Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions
Abstract
:1. Introduction
1.1. Open-Pit Mining Landscape’s Impacts and Traditional Reclamation Approaches in Limiting Environments
1.2. An Ecological Restoration Approach for Mining Reclamation: Objectives and Guidelines
- Analyzing the demand for natural capital and ecosystem services.
- Identifying appropriate native reference ecosystems to optimize the potential for local species and communities to recover through well-targeted restoration actions, and to continue to reassemble and evolve in the face of change.
- Address within-site heterogeneity by identifying landscape functional units and designing specific actions for each unit.
- Introducing vegetation according to heterogeneity and natural spatial patterns.
- Choose a large set of species to match the potential diversity of habitats, ecological conditions and management objectives. According to the potential vegetation in the area, introducing trees and shrubs with high potential cover and good capacity to develop a dense canopy and to accumulate litter, and for fast recovery from disturbances to confer the whole ecosystem good resilience.
- Foster spontaneous plant growth by applying organic amendments.
- Improve plantation success by using recent research results and applying innovative techniques to specifically reduce abiotic stress (hole plantation, water harvesting treatments, tree-shelters, mulch, organic amendments). Regarding climate adaptation, when designing species selection and site preparation techniques, current and future climate conditions that increase the ecosystem’s resistance to new changes must be considered. The main objective of all these techniques is to support plant establishment during early post-planting stages.
- Prevent damage due to overland flow by creating soil-retaining vegetation barriers.
- Set up an effective monitoring system that allows the status and trends of selected indicators to be measured and helps to identify the necessary corrective actions and modifications.
1.3. Limiting Factors to Reclaim Open-Pit Clay Mines in the Mediterranean
2. The Case Study: The TECMINE Project from the Ecological Restoration Approach
2.1. Identifying Landscape Functional units According to the Different Physiographic Conditions
2.2. Species Selection and Plant Production
2.3. Substrate Stabilization Techniques
2.4. Reforestation Strategy and Techniques
- (a)
- Platform mine area: combined techniques were applied as a result of its extension and its contrasted physiographic characteristics.
- (b)
- Talus-Berm area:
- (c)
- Permanent pond area:
2.5. Monitoring Program
3. Results Analysis and Lessons Learned
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beckett, C.; Keeling, A. Rethinking remediation: Mine reclamation, environmental justice, and relations of care. Local Environ. 2019, 24, 216–230. [Google Scholar] [CrossRef]
- Cooke, J.A.; Johnson, M.S. Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environ. Rev. 2002, 10, 41–71. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Mateos, D.; Barbier, E.B.; Jones, P.C.; Jones, H.P.; Aronson, J.; López-López, J.A.; McCrackin, M.L.; Meli, P.; Montoya, D.; Rey Benayas, J.M.R. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 2017, 8, 14163. [Google Scholar] [CrossRef]
- Hilson, G.; Murck, B. Sustainable Development in the Mining Industry: Clarifying the Corporate Perspective. Resour. Policy 2000, 26, 227–238. [Google Scholar] [CrossRef]
- Whitmore, A. The Emperor’s New Clothes: Sustainable Mining? In Sustainable Mineral Operations in the Developing World; Marker, B.R., Petterson, M.G., McEvoy, F., Stephenson, M.H., Eds.; Geological Society Special Publications: London, UK, 2005; pp. 233–242. [Google Scholar]
- Worrall, R.; Neil, D.; Brereton, D.; Mulligan, D. Towards a Sustainability Criteria and Indicators Framework for Legacy Mine Land. J. Clean. Prod. 2009, 17, 1426–1443. [Google Scholar] [CrossRef]
- Bainton, N.A.; Holcombe, S. The Social Aspects of Mine Closure: A Global Literature Review; Centre for Social Responsibility in Mining (CSRM), Sustainable Minerals Institute (SMI), The University of Queensland: Brisbane, Australia, 2018. [Google Scholar]
- Hammack, R.W.; Edenborn, H.M.; Dvorak, D.H. Treatment of water from an open-pit copper mine using biogenic sulfide and limestone: A feasibility study. Water Res. 1994, 28, 2321–2329. [Google Scholar] [CrossRef]
- Pepper, M.; Roche, C.P.; Mudd, G.M. Understanding Life of Mine Across Time and Space, Life of Mine Conference; Mining Legacies: Brisbane, Australia, 2014; pp. 449–465. [Google Scholar]
- Wang, H.; Zhang, B.; Bai, X.; Shi, L. A novel environmental restoration method for an abandoned limestone quarry with a deep open pit and steep palisades: A case study. R. Soc. Open Sci. 2018, 5, 180365. [Google Scholar] [CrossRef] [Green Version]
- Nicolau, J.M.; Moreno-de las Heras, M. Opencast mining reclamation. In Forest Restoration in Landscapes: Beyond Planting Trees; Mansourian, S., Vallauri, D., Dudley, N., Eds.; WWF/Springer: Berlin, Germany, 2005; pp. 370–376. [Google Scholar]
- Bautista, S.; Aronson, J.; Vallejo, V.R. Land Restoration to Combat Desertification. Innovative Approaches, Quality Control and Project Evaluation; Fundación CEAM: Valencia, Spain, 2009. [Google Scholar]
- Vallejo, V.R.; Smanis, A.; Chirino, E.; Fuentes, D.; Valdecantos, A.; Vilagrosa, A. Perspectives in dryland restoration: Approaches for climate change adaptation. New For. 2012, 43, 561–579. [Google Scholar] [CrossRef] [Green Version]
- Whisenant, S.G. Manipulation of the physical environment. Terrestrial systems. In Handbook of Ecological Restoration. Principles of Restoration; Perrow, M.R., Davy, A.J., Eds.; Cambridge University Press: Cambridge, UK, 2002; Volume 1, pp. 83–105. [Google Scholar]
- Martinez-Ruiz, C.; Fernandez-Santos, B.; Putwain, P.D.; Fernandez-Gomez, M.J. Natural and man-induced revegetation on mining wastes: Changes in the floristic composition during early succession. Ecol. Eng. 2007, 30, 286–294. [Google Scholar] [CrossRef]
- Josa, R.; Jorba, M.; Vallejo, R.V. Opencast mine restoration in a Mediterranean semi-arid environment: Failure of some common practices. Ecol. Eng. 2012, 42, 183–191. [Google Scholar] [CrossRef]
- Sänger, H.; Jetschke, G. Are assembly rules apparent in the regeneration of a former uranium mining site? In Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice; Temperton, V.M., Hoobs, R.J., Nuttle, T., Halle, S., Eds.; Island Press: Washington, USA, 2004; pp. 305–324. [Google Scholar]
- Moreno-de Las Heras, M.; Nicolau, J.M.; Espigares, T. Vegetation succession in reclaimed coal-mining slopes in a Mediterranean-dry environment. Ecol. Eng. 2008, 34, 168–178. [Google Scholar] [CrossRef]
- Lavee, H.; Imeson, A.C.; Sarah, P. The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degrad. Dev. 1998, 9, 407–422. [Google Scholar] [CrossRef]
- Puigdefábregas, J.; Solé, A.; Gutiérrez, L.; Del Barrio, G.; Boer, M. Scales and processes of water and sediment redistribution in drylands: Results from the Rambla Honda field site in SE Spain. Earth Sci. Rev. 1999, 48, 39–70. [Google Scholar] [CrossRef]
- Bautista, S.; Mayor, A.G.; Bourakhouadar, J.; Bellot, J. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems 2007, 10, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.D.; Wells, L.G.; Phillips, R.E. Infiltration through reconstructed surface mined spoils and soils Trans. ASAE 1983, 26, 821–832. [Google Scholar] [CrossRef]
- Guebert, M.D.; Gardner, T.W. Macropore flow on a reclaimed surface mine: Infiltration and hillslope hydrology. Geomorphology 2001, 39, 151–169. [Google Scholar] [CrossRef]
- Moreno-de las Heras, M.; Nicolau, J.M.; Espigares, M.T. Interacción entre la erosión en regueros, contenido de humedad edáfica y colonización vegetal en laderas restauradas de la minería a cielo abierto del carbón en ambiente mediterráneo-continental (Teruel). In Estudios de la Zona No Saturada del Suelo; Samper-Calvete, F.J., Paz-González, A., Eds.; Universidade da Coruña: La Coruña, Spain, 2005; Volume 7, pp. 345–350. [Google Scholar]
- Jorba, M.; Ninot, J.M.; Vallejo, V.R. Las siembras en la revegetación de zonas afectadas por minería. Ingeopres Actual. Técnica Ing. Civ. Min. Geol. Medio Ambiente 2007, 166, 30–35. [Google Scholar]
- Soliveres, S.; Gutiérrez-Acevedo, E.; Moghli, A.; Cortina, J. Effects of early irrigation and compost addition on soil and vegetation of a restored semiarid limestone quarry are undetectable after 13 years. J. Arid. Environ. 2021, 186, 104401. [Google Scholar] [CrossRef]
- Starke, L. Good Practice Guidance for Mining and Biodiversity; International Council on Mining and Metals (ICMM): London, UK, 2006; p. 142. [Google Scholar]
- Non-Energy Mineral Extraction and NATURA 2000 Guidance Document Publications Office of the European Union; European Commission: Luxembourg, 2011.
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Hua, F.; et al. International principles and standards for practice of ecological restoration. Restor. Ecol. 2019, 27, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Rey-Benayas, J.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Bai, Z.K.; Cao, Y.G.; Xie, F.; Zhang, J.J.; Wang, Y.N. Dynamic Changes in Carbon Seques-tration from Opencast Mining Activities and Land Reclamation in China’s Loess Plateau. Sustainability 2019, 11, 1473. [Google Scholar] [CrossRef] [Green Version]
- Vallejo, V.R. Problems and perspectives of Dryland Restoration. In Land Restoration to Combat Desertification. Innovative Approaches, Quality Control and Project Evaluation; Bautista, S., Aronson, J., Vallejo, V.R., Eds.; Fundación de Estudios Ambientales del Mediterraneo CEAM: Valencia, Spain, 2009; pp. 13–22. [Google Scholar]
- Aronson, J.; Goodwin, N.; Orlando, L.; Eisenberg, C.; Cross, A.T. A world of possibilities: Six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 2020, 28, 730–736. [Google Scholar] [CrossRef]
- Balaquer, L.; Nicolau, J.M.; García, A. Revegetación de espacios mineros desde la perspectiva de la restauración ecológica. In Restauración Ecológica en Minería. de la Teoría a la Práctica; García, A., Travieso, J.R., Eds.; Fundación Ciudad de la Energía, Ponferrada: León, Spain, 2012; pp. 87–108. [Google Scholar]
- Mayor, A.G.; Bautista, S.; Rodriguez, F.; Kefi, S. Connectivity-Mediated Ecohydrological Feedbacks and Regime Shifts in Drylands. Ecosystems 2019, 22, 1497–1511. [Google Scholar] [CrossRef] [Green Version]
- Miranda, J.D.D.; Armas, C.; Padilla, F.M.; Pugnaire, F.I. Climatic change and rainfall patterns: Effects on semi-arid plant communities of the Iberian Southeast. J. Arid Environ. 2011, 75, 1302–1309. [Google Scholar] [CrossRef]
- Bertol, I.; Mello, E.L.; Guadagnin, J.C.; Zaparolli, A.L.V.; Carrafa, M.R. Nutrient losses by water erosion. Sci. Agric. 2003, 60, 581–586. [Google Scholar] [CrossRef]
- Maiti, S.K. Biodiversity Erosion and Conservation in Ecorestored Site. In Ecorestoration of the Coalmine Degraded Lands; Springer: New Delhi, India, 2013; pp. 187–199. [Google Scholar]
- Nicolau, J.M.; Moreno de las Heras, M.; Merino, L.; Espigares, T. Bases eco- hidrológicas para aplicar la restauración ecológica en minería. In Restauración Ecológica en Minería. De la Teoría a la Práctica; García, A., Travieso, J.R., Eds.; Fundación Ciudad de la Energía, Ponferrada: León, Spain, 2012; pp. 47–63. [Google Scholar]
- Moreno de las Heras, M.; Nicolau, J.M.; Merino-Martín, L.; Wolcox, B.P. Plot scale effects on runoff and erosion along a slope degradation gradient. Water Resour. Res. 2010, 46, W04503. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, M.B. Principles of Soil and Plant Water Relations; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Zapico, I.; Duque, J.F.M.; Bugosh, N.; Laronne, J.B.; Ortega, A.; Molina, A.; Martín-Moreno, C.; Nicolau, J.M.; Castillo, L.S. Geomorphic reclamation for reestablishment of landform stability at a watershed scale in mined sites: The Alto Tajo Natural Park, Spain. Ecol. Eng. 2018, 111, 100–116. [Google Scholar] [CrossRef]
- Hancock, G.R.; Duque, J.M.; Willgoose, G.R. Geomorphic design and modelling at catchment scale for best mine rehabilitation—The Drayton mine example (New South Wales, Australia). Environ. Model. Softw. 2019, 114, 140–151. [Google Scholar] [CrossRef]
- Rotagno, C.M.; Sosebee, R.B. Surface application of biosolids in the Chihuahuan desert: Effects on soil physical properties. Arid. Land Res. Manag. 2001, 15, 233–244. [Google Scholar] [CrossRef]
- Valdecantos, A.; Fuentes, D.; Cortina, J. Utilización de biosólidos para la restauración de ecosistemas mediterráneos. In Avances en el Estudio de la Gestión del Monte Mediterráneo; Vallejo, V.R., Alloza, J.A., Eds.; Fundación CEAM: Valencia, Spain, 2004; pp. 313–344. [Google Scholar]
- Ros, M.; Hernández, M.T.; García, C. Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem. 2003, 35, 463–469. [Google Scholar] [CrossRef]
- Bastida, F.; Kandeler, E.; Moreno, J.L.; Ros, M.; García, C.; Hernández, T. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl. Soil Ecol. 2008, 40, 318–329. [Google Scholar] [CrossRef]
- Andres, P.; Jorba, M. Mitigation strategies in some motorway embankments (Catalonia, Spain). Restor. Ecol. 2000, 8, 268–275. [Google Scholar] [CrossRef]
- Bautista, S.; Abad, N.; Lloret, J.; Blade, C.; Ferran, A.J.; Ponce, M.; Alloza, J.A.; Bellot, J.; Vallejo, V.R. Siembra de herbáceas y aplicación de mulch para la conservación de suelos afectados por incendios forestales. In La Restauración de la Cubierta Vegetal de la Comunidad Valenciana; Vallejo, V.R., Ed.; Fundacion CEAM—Consellería de Agricultura y Medio Ambiente: Valencia, Spain, 1997; pp. 395–434. [Google Scholar]
- Bautista, S.; Robichaud, P.R.; Bladé, C. Post-Fire Mulching. Fire Effects on Soils and Restoration Strategies; Science Publishers: Enfield, UK, 2009; pp. 353–372. [Google Scholar]
- Jorba, M.; Ninot, J.M.; Vallejo, R.V. Respuesta de las intervenciones de restauración a medio plazo: Resultados del proyecto EcoQuarry en Cataluña. Cem. Hormigón 2011, 947, 48–58. [Google Scholar]
- Moreno-Peñaranda, R. Plant species diversity as indicator of restoration quality: The case of soils amended with sewage sludge in abandoned quarries. In Desertification in Europe: Mitigation Strategies, Land Use Planning; Enne, G., Zanolla, C., Peter, D., Eds.; European Communities: Brussels, Belgium, 2000; pp. 382–392. [Google Scholar]
- Jorba, M.; Vallejo, R.; Josa, R.; Alcañiz, J.M.; Sole, A. Evaluación de experiencias piloto de restauración ecológica después de una década. Ingeopres 2001, 44–50. [Google Scholar]
- Alcañiz, J.M.; Ortiz, O.; Carabassa, V. Utilización de Lodos de Depuradora en Restauración, Manual de Aplicaciones; Agencia catalana del agua, Generalitat de Cataluña: Barselona, Spain, 2009; p. 114. [Google Scholar]
- Fuentes, D.; Valdecantos, A.; Llovet, J.; Cortina, J.; Vallejo, V.R. Fine-tuning of sewage sludge application to promote the establishment of Pinus halepensis seedling. Ecol. Eng. 2010, 36, 1213–1221. [Google Scholar] [CrossRef]
- Bellot, J.; De Urbina, J.O.; Bonet, A.; Sánchez, J.R. The effects of treeshelters on the growth of Quercus coccifera L. seedlings in a semiarid environment. Forestry 2002, 75, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Piñeiro, J.; Maestre, F.T.; Bartolomé, L.; Valdecantos, A. Ecotechnology as a tool for restoring degraded drylands: A meta-analysis of field experiments. Ecol. Eng. 2013, 61, 133–144. [Google Scholar] [CrossRef]
- Chirino, E.; Vilagrosa, A.; Vallejo, V.R. Using hydrogel and clay to improve the water status of seedlings for dryland restoration. Plant Soil 2011, 344, 99–110. [Google Scholar] [CrossRef]
- Vallauri, D.; Aronson, J.; Dudley, N.; Vallejo, V.R. Monitoring and evaluating forest restoration success. In Forest Restoration in Landscapes; Springer: New York, NY, USA, 2005; pp. 150–158. [Google Scholar]
- Rodríguez-Uña, A.; Cruz-Alonso, V.; Rohrer, Z.; Martínez-Baroja, L. Fresh perspectives for classic forest restoration challenges. Restor. Ecol. 2020, 28, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Burdett, A.N. Physiological processes in plantation establishment and the development of specifications for forest planting stock. Can. J. For. Res. 1990, 20, 415–427. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Water supply and tree growth. I. Water deficits. For. Abstr. 1982, 43, 57–95. [Google Scholar]
- Folk, R.S.; Grossnickle, S.C. Determining field performance potential with the use of limiting environmental conditions. New For. 1997, 13, 121–138. [Google Scholar] [CrossRef]
- Moles, A.T.; Westoby, M. What do seedlings die from and what are the implications for evolution of seed size? Oikos 2004, 106, 193–199. [Google Scholar] [CrossRef]
- Bradshaw, A.D.; Chadwick, M.J. The Restoration of Land; the Ecology and Reclamation of Derelict and Degraded Land; Blackwell Scientific Publications: Oxford, UK, 1980. [Google Scholar]
- Carabassa, V.; Ortiz, O.; Alcañiz, J.M. Evaluación y Seguimiento de la Restauración de Zonas Afectadas por Minería; CREAF y Departamento de Territorio y Sostenibilidad, Generalitat de Catalunya: Barcelona, Spain, 2015. [Google Scholar]
- The Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being; Biodiversity Synthesis World Resources Institute: Washington, DC, USA, 2005; p. 86. [Google Scholar]
- Bellot, J.; Chirino, E. Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas. Ecol. Modell. 2013, 266, 30–41. [Google Scholar] [CrossRef]
- Zipper, C.E.; Burger, J.A.; Barton, C.D.; Skousen, J.G. Rebuilding soils on mined land for native forests in Appalachia. Soil Sci. Soc. Am. J. 2013, 77, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.A.; Graves, D.; Angel, P.; Davis, P.; Zipper, C.E. The Forestry Reclamation Approach; U.S. Office of Surface Mining Forest Reclamation Advisory 2: Pittsburgh, PA, USA, 2005.
- Lipiec, J.; Hatano, R. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 2003, 116, 107–136. [Google Scholar] [CrossRef]
- Kozlowski, T.T.; Kramer, P.J.; Pallardy, S.G. The Physiological Ecology of Woody Plants; Academic Press, Inc.: San Diego, CA, USA, 1991. [Google Scholar]
- Binkley, D. Nutrición Forestal. Prácticas de Manejo; Editorial Limusa, S.A. de C.V.: Mexico City, Mexico, 1993; p. 518. [Google Scholar]
- Prach, K. Spontaneous succession in Central-European man-made habitats: What information can be used in restoration practice? Appl. Veg. Sci. 2003, 6, 125–129. [Google Scholar] [CrossRef]
- Thornes, J.B. The interaction of erosional and vegetational dynamics in land degradation: Spatial outcomes. In Vegetation and Erosion; Thornes, J.B., Ed.; John Wiley and Sons Ltd.: Chichester, UK, 1990; pp. 41–53. [Google Scholar]
- Cortina, J.; Maestre, F.T.; Vallejo, V.R.; Baeza, M.J.; Valdecantos, A.; Pérez-Devesa, M. Ecosystem structure, function, and restoration success: Are they related? J. Nat. Conserv. 2006, 14, 152–160. [Google Scholar] [CrossRef]
- Smanis, A.; Fuentes, D.; Fuente, P.; Valdecantos, A. How far Surface water fluxes determine restoration success in Mediterranean degraded áreas? Implications for dryland precision restoration. J. Arid Environ. 2021, 187, 104445. [Google Scholar] [CrossRef]
- Fuentes, D.; Smanis, A.; Valdecantos, A. Recreating sink areas on semiarid degraded slopes by restoration. Land Degrad. Dev. 2017, 28, 1005–1015. [Google Scholar] [CrossRef]
Restoration Units | Slope Treatments | Doses | Reforestation Treatments | Doses/Qty/Number | Natura 2000 Habitats |
---|---|---|---|---|---|
Platform mine area | |||||
RU1 Drier (sun-exposed), steep slopes (>30%) | -Seeding -Organic fences | 100–150 kg/ha 1.5 Tn/ha | Standard holes (40 × 40 × 40) (*1) -Mesh/Tree shelter -Compost -Hydrogels | 1000 holes/ha Depending on the species 2 kg/hole (125 Tn/ha) 5 g/hole | * 6220, 9340, 5210 |
RU2 Dry–mild areas, moderate slopes (15%–30%) | -Compost -Seeding | 20 Tn/ha 100–150 kg/ha | -Standard holes (*1) (40 × 40 × 40) plus microcatchments -Tree shelter -Compost | 600 holes/ha 600 units/ha 2 kg/hole (125 Tn/ha) | 9340, 5210, * 9560 |
RU3 Wetter areas, bottom and valley areas, flow accumulations, flat areas, slopes <15% | -Seeding | 100–150 kg/ha | -Standard holes (*1) (40 × 40 × 40) plus microcatchments -Tree shelter -Compost | 600 holes/ha 600 units/ha 2 kg/hole (125 Tn/ha) | 5210, * 9530, 9240 |
Talus-Berm area | |||||
RU4 Adjacent flat “berm” areas with uniform steep slopes “talus” | -Seeding -Organic mesh | 100–150 kg/ha | -Small furrows (60 × 20 × 20) -Compost | 1000 holes/ha 2 kg/hole (125 Tn/ha) | * 6220, 9340 |
Permanent pond area | |||||
RU5 Seminatural wetland | -None | -Small holes (20 × 20 × 20) -Standard holes (40 × 40 × 40) -Tree shelter (*2) | 1200 holes/ha 600 holes/ha 600 units/ha | 6420, 92A0 5210, * 9530, 9240, |
Sand (%) | Silt (%) | Clay (%) | Stoniness (%) | Texture Classification | |
---|---|---|---|---|---|
Colluvium | 43 | 35 | 22 | 53 | Loam |
Sandy substrate | 84 | 12 | 7 | 12 | Sandy |
Clay substrate | 6 | 62 | 32 | 65 | Silty-clay |
Before Compost Application | After Compost Application | |
---|---|---|
OM (%) | 0.47 | 6.99 |
N (%) | 0.04 | 0.31 |
SOC (%) | 0.27 | 4.06 |
C/N | 5.88 | 12.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turrión, D.; Morcillo, L.; Alloza, J.A.; Vilagrosa, A. Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions. Sustainability 2021, 13, 3439. https://doi.org/10.3390/su13063439
Turrión D, Morcillo L, Alloza JA, Vilagrosa A. Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions. Sustainability. 2021; 13(6):3439. https://doi.org/10.3390/su13063439
Chicago/Turabian StyleTurrión, Diana, Luna Morcillo, José Antonio Alloza, and Alberto Vilagrosa. 2021. "Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions" Sustainability 13, no. 6: 3439. https://doi.org/10.3390/su13063439
APA StyleTurrión, D., Morcillo, L., Alloza, J. A., & Vilagrosa, A. (2021). Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions. Sustainability, 13(6), 3439. https://doi.org/10.3390/su13063439