Glass Crystalline Materials as Advanced Nuclear Wasteforms
Abstract
:1. Introduction
2. HLW from SNF Reprocessing
3. HLW Vitrification
4. GCM with Mineral-Like Phases
4.1. Importance of Novel Matrices
4.2. Crystaline Matrices
4.3. GCM as an Universal Nuclear Wasteform
4.4. Examples of GCM Nuclear Wasteforms
4.5. GCM Phase Assemblage
4.6. Technology Readiness Level for Industrial-Scale Advanced Wasteforms Fabrication
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gin, S.; Abdelouas, A.; Criscenti, L.J.; Ebert, W.L.; Ferrand, K.; Geisler, T.; Harrison, M.T.; Inagaki, Y.; Mitsui, S.; Mueller, K.T.; et al. An international initiative on long-term behavior of high-level nuclear waste glass. Mater. Today 2013, 16, 243–248. [Google Scholar] [CrossRef]
- Ojovan, M.I. On Alteration Rate Renewal Stage of Nuclear Waste Glass Corrosion. MRS Adv. 2020, 5, 111–120. [Google Scholar] [CrossRef]
- Luzhetsky, A.V.; Petrov, V.A.; Yudintsev, S.V.; Malkovsky, V.I.; Ojovan, M.I.; Nickolsky, M.S.; Shiryaev, A.A.; Danilov, S.S.; Ostashkina, E.E. Effect of gamma irradiation on structural features and dissolution of nuclear waste Na–Al–P glasses in water. Sustainability 2020, 12, 4137. [Google Scholar] [CrossRef]
- Gin, S.; Jollivet, P.; Tribet, M.; Peuget, S.; Schuller, S. Radionuclides containment in nuclear glasses: An overview. Radiochim. Acta 2017, 105, 927–959. [Google Scholar]
- Jantzen, C.M.; Ojovan, M.I. On selection of matrix (wasteform) material for higher activity nuclear waste immobilisation (Review). Russ. J. Inorg. Chem. 2019, 64, 1611–1624. [Google Scholar] [CrossRef]
- Kozlov, P.V.; Remizov, M.B.; Belanova, E.A.; Vlasova, N.V.; Orlova, V.A.; Martynov, K.V. Modification of the composition of aluminophosphate glasses with HLW simulators to increase their stability. 1. The effect of modifiers on the viscosity and crystallization ability of melts. Rad. Saf. Issues 2019, 1, 3–15. [Google Scholar]
- Stefanovsky, S.V.; Stefanovsky, O.I.; Remizov, M.B.; Kozlov, P.V.; Belanova, E.A.; Makarovsky, R.A.; Myasoedov, B.F. Sodium–aluminum–iron phosphate glasses as legacy high-level waste forms. Prog. Nucl. Energy 2017, 94, 229–234. [Google Scholar] [CrossRef]
- Yudintsev, S.V. Isolation of fractionated waste of nuclear industry. Radiochemistry 2021, in press. [Google Scholar]
- Ewing, R.C. The Design and Evaluation of Nuclear-Waste Forms: Clues from Mineralogy. Canad. Miner. 2001, 39, 697–715. [Google Scholar] [CrossRef] [Green Version]
- Omel’yanenko, B.I.; Livshits, T.S.; Yudintsev, S.V.; Nikonov, B.S. Natural and artificial minerals as matrices for immobilization of actinides. Geol. Ore Depos. 2007, 49, 173–193. [Google Scholar] [CrossRef]
- Vance, E.R. Ceramic Waste Forms. In Comprehensive Nuclear Materials; Konings, R., Allen, T., Stoller, R., Yamanaka, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 5, Chapter 5.19; pp. 485–503. [Google Scholar]
- Stefanovsky, S.V.; Yudintsev, S.V. Titanates, zirconates, aluminates and ferrites as waste forms for actinide immobilization. Russ. Chem. Rev. 2016, 85, 962–994. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttseva, A.K.; Loginova, E.E. A family of phosphates of langbeinite structure. Crystal-chemical aspect of radioactive waste immobilization. Radiochemistry 2011, 53, 51–62. [Google Scholar] [CrossRef]
- Orlova, A.I.; Lizin, A.A.; Tomilin, S.V.; Lukinykh, A.N. On the possibility of realization of monazite and langbeinite structural types in complex americium and plutonium phosphates. Synthesis and X-ray diffraction studies. Radiochemistry 2011, 53, 63–68. [Google Scholar] [CrossRef]
- Orlova, A.I.; Ojovan, M.I. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization. Materials 2019, 12, 2638. [Google Scholar] [CrossRef] [Green Version]
- Burakov, B.E.; Ojovan, M.I.; Lee, W.E. Crystalline Materials for Actinide Immobilization; Imperial College Press: London, UK, 2011; 197p. [Google Scholar]
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. An Introduction to Nuclear Waste Immobilisation, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; 497p. [Google Scholar]
- Ojovan, M.I.; Juoi, J.M.; Boccaccini, A.R.; Lee, W.E. Glass Composite Materials for Nuclear and Hazardous Waste Immobilisation. Mater. Res. Soc. Symp. Proc. 2008, 1107, 245–252. [Google Scholar] [CrossRef]
- Caurant, D.; Loiseau, P.; Majérus, O.; Aubin-Cheval-Donnet, V.; Bardez, I.; Quintas, A. Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes; Nova Science Publishers: New York, NY, USA, 2009; 445p. [Google Scholar]
- Ojovan, M.I.; Lee, W.E. New Developments in Glassy Nuclear Wasteforms; Nova Science Publishers: New York, NY, USA, 2007; 131p. [Google Scholar]
- Donald, I.W. Waste Immobilization in Glass and Ceramic-Based Hosts; Wiley: Chichester, UK, 2010; 507p. [Google Scholar]
- Fedorov, Y.S.; Zil’berman, B.Y.; Aloi, A.S.; Puzikov, E.A.; Shadrin, A.Y.; Alyapyshev, M.Y. Problems of modernization of spent nuclear fuel extraction processing. Russ. J. Gen. Chem. 2011, 81, 1932–1948. [Google Scholar] [CrossRef]
- Kopyrin, A.A.; Karelin, A.I.; Karelin, V.A. Technology of Production and Radiochemical Processing of Nuclear Fuel; Atomizdat Publishing House CJSC: Moscow, Russia, 2006; 576p. [Google Scholar]
- Batorshin GSh Kirillov, S.N.; Smirnov, I.V.; Sarychev, G.A.; Tananaev, I.G.; Fedorova, O.V.; Myasoedov, B.F. Integrated separation of valuable components from technogenic radioactive waste as an option to create cost-eective nuclear fuel cycle. Radiat. Saf. Issues 2015, 3, 30–36. [Google Scholar]
- Caurant, D. Spectroscopic investigations on glasses, glass-ceramics and ceramics developed for nuclear waste immobilization. Opt. Spectrosc. 2014, 116, 667–676. [Google Scholar] [CrossRef]
- McCarthy, G.J. High Level Waste Ceramics: Materials Considerations, Process Simulation, and Product Characterization. Nucl. Technol. 1977, 32, 92–105. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Kesson, S.E.; Ware, N.G.; Hibberson, W.; Major, A. Immobilisation of high-level nuclear reactor wastes in SYNROC. Nature 1979, 278, 219–223. [Google Scholar] [CrossRef]
- Stewart, M.W.A.; Vance, E.R.; Moricca, S.A.; Brew, D.R.; Cheung, C.; Eddowes, T.; Bermudez, W. Immobilisation of Higher Activity Wastes from Nuclear Reactor Production of 99Mo. Sci. Technol. Nucl. Install. 2013, 2013, 926026. [Google Scholar] [CrossRef] [Green Version]
- Vernaz, É.; Bruezière, J. History of Nuclear Waste Glass in France. Proc. Mater. Sci. 2014, 7, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Laverov, N.P.; Velichkin, V.I.; Omelyanenko, B.I.; Yudintsev, S.V.; Petrov, V.A.; Bychkov, A.V. Isolation of Spent Nuclear Materials: Geological and Geochemical Foundations; IPZ RAS: Moscow, Russia, 2008; 280p. [Google Scholar]
- Remizov, M.B.; Kozlov, P.V.; Logunov, M.V.; Koltyshev, V.K.; Korchenkin, K.K. Conceptual and technical solutions on construction at PA “Mayak” plants for vitrification of current and stored liquid HLW. Radiat. Saf. Issues 2014, 3, 17–25. [Google Scholar]
- Lutze, W.; Ewing, R.C. Radioactive Waste Forms for the Future; Elsevier: New York, NY, USA, 1988; 778p. [Google Scholar]
- Poluektov, P.P.; Sukhanov, L.P.; Matyunin, Y.I. Scientific approaches and technical solutions in the field of liquid high-level waste management. Russ. Chem. J. 2005, XLIX, 29–41. [Google Scholar]
- Ojovan, M.I. Handbook of Advanced Radioactive Waste Conditioning Technologies; Woodhead: Cambridge, UK, 2011; 512p. [Google Scholar]
- Vlasova, N.V.; Remizov, M.B.; Kozlov, P.V.; Belanova, E.A. Investigation of Chemical Stability ofAluminum-Phosphate Glasses Simulating Solidified HLW to be Returned to Foreign Contractors. Radiat. Saf. Issues 2017, 3, 32–37. [Google Scholar]
- Carter, J.T.; Luptak, A.J.; Gastelum, J.; Stockman, S.; Miller, A. Fuel Cycle Potential Waste Inventory for Disposition. Prepared for U.S. Department of Energy; SRNL, INL, PNNL, SNL: Washington, DC, USA, 2012; 328p.
- Acceptance criteria for radioactive waste for disposal (NP-093-14). Nucl. Rad. Saf. 2015, 3, 59–82.
- Vashman, A.A.; Demin, A.V.; Krylova, N.V.; Kushnikov, V.V.; Matyunin, Y.I.; Poluektov, P.P.; Polyakov, A.S.; Teterin, E.G. Phosphate Glasses with Radioactive Waste; CNIIatominform: Moscow, Russia, 1997; p. 172. [Google Scholar]
- Remizov, M.B.; Kozlov, P.V.; Borisenko, V.P.; Dementeva, I.I.; Blokhin, P.A.; Samoylov, A.A. Development of an Algorithm for Estimating the Radionuclide Composition of Vitrified HLW of FSUE “PA “Mayak” for the Purpose of Their Safe Disposal. Radioact. Waste 2018, 3, 87–94. [Google Scholar]
- Ojovan, M.I. Glass formation. In Encyclopedia of Glass Science, Technology, History, and Culture; Richet, P., Conradt, R., Takada, A., Dyon, J., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 249–259. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Pervukhina, A.M.; Mokhov, A.V.; Malkovsky, V.I.; Stefanovsky, S.V. Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching. Dokl. Earth Sci. 2017, 473 Pt 2, 427–432. [Google Scholar] [CrossRef]
- Malkovsky, V.I.; Yudintsev, S.V.; Aleksandrova, E.V. Influence of Na-Al-Fe-P glass alteration in hot non-saturated vapor on leaching of vitrified radioactive wastes in water. J. Nucl. Mater. 2018, 508, 212–218. [Google Scholar] [CrossRef]
- Hayward, P.J. Glass-ceramics. In Radioactive Waste Forms for the Future; Lutze, W., Ewing, R.C., Eds.; Elsevier: New York, NY, USA, 1988; pp. 427–494. [Google Scholar]
- National Research Council. Waste Forms Technology and Performance: Final Report; National Academies Press: Washington, DC, USA, 2011; 308p. [Google Scholar]
- Weber, W.J.; Ewing, R.C.; Catlow, C.R.A.; Diaz de la Rubia, T.; Hobbs, L.W.; Kinoshita, C.; Matzke Hj Motta, A.T.; Nastasi, M.; Salje, E.K.H.; Vance, E.R.; et al. Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 1998, 13, 1434–1484. [Google Scholar] [CrossRef] [Green Version]
- McCloy, J.S.; Goel, A. Glass-ceramics for nuclear-waste immobilization. Mater. Res. Soc. Bull. 2017, 42, 233–238. [Google Scholar] [CrossRef]
- Donald, I.W. Immobilisation of radioactive and non-radioactive wastes in glass-based systems: An overview. Glass Technol. 2007, 48, 155–163. [Google Scholar]
- Rawling, R.D.; Wu, J.P.; Boccaccini, A.R. Glass-ceramics: Their production from wastes—A Review. J. Mater. Sci. 2006, 41, 733–761. [Google Scholar] [CrossRef] [Green Version]
- Colombo, P.; Brusatin, G.; Bernardo, E.; Scarinci, G. Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr. Opin. Solid State Mater. Sci. 2003, 7, 225–239. [Google Scholar] [CrossRef]
- Lee, W.E.; Ojovan, M.I.; Stennett, M.C.; Hyatt, N.C. Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv. Appl. Ceram. 2006, 105, 3–12. [Google Scholar] [CrossRef]
- Lewis, M.A.; Fischer, D.F. Properties of glass-bonded zeolite monoliths. Ceram. Trans. 1994, 45, 277–286. [Google Scholar]
- Juoi, J.M.; Ojovan, M.I.; Lee, W.E. Microstructure and leaching durability of glass composite wasteforms for spent clinoptilolite immobilisation. J. Nucl. Mater. 2008, 372, 358–366. [Google Scholar] [CrossRef]
- Loiseau, P.; Caurant, D.; Majerus, O.; Baffier, N.; Fillet, C. Crystallization study of (TiO2, ZrO2)-rich SiO2-Al2O3-CaO glasses Part I Preparation and characterization of zirconolite-based glass-ceramics. J. Mater. Sci. 2003, 38, 843–864. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Bernardo, E.; Blain, L.; Boccaccini, D.N. Borosilicate and lead silicate glass matrix composites containing pyrochlore phases for nuclear waste encapsulation. J. Nucl. Mater. 2004, 327, 148–158. [Google Scholar] [CrossRef]
- Digeos, A.A.; Valdez, J.A.; Sikafus, K.E.; Atiq, S.; Grimes, R.W.; Boccaccini, A.R. Glass matrix/pyrochlore phase composites for nuclear wastes encapsulation. J. Mater. Sci. 2003, 38, 1597–1604. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Berthier, T.; Seglem, S. Encapsulated gadolinium zirconate pyrochlore particles in soda borosilicate glass as novel radioactive waste form. Ceram. Int. 2007, 33, 1231–1235. [Google Scholar] [CrossRef]
- Pace, S.; Cannillo, V.; Wu, J.; Boccaccini, D.N.; Seglem, S.; Boccaccini, A.R. Processing glass-pyrochlore composites for nuclear waste encapsulation. J. Nucl. Mater. 2005, 341, 12–18. [Google Scholar] [CrossRef]
- Abdelouas, A.; Noirault, S.; Grambow, B. Immobilization of inert TRISO-coated fuel in glass for geological disposal. J. Nucl. Mater. 2006, 358, 1–9. [Google Scholar] [CrossRef]
- Henry, N.; Deniard, P.; Jobic, S.; Brec, R.; Fillet, C.; Bart, F.; Grandjean, A.; Pinet, O. Heat treatments versus microstructure in a molybdenum-rich borosilicate. J. Non Cryst. Solids 2004, 333, 199–205. [Google Scholar] [CrossRef]
- Sobolev, I.A.; Ojovan, M.I.; Scherbatova, T.D.; Batyukhnova, O.G. Glasses for Radioactive Waste; Energoatomizdat: Moscow, Russia, 1999. [Google Scholar]
- Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.; Kobelev, A.P.; Stefanovsky, S.V.; Ojovan, M.I. Vitrification processes for low, intermediate radioactive and mixed wastes. Glass Technol. 2005, 46, 28–35. [Google Scholar]
- Juoi, J.M.; Ojovan, M.I. The effect of waste loading on the microstructure of glass composite waste form immobilising spent clinoptilolite. Glass Technol. 2007, 48, 124–129. [Google Scholar]
- Maddrell, E.; Thornber, S.; Hyatt, N.C. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms. J. Nucl. Mater. 2015, 456, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Nicoleau, E.; Angeli, F.; Schuller, S.; Charpentier, T.; Jollivet, P.; Moskura, M. Rare-earth silicate crystallization in borosilicate glasses: Effect on structural and chemical durability properties. J. Non Cryst. Solids 2016, 438, 37–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, L.; Karatchevtseva, I.; Aughterson, R.D.; Gregg, D.J.; Triani, G. Development of brannerite glass-ceramics for the immobilization of actinide-rich radioactive wastes. J. Am. Ceram. Soc. 2017, 100, 4341–4351. [Google Scholar] [CrossRef]
- McCloy, J.S.; Marcial, J.; Patil, D.; Saleh, M.; Ahmadzadeh, M.; Chen, H.; Crum, J.V.; Riley, B.J.; Kamat, H.; Bréhault, A.; et al. Glass structure and crystallization in boro-aluminosilicate glasses containing rare earth and transition metal cations: A US-UK collaborative program. MRS Adv. 2019. [Google Scholar] [CrossRef]
- Kong, L.; Karatchevtseva, I.; Zhang, Y.; Wei, T. The incorporation of Nd or Ce in CaZrTi2O7 zirconolite: Ceramic versus glass-ceramic. J. Nucl. Mater. 2021, 543, 152583. [Google Scholar] [CrossRef]
- Stefanovsky, S.V.; Stefanovsky, O.I.; Danilov, S.S.; Kadyko, M.I. Phosphate-based glasses and glass ceramics for immobilization of lanthanides and actinides. Ceram. Int. 2019, 45, 9331–9338. [Google Scholar] [CrossRef]
- He, Y.; Lu, Y.; Zhang, Q. Characterization of monazite glass–ceramics as wasteform for simulated α-HLLW. J. Nucl. Mater. 2008, 376, 201–206. [Google Scholar] [CrossRef]
- Asuvathraman, R.; Kitheri, J.; Madhavan, R.R.; Sudha, R.; Prabhu, K.R.; Govindan Kutty, K.V. A versatile monazite—IPG glass–ceramic waste form with simulated HLW: Synthesis and characterization. J. Eur. Ceram. Soc. 2015, 35, 4233–4239. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Liao, Q.; Zhu, H.; Liu, D.; Zhu, Y. Synthesis and characterization of phosphate-based glass-ceramics for nuclear waste immobilization: Structure, thermal behavior, and chemical stability. J. Nucl. Mater. 2019, 513, 251–259. [Google Scholar] [CrossRef]
- Juoi, J.M.; Ojovan, M.I.; Lee, W.E. Development of glass-composite materials for radioactive waste immobilization. In Proceedings of the Proc. ICEM’05, ICEM-1069, Glasgow, UK, 28–30 October 2005; ASME: Glasgow, UK, 2005. [Google Scholar]
- Ojovan, M.I.; Juoi, J.M.; Lee, W.E. Glass Composite Materials for Nuclear Waste Immobilisation. In Proceedings of the Extended Abstracts ICG 2007 Proc. XXIst International Congress on Glass, Strasbourg, France, 2–6 July 2007. U37, 5p. [Google Scholar]
- State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels; NEA: Paris, France, 2018; 367p.
- Yudintsev, S.V.; Stefanovsky, S.V.; Kalenova, M.Y.; Nikonov, B.S.; Nikol’skii, M.S.; Koshcheev, A.M.; Shchepin, A.S. Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting. Radiochemistry 2015, 57, 321–333. [Google Scholar] [CrossRef]
- Amoroso, J.W.; Marra, J.; Dandeneau, C.S. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment. J. Nucl. Mater. 2017, 486, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Advanced Fuel Cycle Cost Basis. Prepared for U.S. Department of Energy Fuel Cycle Options Campaign; NTRD-FCO-2017-000265; INL: Idaho Falls, ID, USA, 2017.
- Sorokin, V.T.; Pavlov, D.I. The cost of radwaste disposal: Foreign assessments. Radioact. Waste 2019, 1, 39–46. [Google Scholar]
Waste Type | Waste Description | Waste Loading |
---|---|---|
LILW | High sulphate, molybdate/noble metal content waste. High concentration of Cl. | 30 wt% |
Intermediate level radioactive waste (ILW) | High content of Mo, PbO, MnO, and simulated zircaloy chips. | 20 wt% |
High level radioactive waste (HLW) | Liquid waste arising from reprocessing of natural uranium (UO2). | 10 wt% |
The same | Calcine containing transuranics, fission products, and transition elements. | 60–80 wt% |
Acidic HLW with Al, Zr, Na, nitrate, and fluoride ions. | 75 wt% | |
From reprocessing light water reactor and fast breeder fuel. | 5–35 wt% | |
Zeolite occluded salt waste (transuranics, fission products, and halides). | 75 wt% | |
Fission product and transuranic actinides containing salt immobilized in glass bonded sodalite. | 75wt% | |
Zeolite occluded with molten LiCl-KCl-NaCl and ~6wt% of fission product chlorides. | 50–67 wt% | |
Simulated waste with spinel forming components. | 45 wt% | |
Simulated HLW consisting ≤ 35wt% ZrO2. | 30–50 wt% | |
Plutonium bearing nuclear legacy waste in pyrochlore phases. | 30 vol.% | |
Containing both actinides and chlorides. | 11 wt% | |
Simulated HLW waste chemically immobilized in a mixture of chlorapatite, Ca(PO4)Cl and spodiosite, Ca2(PO4)Cl mineral phase. | 65–90 wt% | |
Long-lived nuclear simulated waste (actinides). | 20 wt% | |
Ag129I | ||
TRISO-UO2 particles. | 16 vol.% | |
Actinides surrogate (Ce2O3,Nd2O3, Eu2O3,Gd2O3,Yb2O3,ThO2 in highly durable zirconolite (CaZrTi2O7). | 4–6wt.% | |
Waste fission product and actinides in titanite, CaTiSiO5. | ||
Waste ions distributed in sphene, CaTiSiO5 phase and glass phase. | 5 wt% | |
Estimated simulation of HLW from reprocessing of nuclear fuels in Japan Atomic Institute. | 25 wt% | |
Simulated 90Sr HLW partitioned from of high level liquid waste in China immobilized in apatite glass-ceramic. | 35 wt% | |
Ashes | From incineration of plutonium bearing organics. | 50 wt% |
From incineration of solid radioactive waste. | 15–40 wt% |
Route | Description | Process Parameters |
---|---|---|
Pressureless sintering | Powder mixing, cold pressing. Relatively low temperature (≤1100 K). | Particle size, compacting pressure, temperature and duration of sintering, heating and cooling rate. |
Hot Pressing | Pressure and temperature applied during Hot Uniaxial Press (HUP), Hot Isostatic Press (HIP) or Hydrothermal hot-pressing (HHP). | Glass composition, particle size, maximum temperature, pressure, soaking time, heating and cooling rate. |
Reaction Sintering | Sintering under isostatic pressure by adding amorphous silica. Chemical reaction between waste components and surrounding glass. | Particle size, HIP temperature, pressure and duration of sintering. |
Sintering with aerogels | Porous network of silica is soaked in a solution containing the actinide, then dried and fully sintered. | Mechanical properties, capillary forces, permeability of aerogel, sintering temperature. |
Cold crucible melting | Electric currents generated inside waste contained in water-cooled crucible, surrounded by an induction coil. | Operating frequency, input vibrating power, operating temperature, melting duration. |
Self-sustaining vitrification | Utilises the energy released during exorthermic chemical reactions. | Composition of initial waste and Powder Metal Fuel. |
In situ sintering | Utilises ambient pressure of a disposal environment, its radiation shielding and extended time of storage. | Disposal environment, ambient pressure and temperature. |
Controlled crystallization | Additional heat-treatment on to vitrified glass forming glass-ceramic. | Temperature, duration, heating and cooling rate. |
Petrurgic method | Crystals nucleate and grow directly upon cooling glass from the melting temperature. | Cooling rate from melt temperature. |
Sol-gel followed by sintering | Allows the formation of a very reactive powder in which components are mixed on a molecular scale. | Calcine temperature, milling media, drying temperature, sintering temperature. |
HLW Fraction | U + Pu | Np | Am | Cm | REE | Cs-Sr | FP 2–UR 3 |
---|---|---|---|---|---|---|---|
Methods for managing waste fractions or separate radionuclides | New (fresh) nuclear fuel | Ceramics | Glass, Ceramics or GCM | Alloy | |||
Fuel | Ceramics | Alloy | |||||
Fuel | Ceramics | Alloy | |||||
Fuel | Ceramics | Alloy | |||||
Fuel | GCM (An/Ln/TM 1) | Alloy (UR) | |||||
Fuel | Ceramics | GCM | |||||
Fuel | GCM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojovan, M.I.; Petrov, V.A.; Yudintsev, S.V. Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustainability 2021, 13, 4117. https://doi.org/10.3390/su13084117
Ojovan MI, Petrov VA, Yudintsev SV. Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustainability. 2021; 13(8):4117. https://doi.org/10.3390/su13084117
Chicago/Turabian StyleOjovan, Michael I., Vladislav A. Petrov, and Sergey V. Yudintsev. 2021. "Glass Crystalline Materials as Advanced Nuclear Wasteforms" Sustainability 13, no. 8: 4117. https://doi.org/10.3390/su13084117
APA StyleOjovan, M. I., Petrov, V. A., & Yudintsev, S. V. (2021). Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustainability, 13(8), 4117. https://doi.org/10.3390/su13084117