Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard (Panthera uncia) Habitat in Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Image Pre-Processing
2.2.2. Image Classification
2.2.3. Accuracy Assessment
2.2.4. Assessment of LULCC Category Interconversion
3. Results
3.1. Overall LULCC Dynamics across Snow Leopard Range in Pakistan
3.2. LULCC Dynamics in Snow Leopard Range in GB
3.3. LULCC Dynamics in Snow Leopard Range in KP
3.4. LULCC Dynamics in Snow Leopard Range in AJK
3.5. Land Cover Categories Interconversion Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paul, B.; Rashid, H. Land Use Change and Coastal Management. In Climatic Hazards in Coastal Bangladesh; Butterworth-Heinemann: Oxford, UK, 2017; pp. 183–207. [Google Scholar] [CrossRef]
- Karki, S.; Thandar, A.M.; Uddin, K.; Tun, S.; Aye, W.M.; Aryal, K.; Kandel, P.; Chettri, N. Impact of land use land cover change on ecosystem services: A comparative analysis on observed data and people’s perception in Inle Lake, Myanmar. Environ. Syst. Res. 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaim, D.; Ziółkowska, E.; Szwagrzyk, M.; Price, B.; Kozak, J. Impact of Future Land Use Change on Large Carnivores Connectivity in the Polish Carpathians. Land 2019, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Ibisch, P.; Hobson, P. Blindspots and Sustainability under Global Change: Non-knowledge Illiteracy as a Key Challenge to a Knowledge Society. In Global Change Management: Knowledge Gaps, Blindspots and Unknowables; Nomos Verlagsgesellschaft mbH & Co. KG: Baden-Baden, Germany, 2012; pp. 15–54. [Google Scholar]
- Haase, D.; Frantzeskaki, N.; Elmqvist, T. Ecosystem Services in Urban Landscapes: Practical Applications and Governance Implications. AMBIO 2014, 43, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Hennig, E.I.; Schwick, C.; Soukup, T.; Orlitová, E.; Kienast, F.; Jaeger, J.A.G. Multi-scale analysis of urban sprawl in Europe: Towards a European de-sprawling strategy. Land Use Policy 2015, 49, 483–498. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.I.; Weber, K.; Padowski, J.; Flörke, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.; Lehner, B.; Balk, D.; et al. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Chang. 2014, 27, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Reid, W.; Mooney, H.; Cropper, A.; Capistrano, D.; Carpenter, S.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.; Hassan, R.; et al. Millenium Ecosystem Assessment Synthesis Report; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Vowles, K.; McCracken, L. Acceptance and Values-Based Action in Chronic Pain: A Study of Treatment Effectiveness and Process. J. Consult. Clin. Psychol. 2008, 76, 397–407. [Google Scholar] [CrossRef]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A.; Shevliakova, E. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef]
- Mannan, A.; Feng, Z.; Ahmad, A.; Liu, J.; Saeed, S.; Mukete, B. Carbon dynamic shifts with land use change in Margallah hills national park, Islamabad (Pakistan) from 1990 to 2017. Appl. Ecol. Environ. Res. 2018, 16, 3197–3214. [Google Scholar] [CrossRef]
- Tan, J.; Yu, D.; Li, Q.; Tan, X.; Zhou, W. Spatial relationship between land-use/land-cover change and land surface temperature in the Dongting Lake area, China. Sci. Rep. 2020, 10, 9245. [Google Scholar] [CrossRef]
- Aboelnour, M.; Engel, B. Application of Remote Sensing Techniques and Geographic Information Systems to Analyze Land Surface Temperature in Response to Land Use/Land Cover Change in Greater Cairo Region, Egypt. J. Geogr. Inf. Syst. 2018, 10, 57–88. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.M.; Martinuzzi, S.; Plantinga, A.J.; Radeloff, V.C.; Lewis, D.J.; Thogmartin, W.E.; Heglund, P.J.; Pidgeon, A.M. Current and Future Land Use around a Nationwide Protected Area Network. PLoS ONE 2013, 8, e55737. [Google Scholar] [CrossRef] [Green Version]
- Visconti, P.; Bakkenes, M.; Baisero, D.; Brooks, T.; Butchart, S.H.M.; Joppa, L.; Alkemade, R.; Di Marco, M.; Santini, L.; Hoffmann, M.; et al. Projecting Global Biodiversity Indicators under Future Development Scenarios. Conserv. Lett. 2016, 9, 5–13. [Google Scholar] [CrossRef]
- Jackson, D.; Firtko, A.; Edenborough, M. Personal resilience as a strategy for surviving and thriving in the face of workplace adversity: A literature review. J. Adv. Nurs. 2007, 60, 1–9. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin Iii, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Huenneke, L.; Jackson, R.B.; Kinzig, A.; Leemans, R.; Lodge, D.; et al. Biodiversity: Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Mannan, A.; Liu, J.; Zhongke, F.; Khan, T.U.; Saeed, S.; Mukete, B.; ChaoYong, S.; Yongxiang, F.; Ahmad, A.; Amir, M. Application of land-use/land cover changes in monitoring and projecting forest biomass carbon loss in Pakistan. Glob. Ecol. Conserv. 2019, 17, e00535. [Google Scholar] [CrossRef]
- Balmford, A.; Moore, J.; Brooks, T.; Burgess, N.; Hansen, L.; Williams, P.; Rahbek, C. Conservation Conflicts Across Africa. Science 2001, 291, 2616–2619. [Google Scholar] [CrossRef]
- Brooks, T.; Mittermeier, R.; Fonseca, G.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.; Mittermeier, C.; Pilgrim, J.; Rodrigues, A. Global biodiversity conservation priorities: An expanded review. In A Handbook of Environmental Management; Edward Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2010; pp. 8–29. [Google Scholar]
- Duerksen, C.; Snyder, C. Nature-Friendly Communities: Habitat Protection And Land Use Planning. In Bibliovault OAI Repository; the University of Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Estes, J.A.; Terborgh, J.; Brashares, J.S.; Power, M.E.; Berger, J.; Bond, W.J.; Carpenter, S.R.; Essington, T.E.; Holt, R.D.; Jackson, J.B.C.; et al. Trophic Downgrading of Planet Earth. Science 2011, 333, 301. [Google Scholar] [CrossRef] [Green Version]
- JHA, S.; BAWA, K.S. Population Growth, Human Development, and Deforestation in Biodiversity Hotspots. Conserv. Biol. 2006, 20, 906–912. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 2016, 353, 288. [Google Scholar] [CrossRef]
- Allan, E.; Bossdorf, O.; Dormann, C.F.; Prati, D.; Gossner, M.M.; Tscharntke, T.; Blüthgen, N.; Bellach, M.; Birkhofer, K.; Boch, S.; et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl. Acad. Sci. USA 2014, 111, 308. [Google Scholar] [CrossRef] [Green Version]
- Gossner, M.M.; Lewinsohn, T.M.; Kahl, T.; Grassein, F.; Boch, S.; Prati, D.; Birkhofer, K.; Renner, S.C.; Sikorski, J.; Wubet, T.; et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 2016, 540, 266–269. [Google Scholar] [CrossRef]
- Ripple, W.; Estes, J.; Beschta, R.; Wilmers, C.; Ritchie, E.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.; et al. Status and Ecological Effects of the World’s Largest Carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crooks, K.; Burdett, C.; Theobald, D.; Rondinini, C.; Boitani, L. Global patterns of fragmentation and connectivity of carnivore habitat. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2011, 366, 2642–2651. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Stacey, P.; Bellis, L.; Johnson, M. A Mammalian Predator-Prey Imbalance: Grizzly Bear and Wolf Extinction Affect Avian Neotropical Migrants. Ecol. Appl.—ECOL APPL 2001, 11, 947–960. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P. Mammal Population Losses and the Extinction Crisis. Science 2002, 296, 904–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WWF. Snow Leopard Species Action Plan 2015–2020; WWF Editions Gland, Switzerland: Gland, Switzerland, 2015. [Google Scholar]
- International Snow Leopard Trust and Snow Leopard Network. Available online: https://snowleopardnetwork.org/ (accessed on 21 March 2021).
- Network, S.L. Snow Leopard Survival Strategy, Revised Version 2014.1; International Snow Leopard Trust and Snow Leopard Network: Seattle, WA, USA, 2014; pp. 1–145. [Google Scholar]
- Schaller, G.B. Mountain mammals in Pakistan. Oryx 1976, 13, 351–356. [Google Scholar] [CrossRef]
- McCarthy, T.; Mallon, D.; Jackson, R.; Zahler, P.; McCarthy, K. Panthera Uncia. The IUCN Red List of Threatened Species 2017: E. T22732A50664030. 2017. Available online: http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T22732A50664030.en (accessed on 21 March 2021).
- Fox, J.L. Snow leopard conservation in the wild-a comprehensive perspective on a low density and highly fragmented population. In Proceedings of the Seventh International Snow Leopard Symposium, Qinghai, China, 25–30 July 1992; pp. 3–15. [Google Scholar]
- Hunter, D.; Jackson, R.; Ahmad, A. A Range-Wide Model of Potential Snow Leopard Habitat. Available online: https://www.snowleopardnetwork.org/bibliography/Hunter_Jackson_1997.pdf (accessed on 21 March 2021).
- McCarthy, T.; Chapron, G. Snow Leopard Survival Strategy; International Snow Leopard Trust and Snow Leopard Network: Seattle, WA, USA, 2003. [Google Scholar]
- Alexander, J.S.; Cusack, J.J.; Pengju, C.; Kun, S.; Riordan, P. Conservation of snow leopards: Spill-over benefits for other carnivores? Oryx 2016, 50, 239–243. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.; Best, M.; Betts, R. Climate Change in Cities Due to Global Warming and Urban Effects. Geophys. Res. Lett 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Lovari, S.; Mishra, C. Living on the edge: Depletion of wild prey and survival of the snow leopard. In Snow Leopards; Elsevier: Manchester, UK, 2016; pp. 69–76. [Google Scholar]
- WWF Nepal. Infrastructure Assessment in Snow Leopard Habitat of Nepal. Available online: https://d2ouvy59p0dg6k.cloudfront.net/downloads/infrastructure_assessment_report_on_snow_leopard_habitat.pdf (accessed on 21 March 2021).
- Reddy, C.S.; Reddy, K.N.; Raju, V.S.; Reddy, K.N. Supplement to Flora of Andhra Pradesh, India; Deep Publications: New Delhi, India, 2008. [Google Scholar]
- Herold, M.; Johns, T. Linking requirements with capabilities for deforestation monitoring in the context of the UNFCCC-REDD process. Environ. Res. Lett. 2007, 2, 045025. [Google Scholar] [CrossRef]
- Lay, D.M.; Roberts, T.J. The mammals of pakistan. Ernest Benn Ltd., London, xxvi + 361 p., 4 color plates, 90 figures, 118 distribution maps, 1977. J. Mammal. 1978, 59, 455–456. [Google Scholar] [CrossRef]
- Fox, J.L. A review of the status and ecology of the snow leopard; International Snow Leopard Trust: Seattle, WA, USA, 1989. [Google Scholar]
- Hameed, S.; Din, J.u.; Ali, H.; Kabir, M.; Younas, M.; Ur Rehman, E.; Bari, F.; Hao, W.; Bischof, R.; Nawaz, M.A. Identifying priority landscapes for conservation of snow leopards in Pakistan. PLoS ONE 2020, 15, e0228832. [Google Scholar] [CrossRef]
- UNDP. Population Growth: Implications for Human Development; UNDP: Islamabad, Pakistan, 2019. [Google Scholar]
- National Institute of Population Studies Islamabad. Pakistan Demographic and Health Survey 2012–2013; National Institute of Paksitan Studies, and ICF International: Islamabad, Pakistan; Calverton, MD, USA, 2013. [Google Scholar]
- Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. GLOBAL CLIMATE RISK INDEX 2020. Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2018 and 1999 to 2018; Germanwatch e.V: Berlin, Germany, 2018. [Google Scholar]
- Jackson, R.; Mishra, C.; McCarthy, T.M.; Ale, S.B. Snow leopards, conflict and conservation. In Biology and Conservation of Wild Felids; Macdonald, D.W., Loveridge, A., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 417–430. [Google Scholar]
- Jin, X. ENVI Automated Image Registration Solutions; Harris Geospatial Solution Inc.: Broomfild, CO, USA, 2018. [Google Scholar]
- Qamer, F.M.; Shehzad, K.; Abbas, S.; Murthy, M.; Xi, C.; Gilani, H.; Bajracharya, B. Mapping Deforestation and Forest Degradation Patterns in Western Himalaya, Pakistan. Remote Sens. 2016, 8, 385. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Daily, G.C.; Ehrlich, P.R.; Luck, G.W. Effects of household dynamics on resource consumption and biodiversity. Nature 2003, 421, 530–533. [Google Scholar] [CrossRef]
- Lucas, G.R. Remote sensing and image interpretation, 3rd edn, by T. M. Lillesand and R. W. Kiefer, 1994. Wiley, Chichester. Geol. J. 1995, 30, 204. [Google Scholar] [CrossRef]
- Chica-Olmo, M.; Abarca-Hernández, F. Computing geostatistical image texture for remotely sensed data classification. Comput. Geosci. 2000, 26, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Tarantino, E.; Novelli, A.; Aquilino, M.; Figorito, B.; Fratino, U. Comparing the MLC and JavaNNS approaches in classifying multi-temporal LANDSAT satellite imagery over an ephemeral river area. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 2015, 6, 83–102. [Google Scholar] [CrossRef]
- Prince, S. Establishing the Connections between the Goals of Sustainable Development and Creative Tourism. Master’s Thesis, Linnaeus University, Växjö, Sweden, 12 September 2011. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective 2/e; Pearson Education: New Delhi, India, 2009. [Google Scholar]
- Zhu, G.; Liu, X.; Jia, Z. A multi-resolution hierarchy classification study compared with conservative methods. In Proceedings of the ISPRS WG II/3, II/6 Workshop Multiple Representation and Interoperability of Spatial Data, Hanover, Germany, 22–24 February 2006. [Google Scholar]
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt, Appl. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Rosenfield, G.H.; Fitzpatrick-lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Stehman, S.V.; Czaplewski, R.L. Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964. [Google Scholar]
- Geremew, A.A. Assessing the Impacts of Land Use and Land Cover Change on Hydrology of Watershed: A Case Study on Gigel-Abbay Watershed, Lake Tana Basin, Ethiopia. Available online: https://run.unl.pt/bitstream/10362/9208/1/TGEO0098.pdf (accessed on 23 March 2021).
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Li, G.; Holmer, L.; Brock, G.; Skovsted, C.; Fu, D.; Zhang, X.; Wang, H.; Butler, A.; Zhang, Z.; et al. 2014 Supplementary Information. Available online: https://www.nature.com/articles/srep05502?proof=trueIn%25EF%25BB%25BF (accessed on 23 March 2021).
- Laurance, W.F.; Clements, G.R.; Sloan, S.; O’Connell, C.S.; Mueller, N.D.; Goosem, M.; Venter, O.; Edwards, D.P.; Phalan, B.; Balmford, A.; et al. A global strategy for road building. Nature 2014, 513, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The challenge of feeding the world. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.U.; Luan, X.; Ahmad, S.; Mannan, A.; Khan, W.; Khan, A.A.; Khan, B.U.; Din, E.U.; Bhattarai, S.; Shah, S. Status and Magnitude of Grey Wolf Conflict with Pastoral Communities in the Foothills of the Hindu Kush Region of Pakistan. Animals 2019, 9, 787. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.N. Humans and biodiversity: Population and demographic trends in the hotspots. Popul. Environ. 2013, 34, 510–523. [Google Scholar] [CrossRef]
- Trumbore, S.; Brando, P.; Hartmann, H. Forest health and global change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Condor Golec, R.D.; Jacobs, H.; Flammini, A. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef] [Green Version]
- Mannan, A.; Zhongke, F.; Khan, T.U.; Saeed, S.; Amir, M.; Khan, M.A.; Badshah, M.T. Variation in tree biomass and carbon stocks with respect to altitudinal gradient in the Himalayan forests of Northern Pakistan. J. Pure Appl. Agric. 2019, 4, 21–28. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Defries, R.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation Drive by Urban Population Growth and Agricultural Trade in the Twenty-First Century. Nat. Geosci.—NAT GEOSCI 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Fisher, B.; Christopher, T. Poverty and biodiversity: Measuring the overlap of human poverty and the biodiversity hotspots. Ecol. Econ. 2007, 62, 93–101. [Google Scholar] [CrossRef]
- Arshad, Z.; Robaina, M.; Shahbaz, M.; Veloso, A.B. The effects of deforestation and urbanization on sustainable growth in Asian countries. Environ. Sci. Pollut. Res. 2020, 27, 10065–10086. [Google Scholar] [CrossRef]
- Aguirre, F.; Carrasco, J.; Sauter, T.; Schneider, C.; Gaete, K.; Garín, E.; Adaros, R.; Butorovic, N.; Jaña, R.; Casassa, G. Snow Cover Change as a Climate Indicator in Brunswick Peninsula, Patagonia. Front. Earth Sci. 2018, 6. [Google Scholar] [CrossRef]
- Trivedi, M.R.; Browne, M.K.; Berry, P.M.; Dawson, T.P.; Morecroft, M.D. Projecting Climate Change Impacts on Mountain Snow Cover in Central Scotland from Historical Patterns. Arct. Antarct. Alp. Res. 2007, 39, 412, 488–499. [Google Scholar] [CrossRef]
- Keller, F.; Goyette, S.; Beniston, M. Sensitivity Analysis of Snow Cover to Climate Change Scenarios and Their Impact on Plant Habitats in Alpine Terrain. Clim. Chang. 2005, 72, 299–319. [Google Scholar] [CrossRef]
- Asam, S.; Callegari, M.; Matiu, M.; Fiore, G.; De Gregorio, L.; Jacob, A.; Menzel, A.; Zebisch, M.; Notarnicola, C. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the Alps—an earth observation-based analysis. Remote Sens. 2018, 10, 1757. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Kneubühler, M.; Garonna, I.; Notarnicola, C.; De Gregorio, L.; De Jong, R.; Chimani, B.; Schaepman, M.E. Altitude-dependent influence of snow cover on alpine land surface phenology. J. Geophys. Res.: Biogeosci. 2017, 122, 1107–1122. [Google Scholar] [CrossRef] [Green Version]
- Andréassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Moran-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; García-Ruiz, J.M. Impact of climate evolution and land use changes on water yield in the ebro basin. Hydrol. Earth Syst. Sci. 2011, 15, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Long, D.; Liang, S.; He, L.; Zeng, C.; Hao, X.; Hong, Y. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data. Remote Sens. Environ. 2018, 215. [Google Scholar] [CrossRef]
- Frei, C.; Schöll, R.; Fukutome, S.; Schmidli, J.; Vidale, P.L. Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef] [Green Version]
- Gilany, S.N.A.; Iqbal, J. Geospatial Analysis of Glacial Dynamics in Shigar and Shayok Basins; Unpublished Research Paper; Institute of Geographical Information System, National University of Science and Technology: Islamabad, Pakistan, 2016. [Google Scholar]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Farrington, J.D.; Li, J. Climate change impacts on snow leopard range. In Snow Leopards; Elsevier: Amsterdam, The Netherlands, 2016; pp. 85–95. [Google Scholar]
- Li, J.; Yin, H.; Wang, D.; Jiagong, Z.; Lu, Z. Human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau. Biol. Conserv. 2013, 166, 118–123. [Google Scholar] [CrossRef]
- Salik, K.M.; Ishfaq, S.; Saeed, F.; Noel, E.; Syed, Q.-U.-A. Pakistan Country Situation Assessment; Pathways to Resilience in Semi-Arid Economies: Islamabad, Pakistan, 2015. [Google Scholar]
- Mustafa, Z. Climate Change and Its Impact with Special Focus in Pakistan. Available online: https://pecongress.org.pk/images/upload/books/8-Climate%20Change%20and%20its%20Impact%20with%20Special%20Focus%20in%20Pakistan.pdf (accessed on 21 March 2021).
- GFfDRaR. Vulnerability, Risk Reduction, and Adaptation to Climate Change: Philippines. Available online: https://www.preventionweb.net/publications/view/76353 (accessed on 23 March 2021).
- Chaudhry, Q.U.Z. Climate Change Profile of Pakistan. Available online: http://dx.doi.org/10.22617/TCS178761 (accessed on 23 March 2021).
- Mahmood, T.; Younas, A.; Akrim, F.; Andleeb, S.; Hamid, A.; Nadeem, M.S. Range contraction of snow leopard (Panthera uncia). PLoS ONE 2019, 14, e0218460. [Google Scholar] [CrossRef] [Green Version]
- Forrest, J.L.; Wikramanayake, E.; Shrestha, R.; Areendran, G.; Gyeltshen, K.; Maheshwari, A.; Mazumdar, S.; Naidoo, R.; Thapa, G.J.; Thapa, K. Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol. Conserv. 2012, 150, 129–135. [Google Scholar] [CrossRef]
- Liu, Y.; Weckworth, B.; Li, J.; Xiao, L.; Zhao, X.; Lu, Z. China: The Tibetan Plateau, Sanjiangyuan Region. In Snow Leopards; Elsevier: Amsterdam, The Netherlands, 2016; pp. 513–521. [Google Scholar]
- Kiani, K. With a new Chinese loan, CPEC is now worth $51.5 bn. The Dawn 2016, 10. Available online: https://www.dawn.com/news/1287040 (accessed on 21 March 2021).
- Hussain, T. China’s Xi in Pakistan to cement huge infrastructure projects, submarine sales. Islamabad: McClatchy News 2015. [Google Scholar]
- Laghari, J. Climate change: Melting glaciers bring energy uncertainty. Nat. News 2013, 502, 617. [Google Scholar] [CrossRef]
- Din, J.U.; Ali, H.; Ali, A.; Younus, M.; Mehmood, T.; Norma-Rashid, Y.; Nawaz, M.A. Pastoralist-predator interaction at the roof of the world: Conflict dynamics and implications for conservation. Ecol. Soc. 2017, 22, 32. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.; Luan, X.; Khan, W.; Ahmad, S.; Mannan, A.; Shah, S.; Iqbal, A.; Ammara, U.; Din, E.; Khan, H. Status and Attitude of Local Communities Towards the Ggrey Wolf (canis lupus linnaeus, 1758) in Lower Dir District, Khyber Pakhtunkhwa, Pakistan. Appl. Ecol. Environ. Res. 2020, 18, 129–139. [Google Scholar] [CrossRef]
- Nyhus, P.J.; Mccarthy, T.; Mallon, D. Snow Leopards: Biodiversity of the World: Conservation from Genes to Landscapes; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
Sensor | Year | Resolution | Bands | Source |
---|---|---|---|---|
Landsat 5 TM | 2000 | 30 m | Multispectral | USGS Glovis |
Landsat 5 TM | 2010 | 30 m | Multispectral | USGS Glovis |
Landsat 8 OLI | 2020 | 30 m | Multispectral | USGS Glovis |
Scheme No. | Class Name | Description |
---|---|---|
1 | Forest Land | Land cover with mature forest or reserved for the growth of forest |
2 | Built-up Area | Any artificial infrastructure, residential buildings, commercial areas, industrial zones, roads, factories, villages, towns or cities |
3 | Agricultural Land | Crop fields, orchids, gardens |
4 | Water Bodies | Rivers, streams, lakes, ponds, and other water reservoirs |
5 | Barren Mountains | Mountains parts having no vegetation or snow cover |
6 | Snow Cover | Area coverd with permanent or seasonal snow |
Years | Forest Land (km2) | Built-Up Area (km2) | Agricultural Land (km2) | Barren Mountains (km2) | Water Bodies (km2) | Snow Cover (km2) | Total |
---|---|---|---|---|---|---|---|
2000 | 9128.27 | 1103.58 | 2071.36 | 44,738.89 | 138.03 | 28,255.29 | 85,435.42 |
2010 | 10,292.91 | 1787.87 | 4437.78 | 45,769.80 | 522.88 | 22,624.17 | 85,435.42 |
2020 | 6649.84 | 2907.71 | 5249.10 | 57,107.28 | 66.02 | 13,455.46 | 85,435.42 |
Change (km2) | −2478.43 | 1804.13 | 3177.74 | 12,368.39 | −72.00 | −14,799.83 | |
% Change | −27 | 163 | 153 | 28 | −52 | −52 |
Years | Forest Land (km2) | Built up (km2) | Agricultural Land (km2) | Barren Mountains (km2) | Water Bodies (km2) | Snow Cover (km2) | Total (km2) |
---|---|---|---|---|---|---|---|
2000 | 5470.32 | 590.48 | 678.57 | 32,040.24 | 24.66 | 20,569.19 | 59,373.47 |
2010 | 6845.54 | 1477.52 | 2067.88 | 31,499.38 | 136.56 | 17,346.59 | 59,373.47 |
2020 | 3693.12 | 1484.14 | 2825.16 | 40,019.07 | 54.45 | 11,296.99 | 59,372.92 |
Change (km2) | −1777.20 | 893.66 | 2146.58 | 7978.82 | 29.79 | −9272.20 | |
% Change | −32 | 151 | 316 | 25 | 121 | −45 |
Years | Forest Land (km2) | Built up (km2) | Agricultural Land (km2) | Barren Mountains (km2) | Water Bodies (km2) | Snow Cover (km2) | Total (km2) |
---|---|---|---|---|---|---|---|
2000 | 2684.15 | 461.845 | 1224.31 | 10,293.11 | 8.6517 | 6194.15 | 20,866.22 |
2010 | 2661.06 | 197.45 | 2182.58 | 11,303.44 | 354.69 | 4167.00 | 20,866.22 |
2020 | 2172.42 | 1152.55 | 2033.59 | 13,567.30 | 11.15 | 1929.21 | 20,866.22 |
Change (km2) | −511.73 | 690.71 | 809.27 | 3274.19 | 2.50 | −4264.94 | |
% Change | −19 | 150 | 66 | 32 | 29 | −69 |
Years | Forest Land (km2) | Built up (km2) | Agricultural Land (km2) | Barren Mountains (km2) | Water Bodies (km2) | Snow Cover (km2) | Total (km2) |
---|---|---|---|---|---|---|---|
2000 | 973.8 | 51.25 | 168.47 | 2405.54 | 104.71 | 1491.95 | 5195.73 |
2010 | 786.32 | 112.90 | 187.32 | 2966.99 | 31.63 | 1110.57 | 5195.72 |
2020 | 784.30 | 271.02 | 390.35 | 3520.92 | 0.42 | 229.27 | 5196.28 |
Change (km2) | −189.50 | 219.77 | 221.88 | 1115.38 | −104.29 | −1262.68 | |
% Change | −19 | 429 | 132 | 46 | −100 | −85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, T.U.; Mannan, A.; Hacker, C.E.; Ahmad, S.; Amir Siddique, M.; Khan, B.U.; Din, E.U.; Chen, M.; Zhang, C.; Nizami, M.; et al. Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard (Panthera uncia) Habitat in Pakistan. Sustainability 2021, 13, 3590. https://doi.org/10.3390/su13073590
Khan TU, Mannan A, Hacker CE, Ahmad S, Amir Siddique M, Khan BU, Din EU, Chen M, Zhang C, Nizami M, et al. Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard (Panthera uncia) Habitat in Pakistan. Sustainability. 2021; 13(7):3590. https://doi.org/10.3390/su13073590
Chicago/Turabian StyleKhan, Tauheed Ullah, Abdul Mannan, Charlotte E. Hacker, Shahid Ahmad, Muhammad Amir Siddique, Barkat Ullah Khan, Emad Ud Din, Minhao Chen, Chao Zhang, Moazzam Nizami, and et al. 2021. "Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard (Panthera uncia) Habitat in Pakistan" Sustainability 13, no. 7: 3590. https://doi.org/10.3390/su13073590
APA StyleKhan, T. U., Mannan, A., Hacker, C. E., Ahmad, S., Amir Siddique, M., Khan, B. U., Din, E. U., Chen, M., Zhang, C., Nizami, M., & Luan, X. (2021). Use of GIS and Remote Sensing Data to Understand the Impacts of Land Use/Land Cover Changes (LULCC) on Snow Leopard (Panthera uncia) Habitat in Pakistan. Sustainability, 13(7), 3590. https://doi.org/10.3390/su13073590