Radiating Benefit of Windbreak and Sand Fixation in the Baijitan Nature Reserve of Lingwu, Ningxia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Remote Sensing Data Sources
2.2.2. Meteorological Data Sources
2.3. Data Processing
2.3.1. Remote Sensing Data Processing
2.3.2. Wind Speed Processing
2.3.3. Periodic Division
2.3.4. Distribution of Sand
2.3.5. Influence Range Processing
2.4. Calculating Method
2.4.1. Method for Calculating Fractional Vegetation Coverage
2.4.2. Method for Calculating Influence Range
2.4.3. Method for Calculating Wind Erosion
2.4.4. Method for Calculating Dust Deposition
2.4.5. Verification Method for Dust Deposition
3. Results
3.1. Analysis of Wind Speed
3.2. Analysis of Fractional Vegetation Coverage
3.3. Attenuation by Windbreak and Sand Fixation
3.4. Evaluating the Benefits of Windbreak and Sand Fixation
3.5. Attenuation by Windbreak and Sand Fixation
3.6. Verification of Dust Deposition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Millenium Ecosystem Assessment—Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1597260401. [Google Scholar]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; ISBN 1-55963-476-6. [Google Scholar]
- Xie, G.D.; Cao, S.Y.; Lu, C.X.; Zhang, C.S.; Yu, X. Current status and future trends for eco-compensation in China. J. Resour. Ecol. 2015, 6, 355–362. [Google Scholar] [CrossRef]
- Yu, X.X.; Lu, S.W.; Jin, F.; Chen, L.H.; Rao, L.Y. The assessment of the forest ecosystem services evaluation in China. Acta Ecol. Sin. 2005, 25, 2096–2102. [Google Scholar] [CrossRef]
- Chen, L.; Mou, Z.P.; Qin, H.P.; Su, Q. Study on ecological service function and its radiation effect of wetland ecosystem. Environ. Sci. Technol. 2017, 40, 179–186. [Google Scholar] [CrossRef]
- Thapa, S.; Wang, L.; Koirala, A.; Shrestha, S.; Bhattarai, S.; Aye, W.N. Valuation of ecosystem services from an important wetland of Nepal: A Study from Begnas watershed system. Wetlands 2020, 40, 1071–1083. [Google Scholar] [CrossRef]
- Cheng, L.L.; Guo, H.; Lu, Q. Review on the valuation of desert ecosystem service values. J. Desert Res. 2013, 33, 281–287. [Google Scholar] [CrossRef]
- Sawut, M.; Eziz, M.; Tiyip, T. The effects of land-use change on ecosystem service value of desert oasis: A case study in Ugan-kuqa river delta oasis, China. Can. J. Soil Sci. 2013, 93, 99–108. [Google Scholar] [CrossRef]
- Zhao, T.Q.; Ouyang, Z.Y.; Jia, L.Q.; Zheng, H. Ecosystem services and their valuation of China grassland. Acta Ecol. Sin. 2004, 24, 1101–1110. [Google Scholar] [CrossRef]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 2017, 26, 79–94. [Google Scholar] [CrossRef]
- Wang, M. Study on Evalution of Ecosystem Services in Shandong Coastal Waters; Ocean University of China: Qingdao, China, 2018. [Google Scholar]
- Rogers, A.D.; Frinault, B.A.V.; Barnes, D.K.A.; Bindoff, N.L.; Downie, R.; Ducklow, H.W.; Friedlaender, A.S.; Hart, T.; Hill, S.L.; Hofmann, E.E.; et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 2020, 12, 87–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.M. Evaluation of the Farmland Ecosystem Services in Jiangsu Province; Nanjing Agricultural University: Nanjing, China, 2011. [Google Scholar]
- Firbank, L.; Bradbury, R.B.; McCracken, D.I.; Stoate, C. Delivering multiple ecosystem services from Enclosed Farmland in the UK. Agric. Ecosyst. Environ. 2013, 166, 65–75. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.L.; Chen, Y.F.; Li, W.F.; Jiang, Y.Y. Economic value of urban ecosystem services: A case study in Shenzhen. Acta Sci. Nat. Univ. Pekin. 2005, 4, 594–604. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural-urban gradient: A cross-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Wang, Y.T.; Guo, W.H.; Liu, J.; Wang, S.J.; Wang, Q.; Wang, R.Q. Value of ecosystem services of Kunyu Mountain Natural Reserve. Acta Ecol. Sin. 2009, 29, 523–531. [Google Scholar] [CrossRef]
- Xue, D.Y.; Bao, H.S.; Li, W.H. A valuation study on the indirect values of forest ecosystem in Changbaishan Mountain Biosphere Reserve of China. China Environ. Sci. 1999, 19, 247–252. [Google Scholar] [CrossRef]
- Castro, A.J.; Martín-López, B.; López, E.; Plieninger, T.; Alcaraz-Segura, D.; Vaughn, C.C.; Cabello, J. Do protected areas networks ensure the supply of ecosystem services? Spatial patterns of two nature reserve systems in semi-arid Spain. Appl. Geogr. 2015, 60, 1–9. [Google Scholar] [CrossRef]
- Badola, R.; Hussain, S.A.; Mishra, B.K.; Konthoujam, B.; Thapliyal, S.; Dhakate, P.M. An assessment of ecosystem services of Corbett Tiger Reserve, India. Environmentalist 2010, 30, 320–329. [Google Scholar] [CrossRef]
- Wang, X.D. Comprehensive Investigation Report on Baijitan National Nature Reserve in Lingwu City of Ningxia; Ocean University of China: Qingdao, China, 2018. [Google Scholar]
- Buitenwerf, R.; Rose, L.; Higgins, S.I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Chang. 2015, 5, 364–368. [Google Scholar] [CrossRef]
- Purevdorj, T.S.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar] [CrossRef]
- Gong, G.L.; Liu, J.Y.; Shao, Q.Q.; Zhai, G. Sand-Fixing function under the change of vegetation coverage in a wind erosion area in northern China. J. Resour. Ecol. 2014, 5, 105–114. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, Y.; Xie, G.D.; Wang, Y.Y.; Zhen, L.; Zhang, C.S.; Jiang, Y. Interregional ecosystem services benefits transfer from wind erosion control measures in Inner Mongolia. Environ. Dev. 2020, 34. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Fan, J.W.; Cao, W.; Harris, W.; Li, Y.Z.; Chi, W.F.; Wang, S.Z. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015. Sci. Total Environ. 2018, 639, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.M.; Wilson, G.R.; Singh, U.B.; Darwish, M.M. TEAM: Integrated, process-based wind-erosion model. Environ. Model. Softw. 2004, 19, 205–215. [Google Scholar] [CrossRef]
- Coen, G.M.; Tatarko, J.; Martin, T.C.; Cannon, K.R.; Goddard, T.W.; Sweetland, N.J. A method for using WEPS to map wind erosion risk of Alberta soils. Environ. Model. Softw. 2004, 19, 185–189. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, Y.; Xie, G.; Wang, Y.; Jiang, Y. How to guarantee the sustainability of the wind prevention and sand fixation service: An ecosystem service flow perspective. Sustainability 2018, 10, 1995. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.B.; Gao, Y.; Sun, D.F. Wind erosion changes in a semi-arid sandy area, Inner Mongolia, China. Sustainability 2019, 11, 188. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.B. Establishing statistic model of wind erosion on small watershed basis. Bull. Soil Water Conserv. 1988, 18, 56–63. [Google Scholar]
- Han, Y.W.; Tuo, X.S.; Gao, J.X.; Liu, C.C.; Gao, X.T. Assessment on the sand-fixing function and its value of the vegetation in eco-function protection areas of the Lower reaches of the Heihe River. J. Nat. Resour. 2011, 26, 58–65. [Google Scholar] [CrossRef]
- Li, B.Y. Spatial and Temporal Differences of Ecological Effects of Land Change in Yinchuan Basin; Shaanxi Normal University: Shanxi, China, 2016. [Google Scholar]
- Ma, X.F. Ebinur Lake Wetland Landscape Pattern Change and Ecosystem Service Value Relations Research; Xinjiang Normal University: Xinjiang, China, 2017. [Google Scholar]
- Zhu, L.K.; Southworth, J. Disentangling the Relationships between Net Primary Production and Precipitation in Southern Africa Savannas Using Satellite Observations from 1982 to 2010. Remote Sensing. Remote Sens. 2013, 5, 3803–3825. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Q. An analysis of the harmful effects on agriculture production, caused by sandstorm. J. Educ. Ist. Jilin Prov. 2010, 26, 157–158. [Google Scholar]
- Ding, G.D. Aeolian Physics, 2nd ed.; China Forestry Publishing: Beijing, China, 2010. [Google Scholar]
- Han, Y.W.; Tuo, X.S.; Gao, J.X.; Gao, X.T. Ecosystem services radiation of significant eco-function area in the lower reaches of Heihe River. Acta Ecol. Sin. 2010, 30, 5185–5193. [Google Scholar] [CrossRef]
- Li, Z.S.; Zhang, Q.F.; Bao, H.J. Wind-velocity variation in recent 30 years in three typical desertified counties of north China. J. Desert Res. 2006, 26, 20–26. [Google Scholar] [CrossRef]
- Zhan, X.L.; Han, L. Physicochemical property of aeolian sandy soil in Baijitan in Ningxia. Chin. Agric. Sci. Bull. 2015, 31, 186–190. [Google Scholar]
- Li, J.F. Desert Climate; China Meteorological Press: Beijing, China, 2002; ISBN 9787502933890. [Google Scholar]
- Wu, K.N.; Zhao, R. Soil texture classification and its application in China. Acta Pedol. Sin. 2019, 56, 227–241. [Google Scholar] [CrossRef]
- Zhou, C.L.; Yang, X.H.; Yang, F.; Huo, W.; Zhong, X.J.; Pan, H.L.; He, Q. Analysis of calculated dust emission threshold wind speed based on the field experiments. J. Arid Meteorol. 2018, 36, 90–96. [Google Scholar] [CrossRef]
- Zhou, S.Z.; Zhang, R.Y.; Zhang, C. Meteorology and Climatology, 3rd ed.; Higher Education Press: Beijing, China, 1997; ISBN 9787040060164. [Google Scholar]
- Yang, Q.; Wang, T.; Chen, H.; Wang, Y.D. Characteristics of vegetation cover change in Xilin Gol League based on MODIS EVI data. Trans. Chin. Soc. Agric. Eng. 2015, 31, 191–198. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, J.H.; Yue, W.Z. Research on vegetation indices based on the remote sensing images. Ecol. Sci. 2005, 24, 75–79. [Google Scholar] [CrossRef]
- Bao, J.Y.; Li, X.S.; Wu, B. Desertification evaluation based on sand vegetation index. J. Northeast For. Univ. 2008, 36, 69–72. [Google Scholar] [CrossRef]
- He, Y.Q.; Qin, Y.; Fu, Q.H.; Liu, C.Q.; Yin, B. Application of mixed pixel decomposition method using dynamic endmember combination in dynamic monitoring of vegetation abundance: A case study of Changting county. Trop. Geogr. 2016, 36, 860–868. [Google Scholar] [CrossRef]
- Li, X.S.; Gao, Z.H.; Li, Z.Y.; Bai, L.N.; Wang, B.Y. Estimation of sparse vegetation coverage in arid region based on hyperspectral mixed pixel decomposition. Chin. J. Appl. Ecol. 2010, 21, 152–158. [Google Scholar]
- Liu, Y.; Lv, Y.H.; Zheng, H.F.; Chen, L.D. Application of regression tree in analyzing the effects of climate factors on NDVI in loess hilly area of Shaanxi Province. Chin. J. Appl. Ecol. 2010, 21, 1153–1158. [Google Scholar] [CrossRef]
- Chen, J.J.; Huang, Y.; Zhao, X.N.; Zhang, H.Z.; Tian, Z.L. Accuracy evaluation of vegetation coverage inversion model for Alpine grassland in the source region of the Yellow River. Sci. Technol. Eng. 2019, 19, 37–45. [Google Scholar] [CrossRef]
- Mu, S.J.; Li, J.L.; Chen, Y.Z.; Gang, C.C.; Zhou, W.; Ju, W.M. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001–2010. Acta Geogr. Sin. 2012, 67, 1255–1268. [Google Scholar] [CrossRef]
- Wang, X.J.; Hu, E.C.; Li, A.P.; Li, Q.J. Dynamic changes of vegetation coverage in Daqingshan Nature Reserve based on MODIS NDVI image. J. Arid L. Resour. Environ. 2014, 28, 61–65. [Google Scholar]
- Murat, A.; Zhang, X.P.; Chen, L.L.; Lin, P.F.; Sun, Y.P. Spatial-temporal distribution of desertification on the Loess plateau using the GIMMS NDVI data. Sci. Soil Water Conserv. 2015, 13, 24–31. [Google Scholar] [CrossRef]
- Li, P.X.; Zheng, J.H.; Liu, P. Analysis of spatial and temporal variations about vegetation fractional cover in Urumqi city from 2000 to 2014. For. Resour. Manag. 2016, 88–95. [Google Scholar] [CrossRef]
- Sha, R.N. Analysis of temporal and spatial variation of vegetation cover in Wulatehouqi based on NDVI. For. Resour. Manag. 2017, 102, 89–93. [Google Scholar] [CrossRef]
- Sha, R.N. Spatial and Temporal Variations of Vegetation Coverage in Urad Rear Banner and Analysis of Influencing Factors; Beijing Forestry University: Beijing, China, 2018. [Google Scholar]
- Arukhan. Temporal and spatial variation of vegetation coverage in Horqin National Nature Reserve of Inner Mongolia Based on NDVI. Inn. Mong. Sci. Technol. Econ. 2018, 50, 47–48. [Google Scholar] [CrossRef]
- Guo, Z.C.; Liu, S.L.; Kang, W.P.; Chen, X.; Zhang, X.Q. Change trend of vegetation coverage in the Mu Us Sandy Region from 2000 to 2015. J. Desert Res. 2018, 38, 1099–1107. [Google Scholar]
- Yan, J.Y.; Tang, Z.Y.; Yao, H.D.; Li, J.L.; Xiao, Y.G.; Chen, Y.D. A study on the air-sea fluxes exchange coefficients over the South China Sea (SCS) during the onset of southwest monsoon. Acta Meteorol. Sin. 2006, 64, 335–344. [Google Scholar] [CrossRef]
- Zhao, C.X.; Wang, Y.Q.; Wang, Y.J.; Zhang, H.L.; Zhao, B.Q. Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing. Environ. Sci. 2014, 35, 418–427. [Google Scholar]
- Wang, Y.R.; Zhang, X.X.; Zhao, J.Y.; Yu, X.X.; Jiang, Q.O. Study on the response of PM2.5 and PM10 concentrations to the ground meteorological conditions in different seasons in Beijing. Environ. Monit. China 2017, 33, 34–41. [Google Scholar] [CrossRef]
- Chen, W.N.; Dong, Z.B.; Yang, Z.T.; Han, Z.W.; Zhang, M.L.; Zhang, J.S. Threshold velocities of sand-driving wind in the Taklimakan desert. Acta Geogr. Sin. 1995, 50, 360–367. [Google Scholar]
- Shen, W.X. Investigation on the Pollution of Airborne Inhalable Particulate Matter PM10 in Huainan City; Anhui University of Science and Technology: Huainan, China, 2007. [Google Scholar]
- Shen, Y.C.; Wang, X.H.; Cheng, W.M.; Wu, J.F.; Lu, Q.; Feng, Y.M. Integrated physical regionalization of stony deserts in China. Prog. Geogr. 2016, 35, 57–66. [Google Scholar] [CrossRef]
- Xu, X.Q.; Wang, X.; Huang, J.P. Observational study on the particle size distribution of sand aerosol in Zhangye and Yuzhong of Lanzhou. Plateau Meteorol. 2011, 30, 208–216. [Google Scholar] [CrossRef]
- Bi, X.H.; Feng, Y.C.; Wu, J.H.; Wang, Y.Q.; Zhu, T. Source apportionment of PM10 in six cities of northern China. Atmos. Environ. 2007, 41, 903–912. [Google Scholar] [CrossRef]
- Gao, S.; Pan, X.C.; Madaniyazi, L.N.; Xie, J.; He, Y.H. Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring. Chin. J. Prev. Med. 2013, 47, 837–842. [Google Scholar] [CrossRef]
- Zou, B.D.; Xu, Z.Y.; Hua, L.; Han, Y.P.; Dong, S.Y.; Lu, H.F. Sources spportionment of atmospheric particles PM10 in Beijing by factor analysis. Environ. Monit. China 2007, 23, 79–85. [Google Scholar] [CrossRef]
- Li, M.K.; Shen, Z.X.; Li, X.X.; Yao, Y.Q.; Zheng, Y.; Fan, D. Mass concentration of PM10 and its relationship with meteorological conditions over Xi’an. Chin. J. Process Eng. 2006, 6, 15–19. [Google Scholar]
- Xie, F.Y.; Wang, Z.F.; Wang, X.Q. A study of the characteristics of the synoptic situations and meteorological conditions in PM10 air pollution episodes of Beijing during the 2008 Olympic Games period. Clim. Environ. Res. 2010, 15, 584–594. [Google Scholar] [CrossRef]
- Min, Q.W.; Zhen, L.; Yang, G.M. Progress of researches and practices of ecological compensation of nature reserves. J. Ecol. Rural Environ. 2007, 23, 81–84. [Google Scholar] [CrossRef]
- Li, Y.Y. Study on construction method and implementation approaches of ecological compensation mechanism for China’s nature reserves. Ecol. Environ. 2011, 20, 1957–1965. [Google Scholar] [CrossRef]
- Wang, L.; Su, Y.; Cui, G.F. Quantitative study on the ecological compensation for nature reserves based on the “virtual land” method. J. Nat. Resour. 2011, 26, 34–47. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, J. Conservation cost of China’s nature reserves and its regional distribution. J. Nat. Resour. 2019, 34, 839–852. [Google Scholar] [CrossRef]
Grain Size | Particle Size (mm) | Proportion (%) | |
---|---|---|---|
Coarse sand | 1.00–0.50 | 0.16 | |
Medium sand | 0.50–0.25 | 17.98 | |
Fine sand | 0.25–0.10 | 75.04 | |
Very fine sand | 0.10–0.05 | 6.16 | |
Silt | Coarse silt | 0.05–0.01 | 0.66 |
Medium silt | 0.01–0.005 | ||
Fine silt | 0.005–0.002 | ||
Clay | <0.002 |
Wind Grade | Name | Wind Speed (m·s−1) | Average Wind Speed (m·s−1) |
---|---|---|---|
3 | Gentle breeze | 4.85–5.4 | 5.13 |
4 | Moderate breeze | 5.5–7.9 | 6.70 |
5 | Fresh breeze | 8.0–10.7 | 9.35 |
6 | Strong breeze | 10.8–13.8 | 12.3 |
7 | Moderate gale | 13.9–17.1 | 15.5 |
8 | Fresh gale | 17.2–17.4 | 17.3 |
Level | Influence Range (km) | China’s Land Area within the Radiating Range (km2) | The Grade of Wind Speed, Affected by the Radiating Range |
---|---|---|---|
1 | 0.75–0.81 | 7.80 × 10−1 | 3 |
2 | 0.81–1.25 | 5.71 × 101 | 3,4 |
3 | 1.25–1.9 | 8.21 × 101 | 3,4,5 |
4 | 1.9–2.95 | 1.20 × 102 | 3,4,5,6 |
5 | 2.95–4.59 | 1.69 × 102 | 3,4,5,6,7 |
6 | 4.59–508.05 | 2.43 × 105 | 3,4,5,6,7,8 |
7 | 508.05–777.97 | 2.94 × 105 | 4,5,6,7,8 |
8 | 777.97–1184.99 | 6.21 × 105 | 5,6,7,8 |
9 | 1184.99–1840.74 | 9.39 × 105 | 6,7,8 |
10 | 1840.74–2871.86 | 2.53 × 104 | 7,8 |
Name | Particle Size (mm) | Wind Speed (m·s−1) | Erosion Distance (km) | Influence Time (s) |
---|---|---|---|---|
Medium silt, fine silt and clay | <0.01 | 4.85–5.4 | >508.05 | >94,082.98 |
5.5–7.9 | >777.97 | >94,082.98 | ||
8.0–10.7 | >1184.99 | >98,477.32 | ||
10.8–13.8 | >1840.74 | >110,746.84 | ||
13.9–17.1 | >2871.86 | >133,387.03 | ||
17.2–17.4 | >2947.68 | >167,945.18 | ||
Coarse silt | 0.01–0.05 | 4.85–5.4 | 0.75–508.05 | 150.53–94,082.98 |
5.5–7.9 | 0.81–777.97 | 157.56–96,428.95 | ||
8.0–10.7 | 1.25–1184.99 | 177.19–98,477.32 | ||
10.8–13.8 | 1.90–1840.74 | 213.42–110,746.84 | ||
13.9–17.1 | 2.95–2871.86 | 268.71–133,387.03 | ||
17.2–17.4 | 4.59–2947.68 | 272.62–167,945.18 | ||
Very fine sand | 0.05–0.1 | 4.85–5.4 | 0.05–0.81 | 9.41–154.29 |
5.5–7.9 | 0.05–1.24 | 9.85–150.53 | ||
8.0–10.7 | 0.08–1.90 | 11.07–157.56 | ||
10.8–13.8 | 0.12–2.95 | 13.34–177.19 | ||
13.9–17.1 | 0.18–4.59 | 16.79–213.42 | ||
17.2–17.4 | 0.29–4.72 | 17.04–268.71 | ||
Fine sand | 0.10–0.25 | 4.85–5.4 | 1.20 × 10−2–0.05 | 0.24–9.64 |
5.5–7.9 | 1.30 × 10−2–0.08 | 0.25–9.41 | ||
8.0–10.7 | 1.99 × 10−2–0.12 | 0.28–9.85 | ||
10.8–13.8 | 3.03 × 10−2–0.18 | 0.34–11.07 | ||
13.9–17.1 | 4.71 × 10−2–0.29 | 0.43–13.34 | ||
17.2–17.4 | 7.35 × 10−2–0.29 | 0.44–16.79 | ||
Medium sand | 0.25–0.50 | 4.85–5.4 | 7.48 × 10−5–1.30 × 10−2 | 0.02–0.25 |
5.5–7.9 | 8.13 × 10−4–1.99 × 10−2 | 0.02–0.24 | ||
8.0–10.7 | 1.24 × 10−3–3.03 × 10−2 | 0.02–0.25 | ||
10.8–13.8 | 1.90 × 10−3–4.71 × 10−2 | 0.02–0.28 | ||
13.9–17.1 | 2.95 × 10−3–7.35 × 10−2 | 0.03–0.34 | ||
17.2–17.4 | 4.59 × 10−3–7.55 × 10−2 | 0.03–0.43 | ||
Coarse sand | 0.5–1.0 | 4.85–5.4 | 4.68 × 10−6–8.13 × 10−4 | 9.41 × 10−3–0.02 |
5.5–7.9 | 5.08 × 10−6–1.24 × 10−3 | 9.85 × 10−3–0.02 | ||
8.0–10.7 | 7.78 × 10−6–1.90 × 10−3 | 1.12 × 10−2–0.02 | ||
10.8–13.8 | 1.18 × 10−5–2.95 × 10−3 | 1.33 × 10−2–0.02 | ||
13.9–17.1 | 1.84 × 10−5–4.59 × 10−3 | 1.68 × 10−2–0.02 | ||
17.2–17.4 | 2.87 × 10−5–4.72 × 10−3 | 1.70 × 10−2–0.03 |
Influence Range Level | City | PM10 Concentration Failed to Reach the Secondary Standard of Ambient Air Quality (d) | Sand–Dust Weather (d) |
---|---|---|---|
≤6 | Xi’an | 67 | 2 |
Yan’an | 44 | 4 | |
Yulin | 42 | 8 | |
7 | Shiyan | 6 | 0 |
Zhengzhou | 87 | 0 | |
Changzhi | 30 | 1 | |
8 | Zhangjiajie | 1 | 0 |
Wuhan | 18 | 0 | |
Jining | 34 | 0 | |
≥9 | Guilin | 1 | 0 |
Nanchang | 3 | 0 | |
Hangzhou | 4 | 0 |
Influence Range Level | City | Current Day | Next Day | Third Day | Fourth Day |
---|---|---|---|---|---|
≤6 | Xi’an | 0.111 | 0.233 * | 0.190 * | 0.094 |
Yan’an | 0.306 ** | 0.231 ** | 0.116 | 0.079 | |
Yulin | 0.318 ** | 0.073 | −0.024 | 0.071 | |
7 | Shiyan | −0.054 | 0.114 | 0.195 ** | 0.124 * |
Zhengzhou | 0.116 | 0.201 ** | 0.213 ** | 0.111 | |
Changzhi | 0.102 | 0.136 * | 0.099 | 0.02 | |
8 | Zhangjiajie | −0.042 | 0.103 | 0.324 ** | 0.142 * |
Wuhan | 0.007 | 0.175 ** | 0.339 ** | 0.164 ** | |
Jining | 0.014 | 0.112 | 0.119 * | 0.109 | |
≥9 | Guilin | 0.019 | 0.029 | 0.239 ** | 0.256 ** |
Nanchang | −0.031 | 0.03 | 0.215 ** | 0.194 ** | |
Hangzhou | −0.033 | 0.027 | 0.230 ** | 0.134 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Yu, Q.; Wang, R.; Cui, G. Radiating Benefit of Windbreak and Sand Fixation in the Baijitan Nature Reserve of Lingwu, Ningxia, China. Sustainability 2021, 13, 3508. https://doi.org/10.3390/su13063508
Song C, Yu Q, Wang R, Cui G. Radiating Benefit of Windbreak and Sand Fixation in the Baijitan Nature Reserve of Lingwu, Ningxia, China. Sustainability. 2021; 13(6):3508. https://doi.org/10.3390/su13063508
Chicago/Turabian StyleSong, Chao, Qiyin Yu, Ruixia Wang, and Guofa Cui. 2021. "Radiating Benefit of Windbreak and Sand Fixation in the Baijitan Nature Reserve of Lingwu, Ningxia, China" Sustainability 13, no. 6: 3508. https://doi.org/10.3390/su13063508
APA StyleSong, C., Yu, Q., Wang, R., & Cui, G. (2021). Radiating Benefit of Windbreak and Sand Fixation in the Baijitan Nature Reserve of Lingwu, Ningxia, China. Sustainability, 13(6), 3508. https://doi.org/10.3390/su13063508