Uncertainty and Tourism Consumption Preferences: Evidence from the Representative Chinese City of Shenzhen
Abstract
:1. Introduction
2. Literature Review and Conceptual Framework
2.1. Tourism Consumption Preferences
2.1.1. Food
2.1.2. Accommodation
2.1.3. Shopping
2.2. Uncertainty in Tourism Consumption
2.2.1. Inexperience
2.2.2. Imperfect Knowledge
2.2.3. Policy Change
3. Methodology
3.1. Model
3.2. Data
3.2.1. Data Collection
3.2.2. Statistical Analysis
4. Results and Discussions
4.1. Food Consumption Preference Estimation Results
4.2. Accommodation Consumption Preference Estimation Results
4.3. Shopping Consumption Preference Estimation Results
4.4. Marginal Utilities
5. Conclusions and Implications
5.1. Conclusions
5.2. Implications
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, G.; Chen, X.; Zhang, M. Sustainability of Heritage Tourism: A Structural Perspective from Cultural Identity and Consumption Intention. Sustainability 2020, 12, 9199. [Google Scholar] [CrossRef]
- Agrusa, J.; Kim, S.S.; Wang, K.-C. Mainland Chinese Tourists to Hawaii: Their Characteristics and Preferences. J. Travel Tour. Mark. 2011, 28, 261–278. [Google Scholar] [CrossRef]
- Choi, M.; Law, R.; Heo, C.Y. Shopping destinations and trust—Tourist attitudes: Scale development and validation. Tour. Manag. 2016, 54, 490–501. [Google Scholar] [CrossRef]
- Han, H.; Hyun, S.S. College youth travelers’ eco-purchase behavior and recycling activity while traveling: An examination of gender difference. J. Travel Tour. Mark. 2017, 35, 740–754. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Chen, C.-M. Evaluating tourists’ preferences for attributes of thematic itineraries: Holy folklore statue in Kinmen. Tour. Manag. Perspect. 2019, 30, 208–219. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, G.; Huang, S.; Bao, J. Understanding Chinese tourists’ perceptions of Cantonese as a regional dialect. Tour. Manag. 2019, 71, 127–136. [Google Scholar] [CrossRef]
- Prayag, G.; Lee, C. Tourist motivation and place attachment: The mediating effects of service interactions with hotel employees. J. Travel Tour. Mark. 2018, 36, 90–106. [Google Scholar] [CrossRef]
- Boo, S.; Busser, J.A. Tourists’ hotel event experience and satisfaction: An integrative approach. J. Travel Tour. Mark. 2018, 35, 895–908. [Google Scholar] [CrossRef]
- Kim, S.S.; Guo, Y.; Agrusa, J. Preference and Positioning Analyses of Overseas Destinations by Mainland Chinese Outbound Pleasure Tourists. J. Travel Res. 2016, 44, 212–220. [Google Scholar] [CrossRef]
- Lo, A.S.; Cheung, C.; Law, R. Hong Kong residents’ adoption of risk reduction strategies in leisure travel. J. Travel Tour. Mark. 2011, 28, 240–260. [Google Scholar] [CrossRef]
- Li, C.-Z.; Mattsson, L. Discrete choice under preference uncertainty: An improved structural model for contingent valuation. J. Environ. Econ. Manag. 1995, 28, 256–269. [Google Scholar] [CrossRef]
- Champ, P.A.; Bishop, R.C.; Brown, T.C.; McCollum, D.W. Using donation mechanisms to value nonuse benefits from public goods. J. Environ. Econ. Manag. 1997, 33, 151–162. [Google Scholar] [CrossRef]
- Welsh, M.P.; Poe, G.L. Elicitation effects in contingent valuation: Comparisons to a multiple bounded discrete choice approach. J. Environ. Econ. Manag. 1998, 36, 170–185. [Google Scholar] [CrossRef]
- Broberg, T.; Brännlund, R. An alternative interpretation of multiple bounded WTP data—Certainty dependent payment card intervals. Resour. Energy Econ. 2008, 30, 555–567. [Google Scholar] [CrossRef]
- Hanley, N.; Kriström, B.; Shogren, J.F. Coherent arbitrariness: On value uncertainty for environmental goods. Land Econ. 2009, 85, 41–50. [Google Scholar] [CrossRef]
- Mitchell, V.-W.; Greatorex, M. Risk perception and reduction in the purchase of consumer services. Serv. Ind. J. 1993, 13, 179–200. [Google Scholar] [CrossRef]
- Williams, A.M.; Baláž, V. Tourism, risk tolerance and competences: Travel organization and tourism hazards. Tour. Manag. 2013, 35, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Sönmez, S.F.; Graefe, A.R. Determining future travel behavior from past travel experience and perceptions of risk and safety. J. Travel Res. 1998, 37, 171–177. [Google Scholar] [CrossRef]
- Money, R.B.; Crotts, J.C. The effect of uncertainty avoidance on information search, planning, and purchases of international travel vacations. Tour. Manag. 2003, 24, 191–202. [Google Scholar] [CrossRef]
- Williams, A.M.; Baláž, V. Tourism Risk and Uncertainty: Theoretical Reflections. J. Travel Res. 2015, 54, 271–287. [Google Scholar] [CrossRef]
- Minnaert, L. Social tourism participation: The role of tourism inexperience and uncertainty. Tour. Manag. 2014, 40, 282–289. [Google Scholar] [CrossRef]
- Rozin, P.; Vollmecke, T.A. Food likes and dislikes. Annu. Rev. Nutr. 1986, 6, 433–456. [Google Scholar] [CrossRef]
- Mak, A.H.N.; Lumbers, M.; Eves, A.; Chang, R.C.Y. Factors influencing tourist food consumption. Int. J. Hosp. Manag. 2012, 31, 928–936. [Google Scholar] [CrossRef] [Green Version]
- Kline, C.; Lee, S.J.; Knollenberg, W. Segmenting foodies for a foodie destination. J. Travel Tour. Mark. 2018, 35, 1234–1245. [Google Scholar] [CrossRef] [Green Version]
- Akbay, C.; Tiryaki, G.Y.; Gul, A. Consumer characteristics influencing fast food consumption in Turkey. Food Control 2007, 18, 904–913. [Google Scholar] [CrossRef]
- Wu, K.; Raab, C.; Chang, W.; Krishen, A. Understanding Chinese tourists’ food consumption in the United States. J. Bus. Res. 2016, 69, 4706–4713. [Google Scholar] [CrossRef]
- Ha, J.; Jang, S. Effects of service quality and food quality: The moderating role of atmospherics in an ethnic restaurant segment. Int. J. Hosp. Manag. 2010, 29, 520–529. [Google Scholar] [CrossRef]
- Divisekera, S. Economics of tourist’s consumption behaviour: Some evidence from Australia. Tour. Manag. 2010, 31, 629–636. [Google Scholar] [CrossRef]
- Lai, I.K.W.; Hitchcock, M. A comparison of service quality attributes for stand-alone and resort-based luxury hotels in Macau: 3-Dimensional importance-performance analysis. Tour. Manag. 2016, 55, 139–159. [Google Scholar] [CrossRef]
- Sohrabi, B.; Vanani, I.R.; Tahmasebipur, K.; Fazli, S. An exploratory analysis of hotel selection factors: A comprehensive survey of Tehran hotels. Int. J. Hosp. Manag. 2012, 31, 96–106. [Google Scholar] [CrossRef]
- Xu, F.; La, L.; Zhen, F.; Lobsang, T.; Huang, C. A data-driven approach to guest experiences and satisfaction in sharing. J. Travel Tour. Mark. 2019, 36, 484–496. [Google Scholar] [CrossRef]
- Hsieh, L.-F.; Lin, L.-H.; Lin, Y.-Y. A service quality measurement architecture for hot spring hotels in Taiwan. Tour. Manag. 2008, 29, 429–438. [Google Scholar] [CrossRef]
- Chu, R.K.; Choi, T. An importance-performance analysis of hotel selection factors in the Hong Kong hotel industry: A comparison of business and leisure travellers. Tour. Manag. 2000, 21, 363–377. [Google Scholar] [CrossRef]
- Rivers, M.J.; Toh, R.S.; Alaoui, M. Frequent-stayer programs: The demographic, behavioral, and attitudinal characteristics of hotel steady sleepers. J. Travel Res. 1991, 30, 41–45. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.Y.; Koo, C.; Yang, S.-B. Examining the influencing factors of intention to share accommodations in online hospitality exchange networks. J. Travel Tour. Mark. 2017, 35, 16–31. [Google Scholar] [CrossRef]
- Yuksel, A. Shopping experience evaluation: A case of domestic and international visitors. Tour. Manag. 2004, 25, 751–759. [Google Scholar] [CrossRef]
- Lehto, X.Y.; Cai, L.A.; O’Leary, J.T.; Huan, T.-C. Tourist shopping preferences and expenditure behaviours: The case of the Taiwanese outbound market. J. Vacat. Mark. 2016, 10, 320–332. [Google Scholar] [CrossRef]
- Oh, J.Y.-J.; Cheng, C.-K.; Lehto, X.Y.; O’Leary, J.T. Predictors of tourists’ shopping behaviour: Examination of socio-demographic characteristics and trip typologies. J. Vacat. Mark. 2016, 10, 308–319. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, C. How consumers’ brand experience in social media can improve brand perception and customer equity. Asia Pac. J. Mark. Logist. 2019, 31, 1233–1251. [Google Scholar] [CrossRef]
- Lloyd, A.E.; Yip, L.S.C.; Luk, S.T.K. An examination of the differences in retail service evaluation between domestic and tourist shoppers in Hong Kong. Tour. Manag. 2011, 32, 520–533. [Google Scholar] [CrossRef]
- Bellizzi, J.A.; Hite, R.E. Environmental color, consumer feelings, and purchase likelihood. Psychol. Mark. 1992, 9, 347–363. [Google Scholar] [CrossRef]
- Bitner, M.J. Evaluating service encounters: The effects of physical surroundings and employee responses. J. Mark. 1990, 54, 69–82. [Google Scholar] [CrossRef]
- Choi, M.; Lee, J.-S.; Seo, A.J. Shopping destination competitiveness: Scale development and validation. J. Travel Tour. Mark. 2018, 35, 1087–1103. [Google Scholar] [CrossRef]
- Fam, K.-S.; Brito, P.Q.; Gadekar, M.; Richard, J.E.; Jargal, U.; Liu, W. Consumer attitude towards sales promotion techniques: A multi-country study. Asia Pac. J. Mark. Logist. 2019, 31, 437–463. [Google Scholar] [CrossRef]
- Quintal, V.A.; Lee, J.A.; Soutar, G.N. Risk, uncertainty and the theory of planned behavior: A tourism example. Tour. Manag. 2010, 31, 797–805. [Google Scholar] [CrossRef]
- Chung, J.; Rao, V.R. A general consumer preference model for experience products: Application to internet recommendation services. J. Mark. Res. 2012, 49, 289–305. [Google Scholar] [CrossRef]
- Duersch, P.; Römer, D.; Roth, B. Intertemporal stability of uncertainty preferences. J. Econ. Psychol. 2017, 60, 7–20. [Google Scholar] [CrossRef]
- Filep, S.; Greenacre, L. Evaluating and extending the travel career patterns model. Turiz. Međunar. Znan. Stručni Čas. 2007, 55, 23–38. [Google Scholar]
- Cheng, M.; Zhang, G. When Western hosts meet Eastern guests: Airbnb hosts’ experience with Chinese outbound tourists. Ann. Tour. Res. 2019, 75, 288–303. [Google Scholar] [CrossRef]
- Akter, S.; Bennett, J. Preference uncertainty in stated preference studies: Facts and artefacts. Appl. Econ. 2013, 45, 2107–2115. [Google Scholar] [CrossRef]
- Burghart, D.R.; Cameron, T.A.; Gerdes, G.R. Valuing publicly sponsored research projects: Risks, scenario adjustments, and inattention. J. Risk Uncertain. 2007, 35, 77–105. [Google Scholar] [CrossRef]
- Hasegawa, H. Analyzing tourists’ satisfaction: A multivariate ordered probit approach. Tour. Manag. 2010, 31, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk-Anio, J.; Nowacki, M. Tourist consumption of a contemporary city—A transgenerational analysis. Ekon. Probl. Tur. 2018, 44, 7–15. [Google Scholar] [CrossRef]
Variables | Definition | Variables | Definition |
---|---|---|---|
Dependent variable | tourism consumption preference | Control variable | individual characteristics |
Y1 (food) | 1 (luxury) | X*1 (gender) | female; male |
restaurant style | 2 (ordinary) | X*2 (age) | −24; 25–34; 35–44; 45–59; 60+ |
3 (local flavor) | X*3 (marital status) | single; married | |
4 (fast food, tea room, bar) | X*4 (income RMB/USD) | −2000; 2001–5000; 5001–10,000 | |
Y2 (accommodation) | 1 (3+ star rating) | 10,000–15,000; 15,000+ | |
hotel level | 2 (motel) | Independent variable | product attributes |
3 (hostel) | PartⅠ: Food | all independent variables | |
4 (friend/relative home) | X1 (f_flavor) | are measured on a 5-point | |
Y3 (shopping) | 1 (−10%) | X2 (f_variety) | Likert scale: |
expenditure ratio | 2 (10%–15%) | X3 (f_service) | 1 (the least important) |
3 (15%–20%) | X4 (f_price) | 3 (neutral) | |
4 (20% +) | X5 (f_location) | 5 (the most important) | |
Uncertainty variable | uncertainty level | X6 (f_hygiene) | |
Z1 (uncertainty1) | education degree | X7 (f_evaluation) | |
imperfect knowledge | 1 (middle/high school) | PartⅡ: Accommodation | |
2 (associate) | X8 (a_safety) | ||
3 (bachelor) | X9 (a_service) | ||
4 (master, PhD) | X10 (a_sanitation) | ||
Z2 (uncertainty2) | # of trips | X11 (a_price) | |
inexperience | 1 (never) | X12 (a_location) | |
2 (1–2 times) | X13 (a_free-breakfast) | ||
3 (3–4 times) | PartⅢ: Shopping | ||
4 (4 times+) | X14 (s_brand) | ||
Z3 (uncertainty3) | duration of stay | X15 (s_price) | |
unfamiliarity | 1 (less than 3 days) | X16 (s_service) | |
2 (4–7days) | X17 (s_quality) | ||
3 (1–2 weeks) | X18 (s_packaging) | ||
4 (2 weeks or above) | X19 (s_carrying) | ||
Z4 (uncertainty4) | ratio of shopping tax rebates | X20 (s_memorable) | |
policy change | 1 (−10%) | X21 (s_decoartion) | |
2 (10%–15%) | X22 (s_needs) | ||
3 (15%–20%) | X23 (s_popularity) | ||
4 (20%+) | X24 (s_promotion) |
Preference (#, %) | X *1 (Gender) | X *2 (Age) | X *4 (Income, RMB or $ in Thousands) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Female | Male | 15–24 s | 25–34 s | 35–44 s | 45–59s | 60 s+ | −2 | 2–5 | 5–10 | 10–15 | 15+ | |
Chinese tourists | ||||||||||||
Food= 6.25, p = 0.100 | = 16.10, p = 0.187 | = 23.36, p = 0.025 | ||||||||||
(N = 284) | n = 133(47) | n = 151(53) | n = 85(30) | n = 136(48) | n = 49(17) | n = 13(5) | n = 1(0) | n = 39(14) | n = 118(42) | n = 76(27) | n = 29(10) | n = 22(8) |
1 | 1(1) | 3(2) | 1(1) | 1(1) | 2(4) | 0 | 0 | 1(3) | 1(1) | 1(1) | 1(3) | 0 |
2 | 24(18) | 44(29) | 23(27) | 33(24) | 7(14) | 4(31) | 1(100) | 14(36) | 38(32) | 12(14) | 1(3) | 4(18) |
3 | 97(73) | 96(64) | 55(65) | 95(70) | 37(76) | 6(46) | 0 | 20(51) | 71(60) | 69(80) | 24(86) | 16(73) |
4 | 11(8) | 8 (5) | 6(7) | 7(5) | 3 (6) | 3(23) | 0 | 4(10) | 8(7) | 3(4) | 2(8) | 2(9) |
Accommodation = 10.44, p = 0.015 | = 38.43, p = 0.000 | = 52.53, p = 0.000 | ||||||||||
(N = 306) | n = 143(47) | n = 163(53) | n = 91(30) | n = 149(49) | n = 53(17) | n = 12(4) | n = 1(0) | n = 39(13) | n = 133(43) | n = 84(27) | n = 27(9) | n = 23(8) |
1 | 28(20) | 34(21) | 11(12) | 23(15) | 22(42) | 6(50) | 0 | 7(18) | 15(11) | 16(19) | 10(37) | 14(61) |
2 | 76(53) | 108(66) | 53(58) | 103(69) | 24(45) | 3(25) | 1(100) | 19(49) | 82(62) | 60(71) | 16(59) | 7(30) |
3 | 17(12) | 8(5) | 10(11) | 9(6) | 5(9) | 1(8) | 0 | 5(13) | 14(10) | 3(4) | 1(4) | 2(9) |
4 | 22(15) | 13(8) | 17(19) | 14(10) | 2(4) | 2(17) | 0 | 8(20) | 22(17) | 5(6) | 0 | 0 |
Shopping = 10.12, p = 0.018 | = 17.23, p = 0.141 | = 15.34, p = 0.223 | ||||||||||
(N = 237) | n = 113(48) | n = 124(52) | n = 69(29) | n = 125(53) | n = 35(15) | n = 7(3) | n = 1(0) | n = 32(14) | n = 91(38) | n = 72(30) | n = 23(10) | n = 19(8) |
1 | 30(27) | 42(34) | 19(28) | 38(30) | 13(37) | 2(29) | 0 | 11(34) | 28(31) | 22(31) | 4(17) | 7(37) |
2 | 52(46) | 37(30) | 35(51) | 44(35) | 8(23) | 1(13) | 1(100) | 14(44) | 34(37) | 29(40) | 7(30) | 5(26) |
3 | 25(22) | 27(22) | 9(13) | 29(23) | 12(34) | 2(29) | 0 | 2(6) | 23(25) | 13(18) | 10(43) | 4(21) |
4 | 6(5) | 18(14) | 6(8) | 14(12) | 2(6) | 2(29) | 0 | 5(16) | 6(7) | 8(11) | 2(10) | 3(16) |
International tourists | ||||||||||||
Food = 0.89, p = 0.829 | = 18.88, p = 0.091 | = 21.54, p = 0.043 | ||||||||||
(N = 189) | n = 59(31) | n = 130(69) | n = 38(20) | n = 65(34) | n = 46(24) | n = 32(17) | n = 8(4) | n = 46(24) | n = 34(18) | n = 58(31) | n = 27(14) | n = 24(13) |
1 | 7(12) | 19(15) | 3(8) | 7(11) | 5(11) | 10(31) | 1(13) | 1(2) | 3(9) | 13(22) | 5(19) | 4(17) |
2 | 15(25) | 30(23) | 9(24) | 10(15) | 14(30) | 8(25) | 4(50) | 11(24) | 10(29) | 12(21) | 2(7) | 10(42) |
3 | 33(56) | 68(52) | 23(60) | 40(62) | 23(50) | 12(38) | 3(38) | 29(63) | 17(50) | 28(48) | 19(70) | 8(33) |
4 | 4(7) | 13 (10) | 3(8) | 8(13) | 4(9) | 2(6) | 0 | 5(11) | 4(12) | 5(9) | 1(4) | 2(8) |
Accommodation= 12.64, p = 0.005 | = 12.59, p = 0.399 | = 33.01, p = 0.001 | ||||||||||
(N = 196) | n = 64(33) | n = 132(67) | n = 43(22) | n = 61(31) | n = 48(24) | n = 35(18) | n = 9(5) | n = 51(26) | n = 35(18) | n = 57(29) | n = 28(14) | n = 25(13) |
1 | 17(27) | 58(44) | 13(30) | 18(30) | 21(44) | 16(46) | 7(78) | 11(22) | 8(23) | 23(40) | 15(54) | 18(72) |
2 | 13(20) | 22(17) | 9(21) | 11(18) | 9(19) | 5(14) | 1(11) | 11(22) | 7(20) | 11(19) | 4(14) | 2(8) |
3 | 28(44) | 29(22) | 14(33) | 23(38) | 11(23) | 8(23) | 1(11) | 15(29) | 14(40) | 20(35) | 5(18) | 3(12) |
4 | 6(9) | 23(17) | 7(16) | 9(14) | 7(14) | 6(17) | 0 | 14(27) | 6(17) | 3(6) | 4(14) | 2(8) |
Shopping= 4.45, p = 0.217 | = 17.01, p = 0.149 | = 15.42, p = 0.219 | ||||||||||
(N = 165) | n = 52(32) | n = 113(68) | n = 39(24) | n = 60(36) | n = 38(23) | n = 21(13) | n = 7(4) | n = 44(27) | n = 36(22) | n = 43(26) | n = 23(14) | n = 19(12) |
1 | 17(33) | 56(50) | 19(49) | 24(40) | 15(39) | 11(52) | 4(57) | 16(36) | 16(44) | 19(44) | 8(35) | 14(74) |
2 | 22(42) | 39(35) | 13(33) | 18(30) | 20(53) | 9(43) | 1(14) | 19(43) | 12(33) | 14(33) | 13(57) | 3(16) |
3 | 11(21) | 15(13) | 5 (13) | 16(27) | 2(5) | 1(5) | 2(29) | 8(18) | 7(19) | 7 (16) | 2(8) | 2(10) |
4 | 2(4) | 3(2) | 2(5) | 2(3) | 1(13) | 0 | 0 | 1(3) | 1(4) | 3(7) | 0 | 0 |
Variables | Uncertainty and Preference | Mean Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Domestic and International | Domestic vs. International | |||||||
Obs. | Mean | SD | Min | Max | Domestic | International | t value | |
Part Ⅰ: Food | ||||||||
Y1 (food) | 473 | 2.71 | 0.70 | 1 | 4 | 2.80 | 2.58 | 3.19 b |
Z1 (uncertainty1) | 473 | 2.56 | 1.11 | 1 | 4 | 2.19 | 3.12 | −9.72 a |
Z2 (uncertainty2) | 473 | 2.16 | 0.78 | 1 | 4 | 2.00 | 2.41 | −5.33 a |
Z3 (uncertainty3) | 473 | 2.00 | 0.88 | 1 | 4 | 1.70 | 2.45 | −9.27 a |
X1 (f_flavor) | 473 | 4.14 | 1.10 | 1 | 5 | 4.28 | 3.92 | 3.53 a |
X2 (f_variety) | 473 | 3.64 | 1.08 | 1 | 5 | 3.67 | 3.60 | 0.69 |
X3 (f_service) | 473 | 3.96 | 1.03 | 1 | 5 | 4.11 | 3.73 | 3.96 a |
X4 (f_price) | 473 | 3.61 | 1.01 | 1 | 5 | 3.73 | 3.42 | 3.27 a |
X5 (f_location) | 473 | 3.39 | 1.10 | 1 | 5 | 3.33 | 3.48 | −1.48 |
X6 (f_hygiene) | 473 | 4.26 | 1.02 | 1 | 5 | 4.53 | 3.86 | 7.17 a |
X7 (f_evaluation) | 473 | 3.56 | 1.14 | 1 | 5 | 3.60 | 3.49 | 1.05 |
Part Ⅱ: Accommodation | 502 | 2.15 | 0.96 | 1 | 4 | 2.11 | 2.20 | −1.03 |
Y2 (accommodation) | ||||||||
Z1 (uncertainty1) | 502 | 2.54 | 1.11 | 1 | 4 | 2.18 | 3.10 | −9.81 a |
Z2 (uncertainty2) | 502 | 2.16 | 0.78 | 1 | 4 | 2.00 | 2.40 | −5.23 a |
Z3 (uncertainty3) | 502 | 1.99 | 0.89 | 1 | 4 | 1.68 | 2.46 | −9.75 a |
X8 (a_safety) | 502 | 4.40 | 1.03 | 1 | 5 | 4.69 | 3.94 | 7.97 a |
X9 (a_service) | 502 | 4.03 | 1.04 | 1 | 5 | 4.24 | 3.72 | 5.43 a |
X10 (a_sanitation) | 502 | 4.28 | 0.94 | 1 | 5 | 4.49 | 3.94 | 6.62 a |
X11 (a_price) | 502 | 3.78 | 1.02 | 1 | 5 | 3.84 | 3.68 | 1.65 c |
X12(a_location) | 502 | 3.67 | 1.11 | 1 | 5 | 3.67 | 3.67 | −0.02 |
X13 (a_free-breakfast) | 502 | 3.29 | 1.26 | 1 | 5 | 3.26 | 3.33 | −0.61 |
Part Ⅲ: Shopping | ||||||||
Y3(shopping) | 402 | 1.98 | 0.92 | 1 | 4 | 2.12 | 1.78 | 3.73 a |
Z1 (uncertainty1) | 402 | 2.60 | 1.09 | 1 | 4 | 2.26 | 3.08 | −8.01 a |
Z2 (uncertainty2) | 402 | 2.17 | 0.76 | 1 | 4 | 2.01 | 2.41 | −4.92 a |
Z3 (uncertainty3) | 402 | 2.04 | 0.90 | 1 | 4 | 1.71 | 2.51 | −9.08 a |
Z4 (uncertainty4) | 402 | 2.40 | 1.10 | 1 | 4 | 2.46 | 2.32 | 1.29 |
X14 (s_brand) | 402 | 3.30 | 1.27 | 1 | 5 | 3.41 | 3.13 | 2.27 b |
X15(s_price) | 402 | 3.83 | 1.05 | 1 | 5 | 3.89 | 3.75 | 1.33 |
X16 (s_service) | 402 | 3.79 | 1.01 | 1 | 5 | 3.88 | 3.65 | 2.18 b |
X17 (s_quality) | 402 | 4.26 | 0.95 | 1 | 5 | 4.37 | 4.10 | 2.87 a |
X18 (s_packaging) | 402 | 3.19 | 1.11 | 1 | 5 | 3.26 | 3.10 | 1.43 |
X19 (s_carrying) | 402 | 3.92 | 1.07 | 1 | 5 | 4.08 | 3.70 | 3.56 a |
X20 (s_memorable) | 402 | 3.98 | 1.15 | 1 | 5 | 4.14 | 3.75 | 3.40 a |
X21 (s_decoartion) | 402 | 3.18 | 1.17 | 1 | 5 | 3.18 | 3.19 | −0.05 |
X22 (s_needs) | 402 | 3.94 | 1.06 | 1 | 5 | 4.16 | 3.62 | 5.25 a |
X23 (s_popularity) | 402 | 3.25 | 1.15 | 1 | 5 | 3.43 | 2.98 | 3.91 a |
X24 (s_promotion) | 402 | 2.98 | 1.19 | 1 | 5 | 3.05 | 2.87 | 1.52 |
Variables | Food | Accommodation | Shopping | |||
---|---|---|---|---|---|---|
Domestic | International | Domestic | International | Domestic | International | |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
Uncertainty | ||||||
Z1 (uncertainty1) | −0.5697 * (0.3290) | −0.1000 (0.0932) | −0.1895 *** (0.0674) | −0.0135 (0.0841) | −0.0474 (0.0815) | 0.1470 * (0.0877) |
Z2(uncertainty2) | 0.2693 ** (0.1085) | −0.2060 * (0.1111) | −0.3162 ** (0.1230) | 0.5471 * (0.2934) | −1.0086 *** (0.3536) | 0.5384 * (0.3040) |
Z3 (uncertainty3) | 0.1552 (0.5825) | −0.7917 * (0.4789) | −0.3140 *** (0.1180) | −0.8032 * (0.4680) | −0.0023 (0.1089) | −0.1436 (0.1276) |
Z4 (uncertainty4) | 0.1358 ** (0.0654) | 0.8847 ** (0.4152) | ||||
Sociodemographic | ||||||
X*1 (gender) | −0.4670 *** (0.1607) | 0.3157 * (0.1896) | −0.0503 (0.1394) | 0.0333 (0.2004) | 0.9553 * (0.5398) | 0.1540 (0.2163) |
X*2,1 (age1) | 0.5083 (0.5538) | 0.4886 (0.5047) | 0.4263 * (0.2234) | 0.8275 * (0.4293) | 0.8221 (0.8655) | 0.0821 (0.6012) |
X*2,2 (age2) | 0.2815 (0.5557) | 0.8400 ** (0.4145) | 0.4878 ** (0.2154) | 1.2239 *** (0.3742) | 0.6331 (0.8869) | 0.1082 (0.5533) |
X*2,3 (age3) | 0.1675 (0.5865) | 0.7336 * (0.4082) | 0.0557 (0.2567) | 1.2418 *** (0.3922) | 0.1609 (0.9149) | −0.4020 (0.5483) |
X*2,4 (age4) | 0.6029 (0.6768) | 0.2355 (0.4343) | 0.4147 (0.4919) | 1.3946 *** (0.4135) | 0.6388 (1.0215) | −0.4296 (0.5577) |
X*3 (marital status) | −0.7613 ** (0.3224) | −0.2642 (0.3135) | −0.2697 (0.1829) | −0.3138 (0.2988) | 0.4918 ** (0.1990) | 0.6085 ** (0.2698) |
X*4,1 (income1) | −0.3464 (0.3999) | 0.1353 (0.4024) | 0.5099 (0.4144) | 1.3035 *** (0.4915) | 2.3909 ** (1.0685) | 1.0582 ** (0.4289) |
X*4,2 (income2) | −0.4224 (0.3225) | −0.0695 (0.3443) | 0.7165 * (0.3693) | 1.0435 ** (0.4839) | 2.0188 (0.8380) | 0.7823 * (0.4193) |
X*4,3 (income3) | −0.0401 (0.2909) | −0.0681 (0.3239) | 0.4524 (0.3419) | 0.7929 * (0.4800) | 1.4611 ** (0.6334) | 0.6364 (0.4007) |
X*4,4 (income4) | 0.3684 (0.3550) | −0.2978 (0.3442) | 0.1682 (0.3948) | 0.7098 (0.4861) | 1.2383 *** (0.4821) | 1.0331 ** (0.4287) |
Product attribute | ||||||
X1 (f_flavor) | 0.1314 * (0.0781) | −0.0453 (0.0929) | ||||
X2 (f_variety) | 0.3483 * (0.2079) | 0.1823 * (0.0966) | ||||
X3 (f_service) | 0.1337 (0.0907) | −0.0557 (0.1095) | ||||
X4 (f_price) | −0.0582 (0.0886) | 0.0146 (0.1067) | ||||
X5 (f_location) | 0.0029 (0.0796) | −0.2546 ** (0.0990) | ||||
X6 (f_hygiene) | −0.5775 * (0.2719) | −0.2452 *** (0.0872) | ||||
X7(f_evaluation) | −0.0872 (0.0695) | −0.1925 ** (0.0889) | ||||
X8 (a_safety) | 0.2429 * (0.1338) | 0.4333 ** (0.1916) | ||||
X9 (a_service) | −0.1260 (0.1020) | −0.0673 (0.0947) | ||||
X10(a_sanitation) | −0.0781 (0.1150) | −0.3441 *** (0.1201) | ||||
X11 (a_price) | 0.0459 (0.0801) | 0.2726 *** (0.1010) | ||||
X12 (a_location) | −0.0714 (0.0638) | −0.0579 (0.0921) | ||||
X13 (a_free-breakfast) | −0.1025 * (0.0560) | 0.1385 * (0.0768) | ||||
X14 (s_brand) | 0.1347 * (0.0757) | 0.0473 (0.1110) | ||||
X15 (s_price) | −0.0629 (0.0893) | 0.4034 (0.2957) | ||||
X16 (s_service) | −0.0002 (.0932) | −0.1062 (0.1240) | ||||
X17 (s_quality) | 0.1113 (0.1067) | −0.0815 (0.1181) | ||||
X18 (s_packaging) | −0.0758 (0.0833) | 0.3348 *** (0.1088) | ||||
X19 (s_carrying) | −0.2785 *** (0.0857) | −0.0906 (0.1167) | ||||
X20 (s_memorable) | −0.4297 ** (0.2227) | −0.2298 ** (0.1047) | ||||
X21 (s_decoartion) | 0.0679 (0.0841) | 0.6555 ** (0.2720) | ||||
X22 (s_needs) | 0.0052 (0.0896) | 0.2982 *** (0.1074) | ||||
X23 (s_popularity) | 0.0089 (0.0938) | −0.0463 (0.1290) | ||||
X24 (s_promotion) | 0.0971 (0.0774) | 0.1398 (0.1176) | ||||
Interactive/square items | ||||||
Z1 * X6 | 0.1327 * (0.0747) | |||||
Z3 * X2 | −0.1733 (0.1149) | |||||
Z3^2 | 0.1395 (0.1284) | 0.1486 * (0.0891) | 0.1859 ** (0.0738) | |||
Z2 * X8 | −0.1770 ** (0.0915) | |||||
Z2 * X *4 | 0.2936 *** (0.1067) | |||||
X*1 * X20 | 0.2364 ** (0.1259) | |||||
Z2 * X21 | −0.1788 * (0.0973) | |||||
Z4 * X15 | −0.2465 ** (0.1047) | |||||
Log pseudolikelihood | −220.42 | −198.77 | −287.86 | −224.31 | −279.32 | −151.65 |
Wald chi2(.) | (24) 61.29 | (24)48.48 | (19) 71.86 | (22)73.91 | (27) 56.83 | (27) 66.16 |
Prob > chi2 | 0.0000 | 0.0022 | 0.0000 | 0.0000 | 0.0007 | 0.0000 |
Chow-test | ||||||
ChowF | 2.55 | 1.70 | 1.54 | |||
Pr > F | 0.005 | 0.068 | 0.088 |
Variable | Food | |||||||
---|---|---|---|---|---|---|---|---|
Y1 = 1 | Y1 =2 | Y1 = 3 | Y1 =4 | |||||
D | I | D | I | D | I | D | I | |
Z1 | 0.0194 | n.a. | 0.1450 * | n.a. | −0.0967 * | n.a. | −0.0677 | n.a. |
(1.42) | n.a. | (1.76) | n.a. | (−1.75) | n.a. | (−1.64) | n.a. | |
Z2 | −0.0092 * | 0.0391 * | −0.0685 ** | 0.0291 * | 0.0457 ** | −0.0386 * | 0.0320 * | −0.0296 * |
(−1.75) | (1.84) | (−2.46) | (1.84) | (2.23) | (−1.88) | (2.47) | (−1.74) | |
Z3 | n.a. | 0.1503 * | n.a. | 0.1119 * | n.a. | −0.1483 * | n.a. | −0.1139 |
n.a. | (1.65) | n.a. | (1.66) | n.a. | (−1.66) | n.a. | (−1.6) | |
X1 | −0.0045 | n.a. | −0.0334 * | n.a. | 0.0223 * | n.a. | 0.0156 | n.a. |
(−1.52) | n.a. | (−1.69) | n.a. | (1.68) | n.a. | (1.64) | n.a. | |
X2 | −0.0119 | −0.0346 * | −0.0886 * | −0.0258 ** | 0.0591 * | 0.0342 * | 0.0414 | 0.0262 * |
(−1.31) | (−1.78) | (−1.71) | (−1.98) | (1.75) | (1.83) | (1.52) | (1.83) | |
X5 | n.a. | 0.0483 *** | n.a. | 0.0360 ** | n.a. | −0.0477 ** | n.a. | −0.0366 ** |
n.a. | (2.56) | n.a. | (2.44) | n.a. | (−2.41) | n.a. | (−2.51) | |
X6 | 0.0197 | −0.0466 *** | 0.1470 ** | −0.0347 *** | −0.0980 ** | 0.0459 *** | −0.0686 ** | 0.0353 ** |
(1.62) | (−2.59) | (2.16) | (−2.84) | (−2.1) | (2.68) | (−2) | (2.54) | |
X7 | n.a. | 0.0366 ** | n.a. | 0.0272 ** | n.a. | −0.0361 ** | n.a. | −0.0277 ** |
n.a. | (2.05) | n.a. | (2.21) | n.a. | (−2.06) | n.a. | (−2.09) |
Variable | Accommodation | |||||||
---|---|---|---|---|---|---|---|---|
Y2 = 1 | Y2 = 2 | Y2 = 3 | Y2 = 4 | |||||
D | I | D | I | D | I | D | I | |
Z1 | 0.0436 *** | n.a. | 0.0014 | n.a. | −0.0135 *** | n.a. | −0.0316 *** | n.a. |
(2.82) | n.a. | (0.34) | n.a. | (−2.6) | n.a. | (−2.69) | n.a. | |
Z2 | 0.0727 *** | −0.1654 * | 0.0024 | −0.0086 | −0.0225 ** | 0.0673 * | −0.0527 ** | 0.1067 * |
(2.63) | (−1.88) | (0.33) | (−1.16) | (−2.42) | (1.79) | (−2.44) | (1.86) | |
Z3 | 0.0722 *** | 0.2428 * | 0.0024 | 0.0126 | −0.0223 ** | −0.0988 Tasble | −0.0523 *** | −0.1567 * |
(2.64) | (1.74) | (0.34) | (1.12) | (−2.54) | (−1.74) | (−2.62) | (−1.68) | |
X8 | −0.0559 * | −0.1310 ** | −0.0019 | −0.0068 | 0.0173 * | 0.0533 ** | 0.0405 * | 0.0845 ** |
(−1.81) | (−2.28) | (−0.34) | (−1.26) | (1.75) | (2.08) | (1.83) | (2.31) | |
X10 | n.a. | 0.1040 *** | n.a. | 0.0054 | n.a. | −0.0423 *** | n.a. | −0.0671 *** |
n.a. | (3.02) | n.a. | (1.28) | n.a. | (−2.81) | n.a. | (−2.85) | |
X11 | n.a. | −0.0824 *** | n.a. | −0.0043 | n.a. | 0.0335 *** | n.a. | 0.0532 *** |
n.a. | (−2.83) | n.a. | (−1.27) | n.a. | (2.59) | n.a. | (2.74) | |
X13 | 0.0236 * | −0.0419 * | 0.0008 | −0.0022 | −0.0073 * | 0.0170 * | −0.0171 * | 0.0270 * |
(1.83) | (−1.83) | (0.33) | (−1.06) | (−1.68) | (1.82) | (−1.8) | (1.75) |
Variable | Shopping | |||||||
---|---|---|---|---|---|---|---|---|
Y3 = 1 | Y3 = 2 | Y3 = 3 | Y3 = 4 | |||||
D | I | D | I | D | I | C | I | |
Z1 | n.a. | −0.0435 * | n.a. | 0.0129 * | n.a. | 0.0222 | n.a. | 0.0084 |
n.a. | (−1.70) | n.a. | (1.66) | n.a. | (1.60) | n.a. | (1.54) | |
Z2 | .3116 *** | −0.1592 * | 0.0022 | 0.0472 | −0.1641 *** | 0.0812 * | −0.1497 *** | 0.0308 |
(2.94) | (−1.78) | (0.11) | (1.63) | (−2.85) | (1.77) | (−2.72) | (1.52) | |
Z4 | −0.0419 ** | −0.2616 ** | −0.0003 | 0.0776 ** | 0.0221 ** | 0.1334 ** | 0.0202 * | 0.0505 * |
(−2.12) | (−2.19) | (−0.11) | (2.00) | (2.12) | (2.16) | (1.93) | (1.69) | |
X14 | −0.0416 * | n.a. | −0.0003 | n.a. | 0.0219 * | n.a. | 0.0200 * | n.a. |
(−1.82) | n.a. | (−0.11) | n.a. | (1.79) | n.a. | (1.73) | n.a. | |
X18 | n.a. | −0.0990 *** | n.a. | 0.0294 *** | n.a. | 0.0505 *** | n.a. | 0.0191 ** |
n.a. | (−3.18) | n.a. | (2.63) | n.a. | (2.95) | n.a. | (2.22) | |
X19 | 0.0860 *** | n.a. | 0.0006 | n.a. | −0.0453 *** | n.a. | −0.0413 *** | n.a. |
(3.29) | n.a. | (0.11) | n.a. | (−3.22) | n.a. | (−2.98) | n.a. | |
X20 | 0.1327 ** | 0.0679 ** | 0.0009 | −0.0202 * | −0.0699 * | −0.0346 ** | −0.0638 * | −0.0131 ** |
(1.96) | (2.25) | (0.11) | (−1.92) | (−1.90) | (−2.12) | (−1.93) | (−2.04) | |
X21 | n.a. | −0.1938 ** | n.a. | 0.0575 ** | n.a. | 0.0988 ** | n.a. | 0.0374 * |
n.a. | (−2.48) | n.a. | (2.17) | n.a. | (2.45) | n.a. | (1.84) | |
X22 | n.a. | −0.0882 *** | n.a. | 0.0262 *** | n.a. | 0.0450 *** | n.a. | 0.0170 * |
n.a. | (−2.93) | n.a. | (2.97) | n.a. | (2.65) | n.a. | (1.91) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Ge, J.; Ren, T. Uncertainty and Tourism Consumption Preferences: Evidence from the Representative Chinese City of Shenzhen. Sustainability 2021, 13, 4103. https://doi.org/10.3390/su13084103
Liu X, Ge J, Ren T. Uncertainty and Tourism Consumption Preferences: Evidence from the Representative Chinese City of Shenzhen. Sustainability. 2021; 13(8):4103. https://doi.org/10.3390/su13084103
Chicago/Turabian StyleLiu, Xuemin, Jiaoju Ge, and Ting Ren. 2021. "Uncertainty and Tourism Consumption Preferences: Evidence from the Representative Chinese City of Shenzhen" Sustainability 13, no. 8: 4103. https://doi.org/10.3390/su13084103
APA StyleLiu, X., Ge, J., & Ren, T. (2021). Uncertainty and Tourism Consumption Preferences: Evidence from the Representative Chinese City of Shenzhen. Sustainability, 13(8), 4103. https://doi.org/10.3390/su13084103