Barrier Layer Characteristics for Different Temporal Scales and Its Implication to Tropical Cyclone Enhancement in the Western North Pacific
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Possible Linkage between BL and Consequential TC Triggered Sea Surface Cooling
3.2. Characteristics of Mesoscale BL and Its Changing Trend
3.3. Interannual Variability of BL
4. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leipper, D.F.; Volgenau, D. Hurricane Heat Potential of the Gulf of Mexico. J. Phys. Oceanogr. 1972, 2, 218–224. [Google Scholar] [CrossRef]
- Palmen, E. On the formation and structure of tropical cyclones. Geophyisca 1948, 3, 26–38. [Google Scholar]
- Perlroth, I. Effects of oceanographic media on Equatorial Atlantic hurricanes. Tellus 1969, 21, 230–244. [Google Scholar] [CrossRef]
- Shay, L.K.; Brewster, J.K. Oceanic Heat Content Variability in the Eastern Pacific Ocean for Hurricane Intensity Forecasting. Mon. Weather. Rev. 2010, 138, 2110–2131. [Google Scholar] [CrossRef]
- Shay, L.K. Air-Sea Interactions in Tropical Cyclones. In Global Perspectives on Tropical Cyclones: From Science to Mitigation; Johnny, C.L.C., Jeffrey, D.K., Eds.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2010; Volume 4, pp. 93–132. [Google Scholar]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nat. Cell Biol. 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.R.; Xu, Z.; Li, M.; Hsieh, J.-S. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA 2012, 109, 14343–14347. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.I.; Wu, C.-C.; Emanuel, K.A.; Lee, I.-H.; Wu, C.-R.; Pun, I.-F. The Interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy. Mon. Weather. Rev. 2005, 133, 2635–2649. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lee, C.-Y.; Lin, I.-I. The Effect of the Ocean Eddy on Tropical Cyclone Intensity. J. Atmos. Sci. 2007, 64, 3562–3578. [Google Scholar] [CrossRef]
- Sprintall, J.; Tomczak, M. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res. Space Phys. 1992, 97, 7305–7316. [Google Scholar] [CrossRef] [Green Version]
- Cronin, M.F.; McPhaden, M.J. Barrier layer formation during westerly wind bursts. J. Geophys. Res. Space Phys. 2002, 107. [Google Scholar] [CrossRef]
- Peduzzi, P.; Chatenoux, B.; Dao, Q.-H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Mignot, J.; Montégut, C.D.B.; Tomczak, M. On the porosity of barrier layers. Ocean Sci. 2009, 5, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Suga, T.; Hanawa, K. Barrier layers in the subtropical gyres of the world’s oceans. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Balmaseda, M.A.; Mogensen, K.; Weaver, A.T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 2013, 139, 1132–1161. [Google Scholar] [CrossRef]
- Gould, J. From swallow floats to Argo-The development of neutrally buoyant floats. Deep Sea Res. Part II 2005, 52, 529–543. [Google Scholar] [CrossRef]
- Cummings, J.A. Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3583–3604. [Google Scholar] [CrossRef] [Green Version]
- Akima, H. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. J. ACM 1970, 17, 589–602. [Google Scholar] [CrossRef]
- Greatbatch, R.J. On the Response of the Ocean to a Moving Storm: The Nonlinear Dynamics. J. Phys. Oceanogr. 1983, 13, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, I.D.; Vecchi, G.A. Observational evidence for oceanic controls on hurricane intensity. J. Clim. 2011, 24, 1138–1153. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere-Ocean Dynamics; Appendix 3; Academic Press, Inc.: New York, NY, USA, 1982; pp. 599–600. [Google Scholar]
- Geisler, J.E. Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn. 1970, 1, 249–272. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chen, G.-Y.; Tseng, R.-S.; Centurioni, L.R.; Chu, P.C. Observed near-surface flows under all tropical cyclone intensity levels using drifters in the northwestern Pacific. J. Geophys. Res. Oceans 2013, 118, 2367–2377. [Google Scholar] [CrossRef]
- GirishKumar, M.S.; Ravichandran, M.; McPhaden, M.J. Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006-2007 and 2007-2008 in the Bay of Bengal. J. Geophys. Res. Oceans 2013, 118, 2426–2437. [Google Scholar] [CrossRef]
- Mignot, J.; Lazar, A.N.; Lacarra, M. On the formation of barrier layers and associated vertical temperature inversions: A focus on the northwestern tropical Atlantic. J. Geophys. Res. Space Phys. 2012, 117, 02010. [Google Scholar] [CrossRef]
- Yan, Y.; Li, L.; Wang, C. The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J. Geophys. Res. Oceans 2017, 122, 4829–4844. [Google Scholar] [CrossRef]
- Rudzin, J.E.; Shay, L.K.; Johns, W.E. The Influence of the Barrier Layer on SST Response during Tropical Cyclone Wind Forcing Using Idealized Experiments. J. Phys. Oceanogr. 2018, 48, 1471–1478. [Google Scholar] [CrossRef]
- Katsura, S.; Oka, E.; Sato, K. Formation Mechanism of Barrier Layer in the Subtropical Pacific. J. Phys. Oceanogr. 2015, 45, 2790–2805. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Bosc, C.; Delcroix, T.; Maes, C. Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J. Geophys. Res. Space Phys. 2009, 114, 06023. [Google Scholar] [CrossRef]
- Soloviev, A.; Lukas, R. Observation of Spatial Variability of Diurnal Thermocline and Rain-Formed Halocline in the Western Pacific Warm Pool. J. Phys. Oceanogr. 1996, 26, 2529–2538. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, H. Seasonal-to-interannual variability of the barrier layer in the western Pacific warm pool associated with ENSO. Clim. Dyn. 2016, 47, 375–392. [Google Scholar] [CrossRef]
- Qu, T.; Song, Y.T.; Maes, C. Sea surface salinity and barrier layer variability in the equatorial Pacific as seen from Aquarius and Argo. J. Geophys. Res. Oceans 2014, 119, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Maes, C.; Picaut, J.; Kuroda, Y.; Ando, K. Characteristics of the convergence zone at the eastern edge of the Pacific warm pool. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, L. Long-term change of the Pacific North Equatorial Current bifurcation in SODA. J. Geophys. Res. Space Phys. 2012, 117, 06016. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Interannual-to-Decadal Variability in the Bifurcation of the North Equatorial Current off the Philippines. J. Phys. Oceanogr. 2010, 40, 2525–2538. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, S. Impacts of Different Types of El Niño on the East Asian Climate: Focus on ENSO Cycles. J. Clim. 2012, 25, 7702–7722. [Google Scholar] [CrossRef]
R BLT,ΔT | R D26,ΔT | R wind speed,ΔT | R translational speed,ΔT | ||
---|---|---|---|---|---|
TC | BLT > 0 m (63 cases) | 0.00 | 0.12 | −0.46 | 0.38 |
BLT ≥ 5 m (12 cases) | 0.21 | −0.05 | −0.34 | 0.44 | |
TS | BLT > 0 m (45 cases) | 0.31 | 0.31 | 0.06 | 0.04 |
BLT ≥ 5 m (18 cases) | 0.52 | −0.65 | −0.14 | 0.53 |
<0 m | 0–5 m | 5–10 m | 10–15 m | 15–20 m | 20–25 m | 25–30 m | >30 m | |
---|---|---|---|---|---|---|---|---|
Percentage (%) | 5.35 | 67.55 | 11.76 | 5.90 | 3.59 | 1.98 | 1.28 | 2.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.-R.; Zheng, Z.-W.; Gopalakrishnan, G.; Ho, C.-R.; Zheng, Q. Barrier Layer Characteristics for Different Temporal Scales and Its Implication to Tropical Cyclone Enhancement in the Western North Pacific. Sustainability 2021, 13, 3375. https://doi.org/10.3390/su13063375
Wu D-R, Zheng Z-W, Gopalakrishnan G, Ho C-R, Zheng Q. Barrier Layer Characteristics for Different Temporal Scales and Its Implication to Tropical Cyclone Enhancement in the Western North Pacific. Sustainability. 2021; 13(6):3375. https://doi.org/10.3390/su13063375
Chicago/Turabian StyleWu, Ding-Rong, Zhe-Wen Zheng, Ganesh Gopalakrishnan, Chung-Ru Ho, and Quanan Zheng. 2021. "Barrier Layer Characteristics for Different Temporal Scales and Its Implication to Tropical Cyclone Enhancement in the Western North Pacific" Sustainability 13, no. 6: 3375. https://doi.org/10.3390/su13063375
APA StyleWu, D.-R., Zheng, Z.-W., Gopalakrishnan, G., Ho, C.-R., & Zheng, Q. (2021). Barrier Layer Characteristics for Different Temporal Scales and Its Implication to Tropical Cyclone Enhancement in the Western North Pacific. Sustainability, 13(6), 3375. https://doi.org/10.3390/su13063375