Distributions of Particle Sizes in Black Soil and Their Environmental Significance in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Analysis
2.3. Sensitive Particle Size Component Extraction
2.4. Statistical and Spatial Analyses
3. Results
3.1. Soil Particle Size Characteristics
3.2. Soil Particle Size Frequency Distribution Curves
3.3. Spatial Distribution of Contribution Rates of Soil Particle Size-Sensitive Components
4. Discussion
4.1. Environmental Implications of Soil Particle Size-Sensitive Components
4.2. Spatial Differentiation of Contribution Rates of Soil Particle Size-Sensitive Components Distributions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miranda, J.; Montero, E.; Alves, M.; González, A.P.; Vázquez, E.V. Multifractal characterization of saprolite particle-size distributions after topsoil removal. Geoderma 2006, 134, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, W.W.; Wang, L.X.; Liu, Y.X.; Liu, Y.; Feng, Q. Relationship between soil water content and soil particle size on typical slopes of the Loess Plateau during a drought year. Sci. Total Environ. 2019, 648, 943–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visher, G.S. Grain Size Distributions and Depositional Processes. J. Sediment. Res. 1969, 39, 1074–1106. [Google Scholar]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.-J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Zhang, S.; Li, X.; Liu, D.; Song, K.; Li, J.; Li, F.; Duan, H. Changes of Land Use and of Ecosystem Service Values in Sanjiang Plain, Northeast China. Environ. Monit. Assess. 2006, 112, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A statistical exploration of the relationships of soil moisture character-istics to the physical properties of soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Singer, A.; Zobeek, T.; Poberezsky, L.; Argaman, E. The PM10 and PM2.5 dust generation potential of soils/sediment in the Souhtern Aral Sea Basin, Ubzekistan. J. Arid Environ. 2003, 54, 705–728. [Google Scholar] [CrossRef]
- Orlovsky, L.; Orlovsky, N.; Durdyev, A. Duststorms in Turkmenistan. J. Arid Environ. 2005, 60, 87–97. [Google Scholar] [CrossRef]
- Iost, S.; Landgraf, D.; Makeschin, F. Chemical soil properties of reclaimed marsh soil from Zhejiang Province P.R. China. Geoderma 2007, 142, 245–250. [Google Scholar] [CrossRef]
- Xiao, J.; Fan, J.; Zhai, D.; Wen, R.; Qin, X. Testing the model for linking grain-size component to lake level status of modern clastic lakes. Quat. Int. 2015, 355, 34–43. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Y.; Yang, X.; Zhang, E.; Yang, B.; Ji, J. Paleosandstorm characteristics and lake evolution history deduced from investigation on lacustrine sediments—The case of Hongjiannao Lake, Shaanxi Province. Chin. Sci. Bull. 2005, 50, 2355–2361. [Google Scholar]
- Menafoglio, A.; Guadagnini, A.; Secchi, P. Stochastic simulation of soil particle-size curves in heterogeneous aquifer systems through a Bayes space approach. Water Resour. Res. 2016, 52, 5708–5726. [Google Scholar] [CrossRef] [Green Version]
- Pye, K. Aeolian Dust and Dust Deposits; Academic Press: London, UK, 1987. [Google Scholar]
- Sun, D.; Bloemendal, J.; Rea, D.; Vandenberghe, J.; Jiang, F.; An, Z.; Su, R. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment. Geol. 2002, 152, 263–277. [Google Scholar] [CrossRef]
- Boulay, S.; Colin, C.; Trentesaux, A.; Pluquet, F.; Bertaux, J.; Blamart, T.; Buehring, C.; Wang, P. Mineralogy and Sedimentology of Pleistocene Sediment in the South China Sea (ODP Site 1144). Proc. Ocean Drill. Program 2003, 184, 1–21. [Google Scholar]
- Frison, G.C.; Wimer, A.E.; Scoggin, W.E.; Walker, D.N.; Miller, J.C. Multi-component Paleoindian surface sites in the Great Divide Basin of Wyoming. Plains Anthropol. 2014, 60, 172–192. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, R.; Liu, X.; Niu, Y.; Zhang, H.; Li, H.; Li, J.; Wang, B.; Zhang, G. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil Tillage Res. 2018, 184, 45–51. [Google Scholar] [CrossRef]
- Collins, A.L.; Walling, D.E.; Leeks, G.J.L. Fingerprinting the origin of fluvial suspended sediment in larger river basins: Com-bining assessment of spatial provenance and source type. Geogr. Ann. Ser. A Phys. Geogr. 1997, 79, 239–254. [Google Scholar] [CrossRef]
- Chang, X.; Sun, L.; Yu, X.; Liu, Z.; Jia, G.; Wang, Y.; Zhu, X. Windbreak efficiency in controlling wind erosion and particulate matter concentrations from farmlands. Agric. Ecosyst. Environ. 2021, 308, 107269. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Dong, Z.B. The effect of wind erosion on the surface particle size. J. Arid Land Resour. Environ. 2012, 26, 86–89. [Google Scholar]
- Yan, Y.C.; Tang, H.P.; Zhang, X.S.; Wang, X.; Wang, H.X. A probe into grassland wind erosion based on the analysis of soil particle size. J. Des. Res. 2010, 30, 1263–1268. [Google Scholar]
- Duczek, S.; Gravenkamp, H. Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods. Comput. Methods Appl. Mech. Eng. 2019, 353, 516–569. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Pan, H.; Zheng, Z.; Huang, Y.; Zhu, R. Effect of soil particle size on soil-subsoiler interactions using the discrete element method simulations. Biosyst. Eng. 2019, 182, 138–150. [Google Scholar] [CrossRef]
- Ma, Y.; Minasny, B.; Welivitiya, W.D.P.; Malone, B.P.; Willgoose, G.R.; McBratney, A.B. The feasibility of predicting the spatial pattern of soil particle-size distribution using a pedogenesis model. Geoderma 2019, 341, 195–205. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Liu, B.; Zeng, L.; Xu, D.; He, F.; Kong, L.; Zhou, Q.; Wu, Z. Adsorption performance of modified bentonite granular (MBG) on sediment phosphorus in all fractions in the West Lake, Hangzhou, China. Ecol. Eng. 2017, 106, 124–131. [Google Scholar] [CrossRef]
- Stille, H.; Palmström, A. Practical use of the concept of geotechnical categories in rock engineering. Tunn. Undergr. Space Technol. 2018, 79, 1–11. [Google Scholar] [CrossRef]
- He, D.; Cui, J.; Gao, M.; Wang, W.; Zhou, J.; Yang, J.; Wang, J.; Li, Y.; Jiang, C.; Peng, Y. Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. Sci. Total Environ. 2019, 654, 1364–1371. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.J.; Jia, X.X.; Qiao, J.B.; Shao, M.A. What is the mass of loess in the Loess Plateau of China? Sci. Bull. 2019, 64, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Di, X.; Xiao, B.; Dong, H.; Wang, S. Implication of different humic acid fractions in soils under karst rocky desertification. Catena 2019, 174, 308–315. [Google Scholar] [CrossRef]
- Yuan, T.; Chen, S.; Huang, J.; Zhang, X.; Luo, Y.; Ma, X.; Zhang, G. Sensitivity of simulating a dust storm over Central Asia to different dust schemes using the WRF-Chem model. Atmos. Environ. 2019, 207, 16–29. [Google Scholar] [CrossRef]
- Al Badi, H.; Boland, J.; Bruce, D.; Wedding, B. Estimating effective dust particle size from satellite observations. Remote. Sens. Appl. Soc. Environ. 2018, 11, 186–197. [Google Scholar]
- Bian, B.; Zhu, W. Particle size distribution and pollutants in road-deposited sediments in different areas of Zhenjiang, China. Environ. Geochem. Health 2008, 31, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.-C.; Shin, D.-H.; Kim, S.-C.; Kim, E.-S. Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique. Appl. Opt. 2008, 47, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Tsoar, H.; Pye, K. Dust transport and the question of desert loess formation. Sedimentology 1987, 34, 139–153. [Google Scholar] [CrossRef]
- Liu, T.J.; Shan, D.; Guo, J.Y.; Gao, T.M.; Zhao, X.B. Analysis on status and development trend of wind erosion in black earth region of Northeast China. Agric. Sci. Technol. 2011, 12, 1925–1928. [Google Scholar]
- Jin, J.H.; Li, Z.Z.; Ling, Z.Y.; Ma, P.; Wu, M.R.; Qi, S.J. Spatial distribution of surface soil particles in a newly reclaimed area in Ili Valley. Bull. Soil Water Conserv. 2010, 30, 7–16. [Google Scholar]
Location | Clay (<4 μm) | Fine Silt (4–16 μm) | Coarse Silt (16–63 μm) | Sand (>63 μm) |
---|---|---|---|---|
Baiquan | 51.68 ± 10.86 a | 40.14 ± 7.67 a | 7.70 ± 6.63 d | 0.47 ± 0.69 c |
Kedong | 46.33 ± 16.73 a | 35.81 ± 8.87 a | 16.56 ± 10.14 c | 1.29 ± 1.03 c |
Keshan | 27.45 ± 4.85 b | 36.30 ± 3.52 a | 33.78 ± 5.65 a | 2.47 ± 1.23 c |
Beian | 24.22 ± 4.96 b | 37.95 ± 3.12 a | 35.38 ± 5.91 a | 2.43 ± 0.97 c |
Yian | 24.07 ± 7.92 b | 29.93 ± 6.68 b | 34.22 ± 9.85 a | 11.77 ± 9.92 b |
Lindian | 30.56 ± 7.78 b | 30.41 ± 5.98 b | 27.95 ± 8.77 b | 11.08 ± 7.73 b |
Fuyu | 28.62 ± 14.66 b | 23.14 ± 10.88 c | 17.23 ± 7.40 c | 31.00 ± 24.84 a |
Mean | 32.51 ± 14.07 | 33.33 ± 8.68 | 25.46 ± 12.55 | 8.70 ± 14.24 |
Location | Medium Diameter (Md/μm) | Standard Deviation (σi) | Skewedness (Sk) | Kurtosis (Kg) |
---|---|---|---|---|
Baiquan | 3.63 ± 1.13 | 8.27 ± 1.20 | 0.23 ± 0.40 | 0.02 ± 0.34 |
Kedong | 4.65 ± 2.12 | 9.72 ± 1.25 | 0.29 ± 0.47 | −0.15 ± 0.55 |
Keshan | 8.91 ± 2.25 | 10.57 ± 0.61 | −0.45 ± 0.34 | −0.52 ± 0.25 |
Beian | 9.76 ± 2.03 | 10.27 ± 0.51 | −0.58 ± 0.31 | −0.30 ± 0.29 |
Yian | 10.29 ± 5.75 | 12.42 ± 1.68 | −0.01 ± 0.64 | −0.59 ± 0.37 |
Lindian | 13.95 ± 7.84 | 12.07 ± 1.71 | −0.35 ± 0.58 | −0.38 ± 0.43 |
Fuyu | 39.90 ± 49.98 | 15.13 ± 2.99 | −0.26 ± 1.16 | 0.08 ± 1.11 |
Mean | 13.07 ± 21.62 | 11.26 ± 2.55 | −0.18 ± 0.67 | −0.28 ± 0.58 |
Components | Baiquan | Kedong | Keshan | Beian | Yian | Lindian | Fuyu |
---|---|---|---|---|---|---|---|
C1 | 5.22 | 4.43 | 4.93 | 4.71 | 4.08 | 4.12 | 5.22 |
C2 | 92.12 a | 86.55 ab | 50.86 d | 63.00 c | 64.19 c | 49.91 d | 49.63 d |
C3 | 2.67 d | 9.02 cd | 44.21 a | 32.29 b | 30.32 b | 42.69 a | 12.20 c |
C4 | 0 b | 0 b | 0 b | 0 b | 1.46 b | 3.28 b | 32.95 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, B.; Zhang, Y.; Zang, S.; Chen, Q.; Sun, L. Distributions of Particle Sizes in Black Soil and Their Environmental Significance in Northeast China. Sustainability 2021, 13, 3706. https://doi.org/10.3390/su13073706
Yan B, Zhang Y, Zang S, Chen Q, Sun L. Distributions of Particle Sizes in Black Soil and Their Environmental Significance in Northeast China. Sustainability. 2021; 13(7):3706. https://doi.org/10.3390/su13073706
Chicago/Turabian StyleYan, Binghe, Yulan Zhang, Shuying Zang, Qiang Chen, and Li Sun. 2021. "Distributions of Particle Sizes in Black Soil and Their Environmental Significance in Northeast China" Sustainability 13, no. 7: 3706. https://doi.org/10.3390/su13073706
APA StyleYan, B., Zhang, Y., Zang, S., Chen, Q., & Sun, L. (2021). Distributions of Particle Sizes in Black Soil and Their Environmental Significance in Northeast China. Sustainability, 13(7), 3706. https://doi.org/10.3390/su13073706