, D.; Porter, A.; Winter, S.; Kendig, M. Role-Playing Computer Ethics: Designing and Evaluating the Privacy by Design (PbD) Simulation. Sci. Eng. Ethics 2020, 26, 2911–2926. [Google Scholar] [CrossRef]
- Deegan, M.; Stave, K.; MacDonald, R.; Andersen, D.; Ku, M.; Rich, E. Simulation-based learning environments to teach complexity: The missing link in teaching sustainable public management. Systems 2014, 2, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Pecl, G.T.; Stuart-Smith, J.; Walsh, P.; Bray, D.; Brians, M.; Burgess, M.; Frusher, S.D.; Gledhill, D.; George, O.; Jackson, G.; et al. Redmap Australia: Challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. 2019, 6, 349. [Google Scholar] [CrossRef]
- McClure, E.C.; Sievers, M.; Brown, C.J.; Buelow, C.A.; Ditria, E.M.; Hayes, M.A.; Pearson, R.M.; Tulloch, V.J.D.; Unsworth, R.K.F.; Connolly, R.M. Artificial Intelligence meets Citizen Science to supercharge ecological monitoring. Patterns 2020, 1, 100109. [Google Scholar] [CrossRef] [PubMed]
- Ceccaroni, L.; Bibby, J.; Roger, E.; Flemons, P.; Michael, K.; Fagan, L.; Oliver, J.L. Opportunities and risks for Citizen Science in the age of Artificial Intelligence. Citiz. Sci. Theory Pract. 2019, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Prawitz, D. Tacit knowlege—An impediment for AI. In Artifical Intelligence, Culture and Language: On Education and Work; Göranzon, B., Florin, M., Eds.; The Springer Series on Artificial Intelligence and Society; Springer: London, UK, 1990; pp. 57–59. [Google Scholar] [CrossRef]
- Sanzogni, L.; Guzman, G.; Busch, P. Artificial intelligence and knowledge management: Questioning the tacit dimension. Prometheus 2017, 35, 37–56. [Google Scholar] [CrossRef]
- Fu, R.; Huang, Y.; Singh, P.V. Artificial Intelligence and Algorithmic Bias: Source, Detection, Mitigation, and Implications. In Pushing the Boundaries: Frontiers in Impactful OR/OM Research; INFORMS: Catonsville, MD, USA, 2020; pp. 39–63. [Google Scholar] [CrossRef]
- Osoba, O.A.; Welser, W., IV. An Intelligence in our Image: The Risks of bias and Errors in Artificial Intelligence; Rand Corporation: Santa Monica, CA, USA, 2017. [Google Scholar]
- Cappelli, P.; Tambe, P.; Yakubovich, V. Artificial Intelligence in Human Resources management: Challenges and a path forward. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Wang, B.; Li, X. Big data, platform economy and market competition: A preliminary construction of plan-oriented market economy system in the Information Era. World Rev. Political Econ. 2017, 8, 138–161. [Google Scholar] [CrossRef]
- Russ, M. The Trimodal Society and How it Can be Eradicated. Open letter to Ms. Christine Lagarde, Managing Director of the IMF. Available online: https://www.uwgb.edu/UWGBCMS/media/faculty-site-russm/files/open-letter.pdf (accessed on 6 March 2017).
- Barabas, C.; Virza, M.; Dinakar, K.; Ito, J.; Zittrain, J. Interventions over predictions—Reframing the ethical debate for actuarial risk assessment. Proc. Mach. Learn. Res. 2018, 81, 1–15. [Google Scholar]
- NIH. Racial Disparities in NIH Funding. In NIH.gov; 2020. Available online: https://diversity.nih.gov/building-evidence/racial-disparities-nih-funding (accessed on 30 December 2020).
- Barocas, S.; Selbst, A.D. Big Data’s disparate impact. Calif. Law Rev. 2016, 104, 671–732. [Google Scholar] [CrossRef]
- Chesell, M. Ethics for Big Data and Analytics. IBM Corp., 2016. Available online: https://www.ibmbigdatahub.com/sites/default/files/whitepapers_reports_file/TCG%20Study%20Report%20-%20Ethics%20for%20BD%26A.pdf (accessed on 24 July 2020).
- Anom, B.Y. Ethics of Big Data and artificial intelligence in medicine. EthicsMed. Public Health 2020, 15, 100568. [Google Scholar] [CrossRef]
- Canales, C.; Lee, C.; Cannesson, M. Science without conscience is but the ruin of the soul: The ethics of Big Data and Artificial Intelligence in perioperative medicine. Anesth. Analg. 2020, 130, 1234–1243. [Google Scholar] [CrossRef]
- Lo Piano, S. Ethical principles in machine learning and artificial intelligence: Cases from the field and possible ways forward. Humanit. Soc. Sci. Commun. 2020, 7, 9. [Google Scholar] [CrossRef]
- De Laat, P.B. Algorithmic decision-making based on machine learning from big data: Can transparency restore accountability? Philos. Technol. 2018, 31, 525–541. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-Y.; Kuenzel, S.; Cordoba-Pachon, J.-R.; Watkins, C. Privacy-Functionality Trade-Off: A privacy-preserving multi-channel smart metering system. Energies 2020, 13, 3221. [Google Scholar] [CrossRef]
- Stahl, B.C.; Wright, D. Ethics and privacy in AI and big data: Implementing responsible research and innovation. Ieee Secur. Priv. 2018, 16, 26–33. [Google Scholar] [CrossRef]
- Longo, G.O. Body and technology: Continuity or discontinuity. In Mediating the Human Body: Communication, Technology and Fashion; Fortunati, L., Katz, J.E., Riccini, R., Eds.; Lawrence Erlbaum: Mahwah, NJ, USA, 2002; pp. 23–30. [Google Scholar]
- NIST. Framework for Improving Critical Infrastructure Cybersecurity Version 1.1 National Institute of Standards and Technology. 2018. Available online: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf (accessed on 16 April 2018).
- Obitade, P.O. Big data analytics: A link between knowledge management capabilities and superior cyber protection. J. Big Data 2019, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Sarker, I.H.; Kayes, A.S.M.; Badsha, S.; Alqahtani, H.; Watters, P.; Ng, A. Cybersecurity data science: An overview from machine learning perspective. J. Big Data 2020, 7, 1–29. [Google Scholar] [CrossRef]
- Tengö, M.; Hill, R.; Malmer, P.; Raymond, C.M.; Spierenburg, M.; Danielsen, F.; Folke, C. Weaving knowledge systems in IPBES, CBD and beyond—lessons learned for sustainability. Curr. Opin. Environ. Sustain. 2017, 26, 17–25. [Google Scholar] [CrossRef]
- Russ, M. One, two or three labor markets? The trifurcation (OR the have a lot, the have and the have not) impact of the continuous technological revolutions. Presented at the Semester at Sea, Planetary Seminar, 1 March 2020. [Google Scholar]
- Anderson, J.; Rainie, L.; Luchsinger, A. Artificial intelligence and the future of humans. Pew Res. Cent. 2018, 10, 12. [Google Scholar]
- Anderson, J.; Rainie, L. The future of well-being in a tech-saturated world. Pew Res. Cent. 2018. Available online: https://www.elon.edu/u/imagining/wp-content/uploads/sites/964/2019/07/Elon_Pew_Digital_Life_and_Well_Being_Report_2018_Expanded_Version-2.pdf (accessed on 27 July 2019).
- Rainie, L.; Anderson, J. The Internet of Things Connectivity Binge: What are the Implications? Pew Res. Cent. 2017. Available online: https://www.elon.edu/u/imagining/wp-content/uploads/sites/964/2019/07/Future-of-Connected-Life-in-IoT-Age-6_6_17-Elon-Pew-Full-Report.pdf (accessed on 27 July 2019).
- Rainie, L.; Anderson, J. The Future of Jobs and Jobs Training. Pew Res. Cent. 2017. Available online: https://www.pewresearch.org/internet/wp-content/uploads/sites/9/2017/05/PI_2017.05.03_Future-of-Job-Skills_FINAL.pdf (accessed on 27 July 2019).
- Hillenbrand, C.; Money, K.G. Unpacking the mechanism by which psychological ownership manifests at the level of the individual: A dynamic model of identity and self. J. Mark. Theory Pract. 2015, 23, 148–165. [Google Scholar]
- Fernandez-Guadaño, J.; Lopez-Millan, M.; Sarria-Pedroza, J. Cooperative entrepreneurship model for sustainable development. Sustainability 2020, 12, 5462. [Google Scholar] [CrossRef]
- Joyce, A.; Paquin, R.L. The triple layered business model canvas: A tool to design more sustainable business models. J. Clean. Prod. 2016, 135, 1474–1486. [Google Scholar] [CrossRef]
- Lorenz-Spreen, P.; Lewandowsky, S.; Sunstein, C.R.; Hertwig, R. How behavioural sciences can promote truth, autonomy and democratic discourse online. Nat. Hum. Behav. 2020, 4, 1102–1109. [Google Scholar] [CrossRef]
- Jabareen, Y. A new conceptual framework for sustainable development. Environ. Dev. Sustain. 2008, 10, 179–192. [Google Scholar] [CrossRef]
- Cohen, B.; Muñoz, P. Toward a theory of purpose-driven urban entrepreneurship. Organ. Environ. 2015, 28, 264–285. [Google Scholar] [CrossRef]
- World Economic Forum. The Global Risk Report 2020, 15th ed.; World Economic Forum: Geneva, Switzerland, 2020; Available online: https://reports.weforum.org/global-risks-report-2020/a-decade-left/ (accessed on 9 March 2021).
- Madani, K.; Shafiee-Jood, M. Socio-Hydrology: A New Understanding to Unite or a New Science to Divide? Water 2020, 12, 1941. [Google Scholar] [CrossRef]
- Basadur, M. Managing creativity: A Japanese model. Acad. Manag. Perspect. 1992, 6, 29–42. [Google Scholar] [CrossRef]
- Santini, C.; Marinelli, E.; Boden, M.; Cavicchi, A.; Haegeman, K. Reducing the distance between thinkers and doers in the entrepreneurial discovery process: An exploratory study. J. Bus. Res. 2016, 69, 1840–1844. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russ, M. Knowledge Management for Sustainable Development in the Era of Continuously Accelerating Technological Revolutions: A Framework and Models. Sustainability 2021, 13, 3353. https://doi.org/10.3390/su13063353
Russ M. Knowledge Management for Sustainable Development in the Era of Continuously Accelerating Technological Revolutions: A Framework and Models. Sustainability. 2021; 13(6):3353. https://doi.org/10.3390/su13063353
Chicago/Turabian StyleRuss, Meir. 2021. "Knowledge Management for Sustainable Development in the Era of Continuously Accelerating Technological Revolutions: A Framework and Models" Sustainability 13, no. 6: 3353. https://doi.org/10.3390/su13063353
APA StyleRuss, M. (2021). Knowledge Management for Sustainable Development in the Era of Continuously Accelerating Technological Revolutions: A Framework and Models. Sustainability, 13(6), 3353. https://doi.org/10.3390/su13063353