HRV in Active-Duty Special Forces and Public Order Military Personnel
Abstract
:1. Introduction
- parachuting course;
- patrol and platoon training;
- individual and collective training in the use of weapons.
2. Materials and Methods
2.1. Study Population and Procedures
2.2. Measurements
2.3. Statistical Analysis
2.4. Ethical Approval and Consent to Participate
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowan, M.J. Measurement of Heart Rate Variability. West. J. Nurs. Res. 1995, 17, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Pinna, G.D.; Maestri, R.; Di Cesare, A.; Colombo, R.; Minuco, G. The accuracy of power-spectrum analysis of heart-rate variability from annotated RR lists generated by Holter systems. Physiol. Meas. 1994, 15, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.; Vagedes, J. How accurate is pulse rate variability as an estimate of heart rate variability? Int. J. Cardiol. 2013, 166, 15–29. [Google Scholar] [CrossRef]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Hear. J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Buccelletti, E.; Gilardi, E.; Scaini, E.; Galiuto, L.; Persiani, R.; Biondi, A.; Basile, F.; Silveri, N.G. Heart rate variability and myocardial infarction: Systematic literature review and metanalysis. Eur. Rev. Med Pharmacol. Sci. 2009, 13, 299–307. [Google Scholar]
- Di Fabio, A. The Psychology of Sustainability and Sustainable Development for Well-Being in Organizations. Front. Psychol. 2017, 8, 1534. [Google Scholar] [CrossRef] [Green Version]
- Di Fabio, A. Positive Healthy Organizations: Promoting Well-Being, Meaningfulness, and Sustainability in Organizations. Front. Psychol. 2017, 8, 1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Nazari, G.; Bobos, P.; MacDermid, J.C.; Sinden, K.E.; Richardson, J.; Tang, A. Psychometric properties of the Zephyr bioharness device: A systematic review. BMC Sports Sci. Med. Rehabil. 2018, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, J.A.; Ford, P.A.; Hughes, G.; Watson, T.; Mitchell, A.C.; Garrett, A.T. Field based reliability and validity of the bioharness™ multivariable monitoring device. J. Sports Sci. Med. 2012, 11, 10. [Google Scholar]
- Nazari, G.; MacDermid, J.C. Minimal Detectable Change Thresholds and Responsiveness of Zephyr Bioharness and Fitbit Charge Devices. J. Strength Cond. Res. 2020, 34, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Nazari, G.; MacDermid, J.C.; Sinden, K.E.; Richardson, J.; Tang, A. Reliability of Zephyr Bioharness and Fitbit Charge Measures of Heart Rate and Activity at Rest, During the Modified Canadian Aerobic Fitness Test, and Recovery. J. Strength Cond. Res. 2019, 33, 559–571. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.C.; Janse van Rensburg, D.C.; Pepper, M.S.; Du Toit, P.J.; Wood, P.S.; Ker, J.; Krüger, P.E.; Grobbelaar, C.W.; Nolte, K.; Fletcher, F.; et al. The correlation between the health-related fitness of healthy participants measured at home as op-posed to fitness measured by sport scientists in a laboratory. S. Afr. Fam. Pract. 2014, 56, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, L.I.; Strydom, G.L.; Van Der Merwe, S. The relationships between physical activity, lifestyle and health. ICHPER J. 1997, 33, 15–18. [Google Scholar]
- Baevsky, R.M.; Berseneva, A.P. Methodical Recommendations—Use Kardivar System for Determination of the Stress Level and Estimation of the Body Adaptability—Standards of Measurements and Physiological Interpretation. Moscow, 2008. Available online: http://www.kardivar.eu/en/index.php?controller=attachment&id_attachment=53(accessed on 11 January 2021).
- Acharya, U.R.; Joseph, K.P.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Nunan, D.; Sandercock, G.R.H.; Brodie, D.A. A Quantitative Systematic Review of Normal Values for Short-Term Heart Rate Variability in Healthy Adults. Pacing Clin. Electrophysiol. 2010, 33, 1407–1417. [Google Scholar] [CrossRef]
- He, Z. The control mechanisms of heart rate dynamics in a new heart rate nonlinear time series model. Sci. Rep. 2020, 10, 1–21. [Google Scholar] [CrossRef]
- Kristal-Boneh, E.; Raifel, M.; Froom, P.; Ribak, J. Heart rate variability in health and disease. Scand. J. Work. Environ. Heal. 1995, 21, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Togo, F.; Takahashi, M. Heart Rate Variability in Occupational Health ―A Systematic Review. Ind. Health 2009, 47, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Grant, C.C.; Janse van Rensburg, D.C.; Grant, R. The effect of different types of sports on resting heart rate variability and au-tonomic nervous system balance. Afr. J. Phys. Health Educ. Recreat. Danc. 2008, 14. [Google Scholar]
- Lecca, L.I.; Setzu, D.; Del Rio, A.; Campagna, M.; Cocco, P.; Meloni, M. Indexes of cardiac autonomic profile detected with short term Holter ECG in health care shift workers: A cross sectional study. La Med. Lav. 2019, 110, 437–445. [Google Scholar]
- Steffen, P.R.; Austin, T.; DeBarros, A.; Brown, T. The Impact of Resonance Frequency Breathing on Measures of Heart Rate Variability, Blood Pressure, and Mood. Front. Public Health 2017, 5, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehrer, P.M.; Vaschillo, E.; Vaschillo, B. Resonant frequency biofeedback training to increase cardiac variability: Ra-tionale and manual for training. Appl. Psychophysiol. Biofeedback 2000, 25, 177–191. [Google Scholar] [CrossRef]
- Järvelin-Pasanen, S.; Sinikallio, S.; Tarvainen, M.P. Heart rate variability and occupational stress—systematic review. Ind. Heal. 2018, 56, 500–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.; Kim, Y.; Kim, J.; Hwang, Y.; Cho, B.; Hong, T.; Sung, B.; Lee, Y. Effects of high occupational physical activity, aging, and exercise on heart rate variability among male workers. Ann. Occup. Environ. Med. 2015, 27, 22. [Google Scholar] [CrossRef] [Green Version]
- Barutcu, I.; Esen, A.M.; Kaya, D.; Turkmen, M.; Karakaya, O.; Melek, M.; Esen, O.B.; Basaran, Y. Cigarette Smoking and Heart Rate Variability: Dynamic Influence of Parasympathetic and Sympathetic Maneuvers. Ann. Noninvasive Electrocardiol. 2005, 10, 324–329. [Google Scholar] [CrossRef]
- Murgia, F.; Melotti, R.; Foco, L.; Gögele, M.; Meraviglia, V.; Motta, B.; Steger, A.; Toifl, M.; Sinnecker, D.; Müller, A.; et al. Effects of smoking status, history and intensity on heart rate variability in the general population: The CHRIS study. PLoS ONE 2019, 14, e0215053. [Google Scholar] [CrossRef]
- Harte, C.B.; Meston, C.M. Effects of Smoking Cessation on Heart Rate Variability among Long-Term Male Smokers. Int. J. Behav. Med. 2013, 21, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Burch, J.B.; Alexander, M.; Balte, P.; Sofge, J.; Winstead, J.; Kothandaraman, V.; Ginsberg, J.P. Shift Work and Heart Rate Variability Coherence: Pilot Study among Nurses. Appl. Psychophysiol. Biofeedback 2019, 44, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Hulsegge, G.; Gupta, N.; Proper, K.I.; van Lobenstein, N.; Ijzelenberg, W.; Hallman, D.M.; Holtermann, A.; van der Beek, A.J. Shift work is associated with reduced heart rate variability among men but not women. Int. J. Cardiol. 2018, 258, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.A.; Garde, A.H.; Kristiansen, J.; Nabe-Nielsen, K.; Hansen, Å.M. The effect of the number of consecutive night shifts on diurnal rhythms in cortisol, melatonin and heart rate variability (HRV): A systematic review of field studies. Int. Arch. Occup. Environ. Health 2016, 89, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, B.; Persson, R.; Flisberg, P.; Ørbaek, P. Heart rate variability changes in physicians working on night call. Int. Arch. Occup. Environ. Health 2010, 84, 293–301. [Google Scholar] [CrossRef]
- Hermans, B.; Verheyden, B.; Beckers, F.; Aubert, A.; Puers, R. A portable multi-sensor datalogger for heart rate variability (HRV) study during skydiver’s free fall. In Proceedings of the the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS ’05, Seoul, Korea, 5–9 June 2005. [Google Scholar]
- Cavalade, M.; Papadopoulou, V.; Theunissen, S.; Balestra, C. Heart rate variability and critical flicker fusion frequency changes during and after parachute jump-ing in experienced skydivers. Eur. J. Appl. Physiol. 2015, 115, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Mazurek, K.; Koprowska, N.; Gajewski, J.; Skibniewski, F.; Zmijewski, P.; Różanowski, K. Parachuting training improves autonomic control of the heart in novice parachute jumpers. Biocybern. Biomed. Eng. 2018, 38, 181–189. [Google Scholar] [CrossRef]
- Pawlosky, N. Cardiovascular risk: Are all NSAIDs alike? Can. Pharm. J. 2013, 146, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenig, J.; Jarczok, M.N.; Hillecke, T.K.; Thayer, J.F. Analgesic Self-Medication and Heart Rate Variability—A Preliminary Investigation. American Psychosomatic Society (APS). In Proceedings of the 72nd Annual Scientific Meeting, Stretching the Boundaries: From Mechanisms of Disease to Models of Health, San Francisco, CA, USA, 13 March 2014. [Google Scholar]
- Bavry, A.A.; Khaliq, A.; Gong, Y.; Handberg, E.M.; Cooper-DeHoff, R.M.; Pepine, C.J. Harmful Effects of NSAIDs among Patients with Hypertension and Coronary Artery Disease. Am. J. Med. 2011, 124, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tegegne, B.S.; Man, T.; Van Roon, A.M.; Riese, H.; Snieder, H. Determinants of heart rate variability in the general population: The Lifelines Cohort Study. Hear. Rhythm. 2018, 15, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.S.; Quarto, L.J.G. Body Mass Index May Influence Heart Rate Variability. Arq. Bras. Cardiol. 2018, 111, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Jouanin, J.-C.; Dussault, C.; Pérès, M.; Satabin, P.; Piérard, C.; Guézennec, C.Y. Analysis of Heart Rate Variability after a Ranger Training Course. Mil. Med. 2004, 169, 583–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minassian, A.; Geyer, M.A.; Baker, D.G.; Nievergelt, C.M.; O’Connor, D.T.; Risbrough, V.B. Heart Rate Variability Characteristics in a Large Group of Active-Duty Marines and Relationship to Posttraumatic Stress. Psychosom. Med. 2014, 76, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.; Wiewelhove, T.; Raeder, C.; Flatt, A.A.; Hoos, O.; Hottenrott, L.; Schumbera, O.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; et al. Heart Rate Variability Monitoring During Strength and High-Intensity Interval Training Overload Microcycles. Front. Physiol. 2019, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Phoemsapthawee, J.; Prasertsri, P.; Leelayuwat, N. Heart rate variability responses to a combined exercise training program: Correlation with adiposity and cardiorespiratory fitness changes in obese young men. J. Exerc. Rehabil. 2019, 15, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.E.; Violanti, J.M.; Gu, J.K.; Fekedulegn, D.; Li, S.; Hartley, T.A.; Charles, L.E.; Mnatsakanova, A.; Miller, D.B.; Burchfiel, C.M. Police work stressors and cardiac vagal control. Am. J. Hum. Biol. 2017, 29, e22996. [Google Scholar] [CrossRef] [PubMed]
- Borchini, R.; Ferrario, M.M.; Bertù, L.; Veronesi, G.; Bonzini, M.; Dorso, M.; Cesana, G. Prolonged job strain reduces time-domain heart rate variability on both working and resting days among cardiovascular-susceptible nurses. Int. J. Occup. Med. Environ. Health 2014, 28, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hourani, L.L.; Davila, M.I.; Morgan, J.; Meleth, S.; Ramirez, D.; Lewis, G.; Kizakevich, P.N.; Eckhoff, R.; Morgan, T.; Strange, L.; et al. Mental health, stress, and resilience correlates of heart rate variability among military reservists, guardsmen, and first responders. Physiol. Behav. 2020, 214, 112734. [Google Scholar] [CrossRef] [PubMed]
- Low, A.; McCraty, R. Emerging dynamics of workplace stress of employees in a large organization in Hong Kong. Public Adm. Policy 2018, 21, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, R.; Aleksiev, L.; Vukov, M. Psychophysiological assessment of stress and screening of health risk in peace-keeping operations. Mil. Med. 2007, 172, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plews, D.J.; Laursen, P.B.; Stanley, J.; Kilding, A.E.; Buchheit, M. Training Adaptation and Heart Rate Variability in Elite Endurance Athletes: Opening the Door to Effective Monitoring. Sports Med. 2013, 43, 773–781. [Google Scholar] [CrossRef]
- Tomes, C.; Schram, B.; Orr, R. Relationships between Heart Rate Variability, Occupational Performance, and Fitness for Tactical Personnel: A Systematic Review. Front. Public Health 2020, 8. [Google Scholar] [CrossRef]
- Fernández-Donet, R.; Marco-Ahulló, A.; Bermejo, J.L.; Monfort-Torres, G. Epidemiología y principales causas de lesión de militares pertenecientes al ejército de tierra. J. Sport Health Res. 2021, 13, 93–102. [Google Scholar]
- Baldassarre, A.; Mucci, N.; Padovan, M.; Pellitteri, A.; Viscera, S.; Lecca, L.I.; Galea, R.P.; Arcangeli, G. The Role of Electrocardiography in Occupational Medicine, from Einthoven’s Invention to the Digital Era of Wearable Devices. Int. J. Environ. Res. Public Health 2020, 17, 4975. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, A.; Mucci, N.; Lecca, L.I.; Tomasini, E.; Parcias-Do-Rosario, M.J.; Pereira, C.T.; Arcangeli, G.; Oliveira, P.A.B. Biosensors in Occupational Safety and Health Management: A Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 2461. [Google Scholar] [CrossRef] [Green Version]
- Di Fabio, A.; Kenny, M.E. From Decent Work to Decent Lives: Positive Self and Relational Management (PS&RM) in the Twenty-First Century. Front. Psychol. 2016, 7, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marhavilas, P.; Koulouriotis, D.; Nikolaou, L.; Tsotoulidou, S. International Occupational Health and Safety Management-Systems Standards as a Frame for the Sustainability: Mapping the Territory. Sustainability 2018, 10, 3663. [Google Scholar] [CrossRef] [Green Version]
HRV Parameter | SI | Description | Range |
---|---|---|---|
SDNN | ms | Standard deviation of normal-to-normal (NN) intervals | |
RMSSD | ms | Root mean square of successive differences in adjacent NN intervals | |
VLF | Hz | Very-low-frequency power | 0.003–0.04 Hz |
LF | Hz | Low-frequency power | 0.04–0.15 Hz |
HF | Hz | High-frequency power | 0.15–0.4 Hz |
LF/HF | ms2/ms2 | LF/HF ratio | |
TP | Hz | The variance of NN intervals over the temporal segment | <0.4 Hz |
Stress index | |||
PNS | Parasympathetic nervous system activity | ||
SNS | Sympathetic nervous system activity |
Parameters | Mean | SD | n | (%) | |
---|---|---|---|---|---|
Age (years) | 40.67 | 9.88 | - | - | |
BMI (kg/m2) | 25.99 | 2.63 | - | - | |
Smoking habit | Smokers | - | - | 19 | 18.1 |
Non-smokers | - | - | 86 | 81.9 | |
Medications | Yes | - | - | 12 | 11.4 |
No | - | - | 93 | 88.6 | |
Physical activity | Yes | - | - | 93 | 88.6 |
No | - | - | 12 | 11.4 | |
Physical activity level (FIT) | 32.52 | 25.68 | - | - | |
Mean HR (bpm) | 89.42 | 23.54 | - | - | |
SDNN (ms) | 35.54 | 15.40 | - | - | |
RMSSD | 24.79 | 16.32 | - | - | |
VLF power * | 2.07 | 0.39 | - | - | |
LF power * | 2.85 | 0.44 | - | - | |
HF power * | 2.13 | 0.61 | - | - | |
LF/HF ratio * | 0.72 | 0.29 | - | - | |
Stress index | 11.43 | 5.95 | - | - | |
PNS | –1.58 | 1.37 | - | - | |
SNS | 2.11 | 2.61 | - | - |
CG | NSP | NSS | PT | NET | SET | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | F | p | |
Age | 37.33 | 7.83 | 46.32 | 6.50 | 47.1 | 5.21 | 46.95 | 7.97 | 35.24 | 7.16 | 27.06 | 2.02 | 27.665 | <0.001 |
BMI | 25.20 | 2.17 | 27.44 | 3.62 | 26.28 | 2.71 | 25.73 | 1.69 | 25.75 | 2.84 | 25.31 | 2.00 | 1.813 | 0.117 |
Mean HR | 71.60 | 10.40 | 71.32 | 9.72 | 63.25 | 7.05 | 111.50 | 13.76 | 107.00 | 18.53 | 104.75 | 13 | 51.747 | <0.001 |
SDNN | 48.83 | 13.07 | 41.62 | 14.57 | 44,03 | 13.30 | 24.80 | 10.85 | 26.10 | 12.98 | 32.14 | 11.17 | 10.878 | <0.001 |
RMSSD | 38.74 | 19.05 | 31.90 | 16.88 | 35.27 | 13.70 | 12.34 | 6.50 | 15.82 | 10.49 | 19.46 | 8.76 | 12.789 | <0.001 |
VLF power | 2.7 | 0.17 | 2.23 | 0.24 | 2.31 | 0.27 | 1.80 | 0.38 | 1,82 | 0.46 | 1.99 | 0.31 | 10.376 | <0.001 |
LF power | 3.15 | 0.23 | 3.02 | 0.28 | 3.03 | 0.31 | 2.65 | 0.45 | 2,51 | 0.60 | 2.81 | 0.32 | 6.991 | <0.001 |
HF power | 2.57 | 0.42 | 2.35 | 0.50 | 2.42 | 0.46 | 1.73 | 0.52 | 1,77 | 0.78 | 2.07 | 0.44 | 7.669 | <0.001 |
LF/HF ratio | 0.58 | 0.37 | 0.67 | 0.33 | 0.61 | 0.28 | 0.92 | 0.55 | 0.74 | 0.26 | 0.74 | 0.23 | 3.695 | 0.004 |
Stress index | 6.72 | 1.84 | 7.42 | 2.54 | 6.41 | 2.68 | 15.20 | 3.72 | 17.86 | 6.41 | 13.61 | 4.65 | 27.332 | <0.001 |
PNS | –0.46 | 0.93 | –0.64 | 0.89 | –0.05 | 0.71 | –2.80 | 0.58 | –2.52 | 0.86 | –2.61 | 0.54 | 47.706 | <0.001 |
SNS | 0.02 | 1.01 | 0.12 | 0.98 | –0.58 | 0.76 | 4.26 | 1.58 | 4.38 | 2.46 | 3.76 | 1.45 | 43.869 | <0.001 |
Non-Active Activities | Semi-Active Activities | Active Activities | ||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | F | p | |
Age | 37.33 | 7.83 | 47 | 5.906 | 38 | 10.623 | 13.336 | <0.001 |
BMI | 25.20 | 2.17 | 26.91 | 3.24 | 25.61 | 2.18 | 3.528 | 0.033 |
Mean HR | 71.60 | 10.40 | 67.63 | 9.412 | 108.15 | 15.316 | 122.218 | <0.001 |
SDNN | 48.83 | 13.07 | 42.72 | 13.86 | 27.34 | 11.95 | 25.205 | <0.001 |
RMSSD | 38.74 | 19.05 | 33.44 | 15,38 | 15.49 | 8.97 | 30.184 | <0.001 |
VLF power * | 2.37 | 0.17 | 2.27 | 0.25 | 1.86 | 0.40 | 23.683 | <0.001 |
LF power * | 3.15 | 0.23 | 3.02 | 0.29 | 2.65 | 0.48 | 14.694 | <0.001 |
HF power * | 2.57 | 0.42 | 2.38 | 0.48 | 1.84 | 0.60 | 16.777 | <0.001 |
LF/HF ratio * | 0.58 | 0.37 | 0.64 | 0.30 | 0.81 | 0.23 | 6.247 | 0.003 |
Stress index | 6.72 | 1.84 | 6.96 | 2.62 | 15.56 | 5.19 | 58.826 | <0.001 |
PNS | –0.46 | 0.93 | –0.37 | 0.85 | –2.66 | 0.67 | 111.932 | <0.001 |
SNS | 0.02 | 1.01 | –0.20 | 0.94 | 4.15 | 1.86 | 107.292 | <0.001 |
HRV Parameter Control Group | vs. NSP | vs. NSS | vs. PT | vs. NET | vs. SET |
---|---|---|---|---|---|
HR | ✕ | ✕ | ✓ | ✓ | ✓ |
SDNN | ✕ | ✕ | ✓ | ✓ | p = 0.006 |
RMSSD | ✕ | ✕ | ✓ | ✓ | p = 0.001 |
VLF | ✕ | ✕ | ✓ | ✓ | p = 0.003 |
LF power | ✕ | ✕ | ✓ | ✓ | p = 0.006 |
HF power | ✕ | ✕ | p = 0.003 | p = 0.033 | p = 0.043 |
LF/HF ratio | ✕ | ✕ | ✕ | ✕ | ✕ |
Stress index | ✕ | ✕ | ✓ | ✓ | ✓ |
PNS index | ✕ | ✕ | ✓ | ✓ | ✓ |
SNS index | ✕ | ✕ | ✓ | ✓ | ✓ |
HRV Parameter Control Group = Non Active Activities | vs. Semi-Active Activities | vs. Active Activities | Semi-Active vs. Active Activities |
---|---|---|---|
HR | ✕ | ✓ | ✓ |
SDNN | ✕ | ✓ | ✓ |
RMSSD | ✕ | ✓ | ✓ |
VLF | ✕ | ✓ | ✓ |
LF power | ✕ | ✓ | ✓ |
HF power | ✕ | ✓ | p = 0.003 |
LF/HF ratio | ✕ | p = 0.016 | p = 0.017 |
Stress index | ✕ | ✓ | ✓ |
PNS index | ✕ | ✓ | ✓ |
SNS index | ✕ | ✓ | ✓ |
Predictors | Model 1 HR | Model 2 SDNN | Model 3 RMSSD | Model 4 VLF Power | Model 5 LF Power | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Beta | p-Value | Beta | p-Value | Beta | p-Value | Beta | p-Value | Beta | p-Value | ||
Age | –0.255 | 0.195 | –0.589 | 0.002 | –0.492 | 0.018 | –0.011 | 0.028 | –0.018 | 0.003 | |
BMI | 0.497 | 0.302 | –0.172 | 0.718 | –0.034 | 0.947 | –0.005 | 0.659 | –0.011 | 0.458 | |
Study group | CG (ref) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ |
NSP | 1.042 | 0.813 | –1.093 | 0.802 | –1.877 | 0.687 | –0.030 | 0.794 | 0.052 | 0.698 | |
NSS | –6.900 | 0.159 | 3.058 | 0.527 | 3.007 | 0.560 | 0.071 | 0.572 | 0.106 | 0.474 | |
PT | 41.957 | <0.001 | –17.719 | <0.001 | –21.199 | <0.001 | –0.462 | <0.001 | –0.318 | 0.014 | |
SET | 35.328 | <0.001 | –24.234 | <0.001 | –24.062 | <0.001 | –0.595 | <0.001 | –0.692 | <0.001 | |
NET | 31.416 | <0.001 | –22.727 | <0.001 | –24.246 | <0.001 | –0.514 | <0.001 | –0.529 | <0.001 | |
Smoking habit | 1.454 | 0.643 | –3.514 | 0.258 | –2.027 | 0.540 | –0.042 | 0.604 | –0.106 | 0.262 | |
Physical activity (FIT) | –0.092 | 0.061 | 0.054 | 0.271 | 0.040 | 0.438 | 0.002 | 0.139 | 0.002 | 0.290 | |
Medications | –9.839 | 0.008 | 3.987 | 0.277 | 1.721 | 0.660 | 0.213 | 0.026 | 0.170 | 0.130 |
Predictors | Model 6 Dependent Variable: HF Power | Model 7 Dependent Variable: HF/LF Ratio | Model 8 Dependent Variable: Stress Index | Model 9 Dependent Variable: PNS Index | Model 10 Dependent Variable: SNS Index | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Beta | p-Value | Beta | p-Value | Beta | p-Value | Beta | p-Value | Beta | p-Value | ||
Age | –0.026 | 0.002 | 0.009 | 0.052 | 0.032 | 0.605 | –0.006 | 0.638 | –0.012 | 0.623 | |
BMI | –0.002 | 0.913 | –0.009 | 0.387 | 0.240 | 0.114 | –0.016 | 0.593 | 0.074 | 0.194 | |
Study group | CG (ref) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ |
NSP | 0.033 | 0.859 | 0.021 | 0.830 | –0.142 | 0.918 | –0.076 | 0.780 | 0.047 | 0.928 | |
NSS | 0.171 | 0.408 | –0.068 | 0.535 | –1.216 | 0.429 | 0.565 | 0.061 | –0.658 | 0.259 | |
PT | –0.573 | 0.002 | 0.253 | 0.009 | 7.927 | <0.001 | –2.251 | <0.001 | 4.290 | <0.001 | |
SET | –0.872 | <0.001 | 0.181 | 0.057 | 11.337 | <0.001 | –2.090 | <0.001 | 4.411 | <0.001 | |
NET | –0.775 | <0.001 | 0.251 | 0.019 | 7.296 | <0.001 | –2.237 | <0.001 | 3.704 | <0.001 | |
Smoking habit | –0.042 | 0.754 | –0.063 | 0.370 | 1.224 | 0.215 | –0.090 | 0.643 | 0.228 | 0.542 | |
Physical activity (FIT) | 0.002 | 0.309 | –0.001 | 0.648 | –0.018 | 0.232 | 0.005 | 0.082 | –0.010 | 0.085 | |
Medications | 0.114 | 0.467 | 0.060 | 0.468 | –2.211 | 0.058 | 0.421 | 0.065 | –1.038 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gancitano, G.; Baldassarre, A.; Lecca, L.I.; Mucci, N.; Petranelli, M.; Nicolia, M.; Brancazio, A.; Tessarolo, A.; Arcangeli, G. HRV in Active-Duty Special Forces and Public Order Military Personnel. Sustainability 2021, 13, 3867. https://doi.org/10.3390/su13073867
Gancitano G, Baldassarre A, Lecca LI, Mucci N, Petranelli M, Nicolia M, Brancazio A, Tessarolo A, Arcangeli G. HRV in Active-Duty Special Forces and Public Order Military Personnel. Sustainability. 2021; 13(7):3867. https://doi.org/10.3390/su13073867
Chicago/Turabian StyleGancitano, Giuseppe, Antonio Baldassarre, Luigi Isaia Lecca, Nicola Mucci, Marco Petranelli, Mario Nicolia, Antonio Brancazio, Andrea Tessarolo, and Giulio Arcangeli. 2021. "HRV in Active-Duty Special Forces and Public Order Military Personnel" Sustainability 13, no. 7: 3867. https://doi.org/10.3390/su13073867
APA StyleGancitano, G., Baldassarre, A., Lecca, L. I., Mucci, N., Petranelli, M., Nicolia, M., Brancazio, A., Tessarolo, A., & Arcangeli, G. (2021). HRV in Active-Duty Special Forces and Public Order Military Personnel. Sustainability, 13(7), 3867. https://doi.org/10.3390/su13073867