Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda
Abstract
:1. Introduction
- Considering the context of the decision-making process within the Agenda 2030 framework, what types of results from the MCDM applications are expected to help decision-makers solve multidimensional problems associated with SDGs?
- What are the main MCDM methodological approaches adopted in studies focusing on decision issues within the 2030 Agenda framework?
- For which SDGs, is there a higher incidence of MCDM applications? In which contexts have these applications been developed? Local, national, or regional?
- From the state-of-art review, which research directions can be identified to build a research agenda on this topic?
2. Methodology
2.1. Planning Stage
2.2. Conducting Stage
2.3. Reporting Stage
3. Descriptive Analysis
3.1. Annual Evolution of Scientific Production: 2016–2020
3.2. MCDM Applications concerning the 2030 Agenda Framework
3.3. MCDM Methods Applied to the 2030 Agenda Framework
3.4. MCDM Methodological Approaches
3.5. Contexts of MCDM Applications
3.6. Sources of the Reviewed Articles
4. In-Depth Analyses of the Literature: Results and Discussion
- Choice: MCDM is used to select the best option from a set of alternatives;
- Sorting: MCDM is employed to assign a set of alternatives to the categories that have been designed a priori;
- Ranking: MCDM is applied to order the alternatives wholly or partially;
- Description: MCDM is used to define the alternatives, build a set of criteria and determine the performance of all or some alternatives taking into account additional information.
4.1. The 2030 Agenda for Sustainable Development
4.2. Multiple Sustainable Development Goals
- Economy: SDG 8, SDG 9, SDG 10, and SDG 12;
- Society: SDG 2, SDG 3, SDG 4, SDG 7, and SDG 11;
- Biosphere: SDG 6, SDG 13, SDG 14, and SDG 15.
4.3. Economy: SDG 8, SDG 9, SDG 10, and SDG 12
4.3.1. SDG 8: Decent Work and Economic Growth
4.3.2. SDG 9: Industry, Innovation, and Infrastructure
4.3.3. SDG 10: Reduced Inequalities
4.3.4. SDG 12: Responsible Consumption and Production
4.4. Society: SDG 2, SDG 3, SDG 4, SDG 7, and SDG 11
4.4.1. SDG2: Zero Hunger and Sustainable Agriculture
4.4.2. SDG3: Good Health and Well-being
4.4.3. SDG 4: Inclusive and Quality Education
4.4.4. SDG 7: Affordable and Clean Energy
4.4.5. SDG 11: Sustainable Cities and Communities
4.5. Biosphere: SDG 6, SDG 13, SDG 14, and SDG 15
4.5.1. SDG 6: Clean Water and Sanitation
4.5.2. SDG 13: Climate Action
4.5.3. SDG 14: Life below Water
4.5.4. SDG 15: Life on Land
5. Conclusions
- Broader utilization of MCDM methods (single or hybrid) to expand the MCDM knowledge-base to be widely applied within the 2030 Agenda framework for SDGs achievement in the most diverse contexts (regional, national, or local contexts);
- Replication of reviewed conceptual MCDM models amongst the various categories above mentioned, and also in studies focusing MCDM applications in SDGs not covered in the literature (i.e., SDG 1, SDG5, SDG 15, and SDG16);
- Combination of MCDM and non-MCDM methods to explore the potential of artificial intelligence and advanced management and statistical tools to enhance the analytical accuracy of studies;
- Utilization of different versions of fuzzy set theory (e.g., hesitant fuzzy sets and intuitionistic fuzzy) combined with MCDM methods;
- Prospective analysis and foresight tools (e.g., prospective structural analysis) to complement MCDM approaches, considering the time-frame of the 2030 Agenda;
- MCDM processes applied to issues within the 2030 Agenda framework should encourage the engagement of stakeholders representing multiple sectors and levels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Search History in the Scopus Database
Ref. | Keyword Search | Documents |
---|---|---|
#1 | (TITLE-ABS-KEY (“*criteria decision mak*”) OR TITLE-ABS-KEY (“*criteria decision-mak*”) OR TITLE-ABS-KEY (MCDM) OR TITLE-ABS-KEY (“*criteria decision analy*”) OR TITLE-ABS-KEY (“*criteria decision-analy*”) OR TITLE-ABS-KEY (MCDA)) | 24,502 |
#2 | (TITLE-ABS-KEY (SDG) OR TITLE-ABS-KEY (“sustainable development goal*”) OR TITLE-ABS-KEY (“2030 Agenda”) OR TITLE-ABS-KEY (“sustainable development”)) | 228,771 |
#3 | #1 AND #2 | 1756 |
#4 | #3 AND (LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO (PUBYEAR, 2016) | 1169 |
#5 | #4 AND (LIMIT-TO (DOCTYPE, “article”) | 867 |
#6 | #5 AND (LIMIT-TO (LANGUAGE, “English”) | 863 |
#7 | #6 AND TITLE-ABS-KEY (“poverty eradication”) OR TITLE-ABS-KEY (“no poverty”) TITLE-ABS-KEY (SDG 1) | 0 |
#8 | #6 AND (TITLE-ABS-KEY (“zero hunger”) OR TITLE-ABS-KEY (“food security”) OR TITLE-ABS-KEY (“improved nutrition”) OR TITLE-ABS-KEY (“agriculture”) OR TITLE-ABS-KEY (SDG 2)) | 18 |
#9 | #6 AND (TITLE-ABS-KEY (“healthy lives”) OR TITLE-ABS-KEY (“health system*”) OR TITLE-ABS-KEY (“ well-being”) OR TITLE-ABS-KEY (SDG 3)) | 6 |
#10 | #6 AND (TITLE-ABS-KEY (“equitable education”) OR TITLE-ABS-KEY (“education”) OR TITLE-ABS-KEY (“life-long learning”) OR TITLE-ABS-KEY (SDG 4)) | 4 |
#11 | #6 AND (TITLE-ABS-KEY (gender AND equality) OR TITLE-ABS-KEY (SDG 5)) | 0 |
#12 | #6 AND (TITLE-ABS-KEY (“clean water”) OR TITLE-ABS-KEY (“sanitation”) OR TITLE-ABS-KEY (“water supply”) OR TITLE-ABS-KEY (“water conservation” OR TITLE-ABS-KEY (SDG 6)) | 38 |
#13 | #6 AND (TITLE-ABS-KEY (“energy efficiency”) OR TITLE-ABS-KEY (“energy policy”) OR TITLE-ABS-KEY (“alternative energy”) OR TITLE-ABS-KEY (“renewable energy”) OR TITLE-ABS-KEY (“energy utilization”) OR TITLE-ABS-KEY (“renewable energies”) OR TITLE-ABS-KEY (“renewable energy resources”) OR TITLE-ABS-KEY (“electricity generation”) OR TITLE-ABS-KEY (“energy conservation”) OR TITLE-ABS-KEY (“energy planning”) OR TITLE-ABS-KEY (“wind power”) OR TITLE-ABS-KEY (“electric power generation”) OR TITLE-ABS-KEY (“solar energy”) OR TITLE-ABS-KEY (SDG 7)) | 162 |
#14 | #6 AND (TITLE-ABS-KEY (“decent work”) OR TITLE-ABS-KEY (“sustainable economic growth”) OR TITLE-ABS-KEY (“economic and social effects”) OR TITLE-ABS-KEY (“economic development”) OR TITLE-ABS-KEY (SDG 8)) | 86 |
#15 | #6 AND (TITLE-ABS-KEY (“resilient infrastructure”) OR TITLE-ABS-KEY (“sustainable industrialization”) OR TITLE-ABS-KEY (innovation) OR TITLE-ABS-KEY (manufacturing) OR TITLE-ABS-KEY (“environmental technology”) OR TITLE-ABS-KEY (“sustainable supply chain*”) OR TITLE-ABS-KEY (“sustainability performance”) OR TITLE-ABS-KEY (“supplier selection”) OR TITLE-ABS-KEY (SDG 9)) | 127 |
#16 | #6 AND (TITLE-ABS-KEY (reduced AND inequalities) OR TITLE-ABS-KEY (SDG 10)) | 2 |
#17 | #6 AND (TITLE-ABS-KEY (“sustainable cities”) OR TITLE-ABS-KEY (“Urban Planning”) OR TITLE-ABS-KEY (“urban area”) OR TITLE-ABS-KEY (“municipal solid waste”) OR TITLE-ABS-KEY (SDG 11)) | 45 |
#18 | #6 AND (TITLE-ABS-KEY (“sustainable consumption”) OR TITLE-ABS-KEY (“sustainable production”) OR TITLE-ABS-KEY (“life cycle analysis”) OR TITLE-ABS-KEY (“life cycle assessment”) OR TITLE-ABS-KEY (“waste management”) OR TITLE-ABS-KEY (SDG 12)) | 134 |
#19 | #6 AND (TITLE-ABS-KEY (“climate change”) OR TITLE-ABS-KEY (“greenhouse gases”) OR TITLE-ABS-KEY (“emission control”) OR TITLE-ABS-KEY (“carbon footprint”) OR TITLE-ABS-KEY (“carbon dioxide”) OR TITLE-ABS-KEY (“global warming”) OR TITLE-ABS-KEY (SDG 13)) | 113 |
#20 | #6 AND (TITLE-ABS-KEY (sustainably AND use AND of AND oceans) OR TITLE-ABS-KEY (sustainably AND use AND of AND seas) OR TITLE-ABS-KEY (sustainable AND use AND of AND marine AND resources) OR TITLE-ABS-KEY (SDG 14)) | 7 |
#21 | #6 AND (TITLE-ABS-KEY (“life on land”) OR TITLE-ABS-KEY (“sustainable use of terrestrial ecosystems”) OR TITLE-ABS-KEY (“sustainable management of forest*”) OR TITLE-ABS-KEY (SDG 15)) | 65 |
#22 | #6 AND (TITLE-ABS-KEY (peace AND justice AND strong AND institutions) OR TITLE-ABS-KEY (SDG 16)) | 0 |
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; UN General Assembly: New York, NY, USA, 2015. [Google Scholar]
- United Nations. Resolution Adopted by the General Assembly on 6 July 2017; Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313); United Nations: New York, NY, USA, 2017. [Google Scholar]
- Le Blanc, D. Towards integration at last? The sustainable development goals as a network of targets. Sustain. Dev. 2015, 23, 176–187. [Google Scholar] [CrossRef]
- Jayaraman, R.; Colapinto, C.; La Torre, D.; Malik, T. Multi-criteria model for sustainable development using goal programming applied to the United Arab Emirates. Energy Policy 2015, 87, 447–454. [Google Scholar] [CrossRef]
- United Nations Institute for Training and Research. Preparing for Action—The 2030 Agenda for Sustainable Development: Learning Manual. 2016. Available online: https://www.un.org/sg/en/global-leadership/united-nations-institute-for-training-and-research/all (accessed on 7 December 2020).
- Nilsson, M.; Griggs, D.; Visbeck, M. Map the interactions between sustainable development goals. Nature 2016, 534, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Griggs, D.; Visbeck, M.; Ringler, C. A Draft Framework for Understanding the SDG Interactions; ICSU Working Paper; International Council for Science (ICSU): Paris, France, 2016. [Google Scholar]
- Allen, C.; Metternicht, G.; Wiedmann, T. National pathways to the Sustainable Development Goals (SDGs): A comparative review of scenario modeling tools. Environ. Sci. Policy 2016, 66, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; Daly, L.; Fioramonti, L.; Giovannini, E.; Kubiszewski, I.; Mortensen, L.F.; Pickett, K.E.; Ragnarsdottir, K.V.; De Vogli, R.; Wilkinson, R. Modelling and measuring sustainable wellbeing in connection with the UN Sustainable Development Goals. Ecol. Econ. 2016, 130, 350–355. [Google Scholar] [CrossRef]
- Campagnolo, L.; Carraro, C.; Eboli, F.; Farnia, L.L. Assessing SDGs: A New Methodology to Measure Sustainability. FEEM Working Paper No. 89.2015. 2016. Available online: https://doi.org/10.2139/ssrn.2715991 (accessed on 7 December 2020).
- United Nations Development Group. Mainstreaming the 2030 Agenda: Reference Guide for UN Country Teams. 2017. Available online: https://undg.org/wp-content/uploads/2017/03/UNDG-Mainstreaming-the-2030-Agenda-Reference-Guide-2017.pdf (accessed on 7 December 2020).
- Weitz, N.; Carlsen, H.; Nilsson, M.; Skanberg, K. Towards systemic and contextual priority setting for implementing the 2030 Agenda. Sustain. Sci. 2018, 13, 531–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICSU. A Guide to SDG Interactions: From Science to Implementation; International Council for Science (ICSU): Paris, France, 2017; Available online: https://council.science/cms/2017/05/SDGs-Guide-to-Interactions.pdf (accessed on 7 December 2020).
- IGES. Sustainable Development Goals Interlinkages and Network Analysis: A Practical Tool for SDG Integration and Policy Coherence; Institute of Global Environmental Strategies (IGES): Kanagawa, Japan, 2017; Available online: https://iges.or.jp/en/publication_documents (accessed on 7 December 2020).
- Reyers, B.; Stafford-Smith, M.; Erb, K.-H.; Scholes, R.J.; Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 2017, 26, 97–105. [Google Scholar] [CrossRef]
- Collste, D.; Pedercini, M.; Cornell, S.E. Policy coherence to achieve the SDGs: Using integrated simulation models to assess effective policies. Sustain Sci. 2017, 12, 921–931. [Google Scholar] [CrossRef]
- Stafford-Smith, M.; Griggs, D.; Gaffney, O.; Ullah, F.; Reyers, B.; Kanie, N.; Stigson, B.; Shrivastava, P.; Leach, M.; O’Connell, D. Integration: The key to implementing the sustainable development goals. Sustain. Sci. 2017, 12, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.; Metternicht, G.; Wiedmann, T. Initial progress in implementing the sustainable development goals (SGDs)—A review of evidence from countries. Sustain. Sci. 2018, 13, 1453–1467. [Google Scholar] [CrossRef]
- Nilsson, M.; Chisholm, E.; Griggs, D.; Howden-Chapman, P.; Mccollum, D.; Messerli, P.; Neumann, B.; Stevance, A.-S.; Visbeck, M.; Stafford-Smith, M. Mapping interactions between the sustainable development goals: Lessons learned and ways forward. Sustain. Sci. 2018, 13, 1489–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, C.; Metternicht, G.; Wiedmann, T. Prioritising SDG targets: Assessing baselines, gaps and interlinkages. Sustain. Sci. 2019, 14, 421–438. [Google Scholar] [CrossRef]
- Breuer, A.; Janetschek, H.; Malerba, D. Translating sustainable development goal (SDG) interdependencies into policy advice. Sustainability 2019, 11, 2092. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sust. Energ. Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Zakuan, N.; Jusoh, A.; Nor, K.M.; Khoshnoudi, M. A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015. Renew. Sustain. Energy Rev. 2017, 71, 216–256. [Google Scholar] [CrossRef]
- Rigo, P.D.; Rediske, G.; Rosa, C.B.; Gastaldo, N.G.; Michels, L.; Neuenfeldt, A.L., Jr.; Siluk, J.C.M. Renewable energy problems: Exploring the methods to support the decision-making process. Sustainability 2020, 12, 195. [Google Scholar] [CrossRef]
- Bhardwaja, A.; Joshia, M.; Khoslaa, R.; Dubash, N.K. More priorities, more problems? Decision-making with multiple energy, development and climate objectives. Energy Res. Soc. Sci. 2019, 49, 143–157. [Google Scholar] [CrossRef]
- Malek, J.; Desai, T. A systematic literature review to map literature focus of sustainable manufacturing. J. Clean. Prod. 2020, 256, 120345. [Google Scholar] [CrossRef]
- Santos, P.H.; Neves, S.M.; Sant’Anna, D.O.; Oliveira, C.H.; Carvalho, H.D. The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. J. Clean. Prod. 2019, 212, 119–138. [Google Scholar] [CrossRef]
- Kandakoglu, A.; Frini, A.; Ben Amor, S. Multicriteria decision making for sustainable development: A systematic review. J. Multi-Crit. Decis. Anal. 2019, 26, 202–251. [Google Scholar] [CrossRef]
- Thomé, A.M.T.; Scavarda, L.F.; Scavarda, A.J. Conducting systematic literature review in operations management. Prod. Plan. Control 2016, 27, 408–420. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a Systematic Review. In The SAGE Handbook for Organizational Research Methods; Buchanan, D.A., Bryman, A., Eds.; SAGE: London, UK, 2009. [Google Scholar]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Rockström, J.; Sukhdev, P. How Food Connects all the SDGs. In: Stockholm EAT Food Forum, 13 June 2016. Available online: https://www.stockholmresilience.org/research/research-news/2016-06-14-how-food-connects-all-the-sdgs.html (accessed on 7 December 2020).
- Danesh, D.; Ryan, M.; Abbasi, A. Multi-criteria decision-making methods for project portfolio management: A literature review. Int. J. Manag. Decis. Making 2017, 17, 75–94. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Gabus, A.; Fontela, E. World Problems, an Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Centre: Geneva, Switzerland, 1972. [Google Scholar]
- Brans, J.P.; Vincke, P. A preference ranking organization method (The PROMETHEE method for multiple criteria decision-making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Opricovic, S. Multi-Criteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998. [Google Scholar]
- Saaty, T. Fundamentals of the analytic network process-dependence and feedback in decision-making with a single network. J. Syst. Sci. Syst. Eng. 2004, 13, 129–157. [Google Scholar] [CrossRef]
- Roy, B. The outranking approach and the foundations of ELECTRE methods. Theory Decis. 1991, 31, 49–73. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Turskis, Z.; Tamošaitien, J. Selection of the effective dwelling house walls by applying attributes values determined at intervals. J. Civ. Eng. Manag. 2008, 14, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. EJOR 1978, 82, 429–444. [Google Scholar] [CrossRef]
- Ghorabaee, M.K.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W. Management Models and Industrial Applications of Linear Programming; Wiley: New York, NY, USA, 1961. [Google Scholar]
- Fishburn, P.C. A note on recent development in additive utility theories for multiple-factor situations. Oper. Res. 1966, 14, 1143–1148. [Google Scholar] [CrossRef]
- Belton, V.; Stewart, T. Multiple Criteria Decision Analysis: An Integrated Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Zavadskas, E.K.; Govindan, K.; Antucheviciene, J.; Turskis, Z. Hybrid multiple criteria decision-making methods: A review of applications for sustainability issues. Econ. Res. Ekon. Istraž. 2016, 29, 857–887. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.-Y.; Zavadskas, E.K.; Tzeng, G.-H. Updated discussions on ‘hybrid multiple criteria decision-making methods: A review of applications for sustainability issues. Econ. Res. Ekon. Istraž. 2018, 31, 1437–1452. [Google Scholar] [CrossRef]
- Mukhametzyanov, I.; Pamucar, D. A sensitivity analysis in MCDM problems: A statistical approach. Decis. Mak. Appl. Manag. Eng. 2018, 2, 1–20. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Belton, V.; Hodgkin, J. Facilitators, decision makers, DIY, users: Is intelligent multicriteria decision support for all feasible or desirable? Eur. J. Oper. Res. 1999, 113, 247–260. [Google Scholar] [CrossRef]
- Pisano, U.; Berger, G. Stakeholders Activities in Support of the 2030 Agenda for Sustainable Development and the SDGs Implementation: A View on Current Activities towards Implementation; ESDN Office: Vienna, Austria, 2016. [Google Scholar]
- Roy, B. Multicriteria Methodology for Decision Aiding; Springer: Boston, MA, USA, 1996. [Google Scholar]
- Karaşan, A.; Kahraman, C. A novel interval-valued neutrosophic EDAS method: Prioritization of the United Nations National Sustainable Development Goals. Soft Comput. 2018, 22, 4891–4906. [Google Scholar] [CrossRef]
- Oliveira, A.; Calili, R.; Almeida, M.F.; Sousa, M. A systemic and contextual framework to define a country’s 2030 Agenda from a foresight perspective. Sustainability 2019, 11, 6360. [Google Scholar] [CrossRef] [Green Version]
- Resce, G.; Schiltz, F. Sustainable development in Europe: A multicriteria decision analysis. Rev. Income Wealth 2020. [Google Scholar] [CrossRef]
- Breu, T.; Bergöö, M.; Ebneter, L.; Pham-Trufert, M.; Bieri, S.; Messerli, P.; Ott, C.; Bader, C. Where to begin? Defining national strategies for implementing the 2030 Agenda: The case of Switzerland. Sustain. Sci. 2020, 16. [Google Scholar] [CrossRef]
- Benítez, R.; Liern, V. Unweighted TOPSIS: A new multicriteria tool for sustainability analysis. Int. J. Sustain. Dev. World Ecol. 2020, 1–13. [Google Scholar] [CrossRef]
- Jayaraman, R.; Colapinto, C.; Liuzzi, D.; La Torre, D. Planning sustainable development through a scenario-based stochastic goal programming model. Oper. Res. 2016, 17, 789–805. [Google Scholar] [CrossRef]
- Mukherjee, S. Selection of alternative fuels for sustainable urban transportation under multi-criteria intuitionistic fuzzy environment. Fuzzy Inf. Eng. 2017, 9, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Monsonís-Payá, I.; García-Melón, M.; Lozano, J.-F. Indicators for responsible research and innovation: A methodological proposal for context-based weighting. Sustainability 2017, 9, 2168. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, A.A.; Udias, A.; Vigiak, O. Assessing the policy scenarios for the Ecosystem Water Food Energy (EWFE) nexus in the Mediterranean region. Ecosyst. Serv. 2019, 35, 231–240. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Sadeghi Sedeh, A. Investigation of solar energy utilization for production of hydrogen and sustainable chemical fertilizer: A case study. Int. J. Energy Res. 2019, 43, 8314–8336. [Google Scholar] [CrossRef]
- De, P.; Majumder, M. Allocation of energy in surface water treatment plants for maximum energy conservation. Environ. Dev. Sustain. 2020, 22, 3347–3370. [Google Scholar] [CrossRef]
- Llorente-Marrón, M.; Díaz-Fernández, M.; Méndez-Rodríguez, P.; González Arias, R. Social Vulnerability, Gender and Disasters. The Case of Haiti in 2010. Sustainability 2020, 12, 3574. [Google Scholar] [CrossRef]
- Pamučar, D.; Behzad, M.; Božanić, D.; Behzad, M. Decision making to support sustainable energy policies corresponding to agriculture sector: Case study in Iran’s Caspian Sea coastline. J. Clean. Prod. 2020, 292, 125302. [Google Scholar] [CrossRef]
- Munasinghe-Arachchige, S.P.; Abeysiriwardana-Arachchige, I.S.A.; Delanka-Pedige, H.M.K.; Nirmalakhandan, N. Sewage treatment process refinement and intensification using multi-criteria decision making approach: A case study. J. Water Process. Eng. 2020, 37, 101485. [Google Scholar] [CrossRef]
- Zamani, R.; Ali, A.M.A.; Roozbahani, A. Evaluation of adaptation scenarios for climate change impacts on agricultural water allocation using fuzzy MCDM methods. Water Resour. Manag. 2020, 34, 1093–1110. [Google Scholar] [CrossRef]
- Kumar, A.; Shrivastav, S.; Adlakha, A.; Vishwakarma, N.K. Appropriation of sustainability priorities to gain strategic advantage in a supply chain. Int. J. Product. Perform. Manag. 2020. [Google Scholar] [CrossRef]
- Radmehr, R.; Ghorbani, M.; Ziaei, A.N. Quantifying and managing the water-energy-food nexus in dry regions food insecurity: New methods and evidence. Agric. Water Manag. 2020. [Google Scholar] [CrossRef]
- Das, A.; Sahoo, B.; Panda, S.N. Evaluation of nexus-sustainability and conventional approaches for optimal water-energy-land-crop planning in an irrigated canal command. Water Resour. Manag. 2020, 34, 2329–2351. [Google Scholar] [CrossRef]
- Michailidou, A.V.; Vlachokostas, C.; Moussiopoulos, N. Interactions between climate change and the tourism sector: Multiple-criteria decision analysis to assess mitigation and adaptation options in tourism areas. Tour. Manag. 2016, 55, 1–12. [Google Scholar] [CrossRef]
- Jafari-Moghadam, S.; Zali, M.R.; Sanaeepour, H. Tourism entrepreneurship policy: A hybrid MCDM model combining DEMATEL and ANP (DANP). Decis. Sci. Lett. 2017, 233–250. [Google Scholar] [CrossRef]
- Suganthi, L. Multi expert and multi criteria evaluation of sectoral investments for sustainable development: An integrated fuzzy AHP, VIKOR/DEA methodology. Sustain. Cities Soc. 2018, 43, 144–156. [Google Scholar] [CrossRef]
- Sitaridis, I.; Kitsios, F. Competitiveness analysis and evaluation of entrepreneurial ecosystems: A multi-criteria approach. Ann. Oper. Res. 2020, 294, 377–399. [Google Scholar] [CrossRef]
- Norese, M.F.; Corazza, L.; Bruschi, F.; Cisi, M. A multiple criteria approach to map ecological-inclusive business models for sustainable development. Int. J. Sustain. Dev. World Ecol. 2020, 1–17. [Google Scholar] [CrossRef]
- Prevolšek, B.; Maksimović, A.; Puška, A.; Pažek, K.; Žibert, M.; Rozman, Č. Sustainable development of ethno-villages in Bosnia and Herzegovina—A multi criteria assessment. Sustainability 2020, 12, 1399. [Google Scholar] [CrossRef] [Green Version]
- Stosic, B.; Milutinovic, R.; Zakic, N.; Zivkovic, N. Selected indicators for evaluation of eco-innovation projects. Eur. J. Soc. Sci. 2016, 29, 177–191. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Dai, S. An indicator approach to industrial sustainability assessment: The case of China’s Capital Economic Circle. J. Clean. Prod. 2018, 194, 473–482. [Google Scholar] [CrossRef]
- Lee, K.-C.; Tsai, W.-H.; Yang, C.-H.; Lin, Y.-Z. An MCDM approach for selecting green aviation fleet program management strategies under multi-resource limitations. J. Air Transp. Manag. 2018, 68, 76–85. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.; Zhong, Z.; Zhang, M. Selection of technological innovation for service-orientated enterprises Selection of Technological Innovation for Service-Orientated Enterprises. Sustainability 2018, 10, 3906. [Google Scholar] [CrossRef] [Green Version]
- Hung, S.-W.; Chang, C.-L.; Liu, S.M. Innovation System assessment model for sustainability planning in Taiwan System Assessment Model for Sustainability Planning in Taiwan. Sustainability 2019, 11, 7040. [Google Scholar] [CrossRef]
- Sansabas-Villalpando, V.; Pérez-Olguín, I.J.C.; Pérez-Domínguez, L.A.; Rodríguez-Picón, L.A.; Mendez-González, L.C. CODAS HFLTS method to appraise organizational culture of innovation and complex technological changes environments. Sustainability 2019, 11, 7045. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.-Y.; Chu, M.-T.; Wang, Y.-T.; Chen, K.-J. Industry performance appraisal using improved MCDM for next generation of Taiwan. Sustainability 2020, 12, 5290. [Google Scholar] [CrossRef]
- Ovezikoglou, P.; Aidonis, D.; Achillas, C.; Vlachokostas, C.; Bochtis, D. Sustainability assessment of investments based on a multiple criteria methodological framework. Sustainability 2020, 12, 6805. [Google Scholar] [CrossRef]
- Gupta, H.; Kusi-Sarpong, S.; Rezaei, J. Barriers and overcoming strategies to supply chain sustainability innovation. Resour. Conserv. Recycl. 2020, 161, 104819. [Google Scholar] [CrossRef]
- Asees Awan, M.; Ali, Y. Sustainable modeling in reverse logistics strategies using fuzzy MCDM: Case of China Pakistan Economic Corridor. Manag. Environ. Qual. Int. J. 2019, 30, 1132–1151. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y. Supplier selection for the adoption of green innovation in sustainable supply chain management practices: A case of the Chinese textile manufacturing industry. Processes 2020, 8, 717. [Google Scholar] [CrossRef]
- Turskis, Z.; Goranin, N.; Nurusheva, A.; Boranbayev, S. A fuzzy WASPAS-Based approach to determine critical information infrastructures of EU Sustainable Development. Sustainability 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Stoilova, S.; Munier, N.; Kendra, M.; Skrúcaný, T. Multi-criteria evaluation of railway network performance in countries of the TEN-T Orient–East Med Corridor. Sustainability 2020, 12, 1482. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.M.; Kovaleski, J.L.; Gaia, S.; Chiroli, D.M.G. Building sustainable development through technology transfer offices: An approach based on levels of maturity. Sustainability 2020, 12, 1795. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.; Liao, H.; Šaparauskas, J.; Banaitis, A.; Ferreira, F.A.F.; Al-Barakati, A. Sustainable cloud service provider development by a Z-number-based DNMA method with Gini-coefficient-based weight determination. Sustainability 2020, 12, 3410. [Google Scholar] [CrossRef] [Green Version]
- Labella, A.; Rodríguez-Cohard, J.C.; Sánchez-Martínez, J.D.; Martínez, L. An AHP Sort II based analysis of the inequality reduction within European Union. Mathematics 2020, 8, 646. [Google Scholar] [CrossRef]
- Sant’Anna, A.P.; Menna Barreto, M.F.S.S. Inequality assessment by probabilistic development indices. Soc. Indic. Res. 2020. [Google Scholar] [CrossRef]
- Khakzad, N.; Reniers, G. Application of Bayesian network and multi-criteria decision analysis to risk-based design of chemical plants. Chem. Eng. Trans. 2016, 48, 223–228. [Google Scholar] [CrossRef]
- Mangla, S.K.; Luthra, S.; Mishra, N.; Singh, A.; Rana, N.P.; Dora, M.; Dwivedi, Y. Barriers to effective circular supply chain management in a developing country context. Prod. Plann. Contr. 2018, 29, 551–569. [Google Scholar] [CrossRef] [Green Version]
- Eikelboom, M.; Lopes, A.C.P.; Silva, C.M.; Rodrigues, F.A.; Zanuncio, A.J.V.; Zanuncio, J.C. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godlewska, J.; Sidorczuk-Pietraszko, E. Taxonomic assessment of transition to the Green Economy in Polish regions. Sustainability 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, M.S.; Dora, M.; Jakhar, S.K. Appropriate location for remanufacturing plant towards sustainable supply chain. Ann. Oper. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Schlickmann, M.N.; Ferreira, J.C.E.; Pereira, A.C. Method for assessing the obsolescence of manufacturing equipment based on the triple bottom line. Production 2020, 30, e20190003. [Google Scholar] [CrossRef]
- Cobos Mora, S.L.; Solano Peláez, J.L. Sanitary landfill site selection using multi-criteria decision analysis and analytical hierarchy process: A case study in Azuay province, Ecuador. Waste Manag Res. 2020. [Google Scholar] [CrossRef]
- Bhalaji, R.K.A.; Bathrinath, S.; Ponnambalam, S.G.; Saravanasankar, S. A soft computing methodology to analyze sustainable risks in surgical cotton manufacturing companies. Sādhanā Acad. Proc. Eng. Sci. 2020, 45. [Google Scholar] [CrossRef]
- Bose, S.; Mandal, N.; Nandi, T. Selection and experimentation of the best hybrid green composite using advanced MCDM methods for clean sustainable energy recovery: A novel approach. Int. J. Math. Eng. Manag. Sci. 2020, 5, 556–566. [Google Scholar] [CrossRef]
- Chauhan, A.; Jakhar, S.K.; Chauhan, C. The interplay of circular economy with industry 4.0 enabled smart city drivers of healthcare waste disposal. J. Clean. Prod. 2020, 123854. [Google Scholar] [CrossRef]
- Fagioli, F.F.; Rocchi, L.; Paolotti, L.; Roman, S.; Boggia, A. From the farm to the agrifood system: A multiple criteria framework to evaluate extended multi-functional value. Ecol. Indic. 2017, 79, 91–102. [Google Scholar] [CrossRef]
- Emami, M.; Almassi, M.; Bakhoda, H.; Kalantari, I. Agricultural mechanization, a key to food security in developing countries: Strategy formulating for Iran. Agric. Food Secur. 2018, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Jamil, M.; Sahana, M.; Sajjad, H. Crop suitability analysis in the Bijnor District, UP, using geospatial tools and fuzzy Analytical Hierarchy Process. Agric. Res. 2018. [Google Scholar] [CrossRef]
- Aldababseh, A.; Temimi, M.; Maghelal, P.; Branch, O.; Wulfmeyer, V. Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability 2018, 10, 803. [Google Scholar] [CrossRef] [Green Version]
- Ujoh, F.; Igbawua, T.; Paul, M.O. Suitability mapping for rice cultivation in Benue State, Nigeria using satellite data. Geo Spat. Inform. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Deepa, N.; Ganesan, K.; Srinivasan, K.; Chang, C.-Y. Realizing sustainable development via modified integrated weighting MCDM model for ranking agrarian dataset. Sustainability 2019, 11, 6060. [Google Scholar] [CrossRef] [Green Version]
- Movarej, M.; Fami, H.S.; Ameri, Z.D.; Asadi, A. Analyzing interventions affecting the development of nutrition-sensitive agriculture production using the Analytical Network Process (ANP). Int. J. Sci. Eng. Technol. 2019, 8, 3540–3550. [Google Scholar]
- Banaeian, N.; Pourhejazy, P. Integrating sustainability into the machinery selection decisions in the agriculture sector. IEEE Eng. Manag. Rev. 2020. [Google Scholar] [CrossRef]
- Sari, F.; Kandemir, İ.; Ceylan, D.A.; Gül, A. Using AHP and PROMETHEE multi-criteria decision making methods to define suitable apiary locations. J. Apic. Res. 2020, 59, 546–557. [Google Scholar] [CrossRef]
- Puertas, R.; Marti, L.; Garcia-Alvarez-Coque, J.-M. Food supply without risk: Multicriteria analysis of institutional conditions of exporters. Int. J. Environ. Res. Public Health 2020, 17, 3432. [Google Scholar] [CrossRef] [PubMed]
- Zandi, P.; Rahmani, M.; Khanian, M.; Mosavi, A. Agricultural risk management using fuzzy TOPSIS, Analytical Hierarchy Process (AHP) and Failure Mode and Effects Analysis (FMEA). Agriculture 2020, 10, 504. [Google Scholar] [CrossRef]
- Hu, S.-K.; Tzeng, G.-H. Strategizing for better life development using OECD well-being indicators in a hybrid fuzzy MCDM model. Int. J. Fuzzy Syst. 2017, 19, 1683–1702. [Google Scholar] [CrossRef]
- Peiró-Palomino, J.; Picazo-Tadeo, A.J. OECD: One or Many? Ranking countries with a composite well-being indicator. Soc. Indic. Res. 2018, 139, 847–869. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Liu, Y.; Tzeng, G.-H. Improving sustainable mobile health care promotion: A novel hybrid MCDM method. Sustainability 2019, 11, 752. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, M.; Torkayesh, A.E.; Chatterjee, P. An integrated decision-making model for supplier evaluation in public healthcare system: The case study of a Spanish hospital. J. Enterp. Inf. Manag. 2020. [Google Scholar] [CrossRef]
- Kolvir, H.R.; Madadi, A.; Safarianzengir, V.; Sobhani, B. Monitoring and analysis of the effects of atmospheric temperature and heat extreme of the environment on human health in Central Iran, located in southwest Asia. Air Qual. Atmos. Health 2020. [Google Scholar] [CrossRef]
- Trubnikov, V.; Meynkhard, A.; Shvandar, K.; Litvishko, O.; Titov, V. Medication market performance analysis with help of analytic hierarchy processing. Entrep. Sustain. Issues 2020, 8, 899–916. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Assessment of hospital sites’ suitability by spatial information technologies using AHP and GIS-based multi-criteria approach of Rajpur–Sonarpur Municipality. Model. Earth Syst. Environ. 2020, 6, 2581–2596. [Google Scholar] [CrossRef]
- Kurilovas, E. On data-driven decision-making for quality education. Comput. Hum. Behav. 2018, 107. [Google Scholar] [CrossRef]
- Weng, S.-S.; Liu, Y.; Chuang, Y.-C. Reform of Chinese universities in the context of sustainable development: Teacher evaluation and improvement based on hybrid multiple criteria decision-making model. Sustainability 2019, 11, 5471. [Google Scholar] [CrossRef] [Green Version]
- Aldowah, H.; Al-Samarraie, H.; Alzahrani, A.I.; Alalwan, N. Factors affecting student dropout in MOOCs: A cause and effect decision-making model. J. Comput. High Educ. 2019. [Google Scholar] [CrossRef]
- Zia, A.; Leong, T.P.; Subramaniam, G. Criteria and priorities of secondary school students in choosing their educational pathway: A selection process by analytic hierarchy process. Malaysian. J. Consum. Fam. Econ. 2019, 22, 233–247. [Google Scholar]
- Coco, G.; Lagravinese, R.; Resce, G. Beyond the weights: A multicriteria approach to evaluate inequality in education. J. Econ. Inequal. 2020, 18, 469–489. [Google Scholar] [CrossRef]
- Guerrero-Liquet, G.C.; Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T.; Verdegay, J.L. Decision-making for risk management in sustainable renewable energy facilities: A case study in the Dominican Republic. Sustainability 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, S.; Hong, Z.; Guo, S.; Sun, J.; Wang, J. Evaluating selection criteria for Chinese solar greenhouses: A case study for northern Jiangsu Province. Appl. Eng. Agric. 2016, 32, 401–413. [Google Scholar] [CrossRef]
- Debbarma, B.; Chakraborti, P.; Bose, P.K.; Deb, M.; Banerjee, R. Exploration of PROMETHEE II and VIKOR methodology in a MCDM approach for ascertaining the optimal performance-emission trade-off vantage in a hydrogen-biohol dual fuel endeavour. Fuel 2017, 210, 922–935. [Google Scholar] [CrossRef]
- Ocon, J.D.; Cruz, S.M.M.; Castro, M.T.; Aviso, K.B.; Tan, R.R.; Promentilla, M.A.B. Optimal multi-criteria selection of hybrid energy systems for off-grid electrification. Chem. Eng. Trans. 2018, 70, 367–372. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Karabulut, Y.; Mukul, E. A novel renewable energy selection model for United Nations’ Sustainable Development Goals. Energy 2018, 165, 290–302. [Google Scholar] [CrossRef]
- Ren, J.; Toniolo, S. Life cycle sustainability decision-support framework for ranking of hydrogen production pathways under uncertainties: An interval multi-criteria decision making approach. J. Clean. Prod. 2018, 175, 222–236. [Google Scholar] [CrossRef]
- Mirjat, N.H.; Uqaili, M.A.; Harijan, K.; Mustafa, M.W.; Rahman, M.M.; Khan, M.W.A. Multi-criteria analysis of electricity generation scenarios for sustainable energy planning in Pakistan. Energies 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Acar, C.; Beskese, A.; Temur, G.T. Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. Int. J. Hydrogen Energy 2018, 43, 18059–18076. [Google Scholar] [CrossRef]
- Simsek, Y.; Watts, D.; Escobar, R. Sustainability evaluation of Concentrated Solar Power (CSP) projects under Clean Development Mechanism (CDM) using multi criteria decision method (MCDM). Renew. Sust. Energ. Rev. 2018, 93, 421–438. [Google Scholar] [CrossRef]
- Acar, C.; Beskese, A.; Temur, G.T. A novel multicriteria sustainability investigation of energy storage systems. Int. J. Energy Res. 2019, 43, 6419–6441. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. Integrated assessment of a sustainable microgrid for a remote village in hilly region. Energy Convers. Manag. 2019, 180, 442–472. [Google Scholar] [CrossRef]
- Ingole, S.S.; Bahaley, S.G.; Kalmegh, S.S.; Jamkar, S.S. Qualitative analysis to assess the best renewable energy scenario for sustainable energy planning. IJITEE 2019, 8, 1364–1370. [Google Scholar] [CrossRef]
- Aryanpur, V.; Atabaki, M.S.; Marzband, M.; Siano, P.; Ghayoumi, K. An Overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector. Renew. Sust. Energ. Rev. 2019, 112, 58–74. [Google Scholar] [CrossRef]
- Taylan, O.; Alamoudi, R.; Kabli, M.; AlJifri, A.; Ramzi, F.; Herrera-Viedma, E. Assessment of energy systems using extended fuzzy AHP, fuzzy VIKOR, and TOPSIS approaches to manage non-cooperative opinions. Sustainability 2020, 12, 2745. [Google Scholar] [CrossRef] [Green Version]
- Feng, J. Wind farm site selection from the perspective of sustainability: A novel satisfaction degree-based fuzzy axiomatic design approach. Int. J. Energy Res. Res. 2020. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Gamal, A.; Chakrabortty, R.K.; Ryan, M.J. Evaluation of sustainable hydrogen production options using an advanced hybrid MCDM Approach: A case study. Int. J. Hydrogen Energy 2020. [Google Scholar] [CrossRef]
- Jadoon, T.R.; Ali, M.K.; Hussain, S.; Wasim, A.; Jahanzaib, M. Sustaining power production in hydropower stations of developing countries. Sustain. Energy Technol. Assess. 2020, 37. [Google Scholar] [CrossRef]
- Rasheed, R.; Javed, H.; Rizwan, A.; Yasar, A.; Tabinda, A.B.; Mahfooz, Y.; Wang, Y.; Su, Y. Sustainability and CDM potential analysis of a novel vs conventional bioenergy projects in South Asia by multi-criteria decision-making method. Environ. Sci. Pollut. Res. 2020, 27, 23081–23093. [Google Scholar] [CrossRef]
- Li, W.; Ren, X.; Ding, S.; Dong, L. A multi-criterion decision making for sustainability assessment of hydrogen production technologies based on Objective Grey Relational Analysis. Int. J. Hydrogen Energy 2020, 45, 34385–34395. [Google Scholar] [CrossRef]
- Phillis, A.; Grigoroudis, E.; Kouikoglou, V. Assessing national energy sustainability using multiple criteria decision analysis. Int. J. Sustain. Dev. World Ecol. 2020, 1–18. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Longsheng, C.; Ali Shah, S.A.; Alsanad, A.; Ahmad, M.; Akbar, M.A.; Gumaei, A.; Ali, S. Analyzing renewable energy sources of a developing country for sustainable development: An integrated fuzzy based-decision methodology. Processes 2020, 8, 825. [Google Scholar] [CrossRef]
- Kurttila, M.; Haara, A.; Juutinen, A.; Karhu, J.; Ojanen, P.; Pykäläinen, J.; Saarimaa, M.; Tarvainen, O.; Sarkkola, S.; Tolvanen, A. Applying a multi-criteria project portfolio tool in selecting energy peat production areas. Sustainability 2020, 12, 1705. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Nachtnebel, H.P.; Komendantova, N. Deployment of hydropower in Nepal: Multiple stakeholders’ perspectives. Sustainability 2020, 12, 6312. [Google Scholar] [CrossRef]
- Neofytou, H.; Nikas, A.; Doukas, H. Sustainable energy transition readiness: A multicriteria assessment index. Renew. Sust. Energ. Rev. 2020, 131. [Google Scholar] [CrossRef]
- Said, R.; Majid, R.A.; Daud, M.N.; Esha, Z.; Razali, M.N. Owners’ perception towards sustainable housing affordability in Kuching, Sarawak. J. Des. Built Environ. 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Zinatizadeh, S.; Monavari, S.M.; Azmi, A.; Sobhanardakani, S. Evaluation and prediction of sustainability of urban areas: A case study for Kermanshah City, Iran. Cities 2017, 66, 1–9. [Google Scholar] [CrossRef]
- Lehner, A.; Erlacher, C.; Schlögl, M.; Wegerer, J.; Blaschke, T.; Steinnocher, K. Can ISO-defined urban sustainability indicators be derived from remote sensing: An expert weighting approach. Sustainability 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Gökçekuş, H.; Ozsahin, D.U.; Al-Othman, D. Evaluation of the impact of sustainable transportation alternatives on environment using fuzzy PROMETHEE method. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 3254–3259. [Google Scholar]
- Ahmed, M.; Qureshi, M.N.; Mallick, J.; Ben Kahla, N. Selection of sustainable supplementary concrete materials using OSM-AHP-TOPSIS approach. Adv. Mater. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Phonphoton, N.; Pharino, C. Multi-criteria decision analysis to mitigate the impact of municipal solid waste management services during floods. Resour. Conserv. Recycl. 2019, 146, 106–113. [Google Scholar] [CrossRef]
- Nesticò, A.; Elia, C.; Naddeo, V. Sustainability of urban regeneration projects: Novel selection model based on analytic network process and zero-one goal programming. Land Use Policy 2020, 99. [Google Scholar] [CrossRef]
- Mansour, M.; Dawood, S.; Falqi, I. An integrated structural equation modeling and analytic hierarchy process approach to prioritize investment in the construction industry to achieve sustainable development in Saudi Arabia. Pol. J. Environ. Stud. 2020, 29, 2285–2302. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D. Evaluation of city sustainability using multi-criteria decision-making considering interaction among criteria in Liaoning Province China. Sustain. Cities Soc. 2020. [Google Scholar] [CrossRef]
- Kumar, V.; Del Vasto-Terrientes, L.; Valls, A.; Schuhmacher, M. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method. Sci. Total Environ. 2016, 540, 344–357. [Google Scholar] [CrossRef]
- Woltersdorf, L.; Zimmermann, M.; Deffner, J.; Gerlach, M.; Liehr, S. Benefits of an integrated water and nutrient reuse system for urban areas in semi-arid developing countries. Resour. Conserv. Recycl. 2018, 128, 382–393. [Google Scholar] [CrossRef]
- Salisbury, F.; Brouckaert, C.; Still, D.; Buckley, C. Multiple criteria decision analysis for sanitation selection in South African municipalities. Water SA 2018, 44, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Ezbakhe, F.; Perez-Foguet, A. Multi-criteria decision analysis under uncertainty: Two approaches to incorporating data uncertainty into water, sanitation and hygiene planning. Water Resour. Manag. 2018, 32, 5169–5182. [Google Scholar] [CrossRef] [Green Version]
- Nie, R.; Tian, Z.; Wang, J.; Zhang, H.; Wang, T. Water security sustainability evaluation: Applying a multistage decision support framework in industrial region. J. Clean. Prod. 2018, 196, 1681–1704. [Google Scholar] [CrossRef]
- Vidal, B.; Hedström, A.; Barraud, S.; Kärrman, E.; Herrmann, I. Assessing the sustainability of on-site sanitation systems using multi-criteria analysis. Environ. Sci. Water Res. Technol. 2019, 5, 1599–1615. [Google Scholar] [CrossRef] [Green Version]
- Oliveira Campos, P.C.; Silva Rocha Paz, T.; Lenz, L.; Qiu, Y.; Alves, C.N.; Simoni, A.P.R.; Amorim, J.C.C.; Lima, G.B.A.; Rangel, M.P.; Paz, I. Multi-criteria decision method for sustainable watercourse management in urban areas. Sustainability 2020, 12. [Google Scholar] [CrossRef]
- Song, J.Y.; Chung, E.-S. Robustness, uncertainty and sensitivity analyses of the TOPSIS Method for quantitative climate change vulnerability: A case study of flood damage. Water Resour. Manag. 2016, 30, 4751–4771. [Google Scholar] [CrossRef]
- Panhalkar, S.S.; Jarag, A.P. Flood risk assessment of Panchganga River (Kolhapur district, Maharashtra) using GIS-based multicriteria decision technique. Curr. Sci. 2017, 112, 785–793. [Google Scholar] [CrossRef]
- Maanan, M.; Maanan, M.; Rueff, H.; Adouk, N.; Zourarah, B.; Rhinane, H. Assess the human and environmental vulnerability for coastal hazard by using a multi-criteria decision analysis. Hum. Ecol. Risk Assess. 2017, 24, 1642–1658. [Google Scholar] [CrossRef]
- Brudermann, T.; Sangkakool, T. Green roofs in temperate climate cities in Europe—An analysis of key decision factors. Urban For. Urban Green. 2017, 21, 224–234. [Google Scholar] [CrossRef]
- Zahmatkesh, Z.; Karamouz, M. An uncertainty-based framework to quantifying climate change impacts on coastal flood vulnerability: Case study of New York City. Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef] [PubMed]
- Seenirajan, M.; Natarajan, M.; Thangaraj, R.; Kavitha, E. Flood disaster preventive measures using GIS and multicriteria technique in the water sheds area of Ambasamuthiram Town. Ecol. Environ. Conserv. 2018, 24, 1937–1945. [Google Scholar]
- Mallick, J.; Singh, R.K.; AlAwadh, M.A.; Islam, S.; Khan, R.A.; Qureshi, M.N. GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environ. Earth Sci. 2018, 77, 276. [Google Scholar] [CrossRef]
- Mistage, O.; Bilotta, P. Decision support method for GHG emission management in industries. Int. J. Environ. Sci. Technol. 2018, 15, 1331–1342. [Google Scholar] [CrossRef]
- Alhumaid, M.; Ghumman, A.R.; Haider, H.; Al-Salamah, I.S.; Ghazaw, Y.M. Sustainability evaluation framework of urban stormwater drainage options for arid environments using hydraulic modeling and multicriteria decision-making. Water 2018, 10, 581. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, M.; Gonzalez, E.D.; Chatterjee, P. A multi-criteria decision-making framework for agriculture supply chain risk management under a circular economy context. Manag. Decis. 2019. [Google Scholar] [CrossRef]
- Florindo, T.J.; Florindo, G.I.B.D.M.; Talamini, E.; Costa, J.S.S.; Léis, C.M.M.; Tang, W.Z.; Schultz, G.; Kulay, L.; Pinto, A.T.; Ruviaro, C.F. Application of the multiple criteria decision-making (MCDM) approach in the identification of Carbon Footprint reduction actions in the Brazilian beef production chain. J. Clean. Prod. 2020, 196, 1379–1389. [Google Scholar] [CrossRef]
- Stričević, R.; Srdjević, Z.; Lipovac, A.; Prodanović, S.; Petrović-Obradović, O.; Ćosić, M.; Djurović, N. Synergy of experts’ and farmers’ responses in climate-change adaptation planning in Serbia. Ecol. Indic. 2020, 116, 106481. [Google Scholar] [CrossRef]
- Dutta, S.; Maiti, S.; Garai, S.; Abrar, F.; Jha, S.K.; Bhakat, M.; Mandal, S.; Kadian, K.S. Analyzing adaptation strategies to climate change followed by the farming community of the Indian Sunderbans using Analytical Hierarchy Process. J. Coast. Conserv. 2020, 24, 61. [Google Scholar] [CrossRef]
- Gandini, A.; Garmendia, L.; Prieto, I.; Álvarez, I.; San-José, J.-T. A holistic and multi-stakeholder methodology for vulnerability assessment of cities to flooding and extreme precipitation events. Sustain. Cities Soc. 2020, 102437. [Google Scholar] [CrossRef]
- Wijenayake, W.M.H.K.; Amarasinghe, U.S.; De Silva, S.S. Application of a multiple-criteria decision making approach for selecting non-perennial reservoirs for culture-based fishery development: Case study from Sri Lanka. Aquaculture 2016, 459, 26–35. [Google Scholar] [CrossRef]
- Nayak, A.K.; Kumar, P.; Pant, D.; Mohanty, R.K. Land suitability modelling for enhancing fishery resource development in Central Himalayas (India) using GIS and multi-criteria evaluation approach. Aquac. Eng. 2018, 83, 120–129. [Google Scholar] [CrossRef]
- Henríquez-Antipa, L.A.; Cárcamo, F. Stakeholder’s multidimensional perceptions on policy implementation gaps regarding the current status of Chilean small-scale seaweed aquaculture. Mar. Policy 2019, 103, 138–147. [Google Scholar] [CrossRef]
- Chen, C.-L.; Chuang, Y.-C.; Lee, T.-C.; Liu, C.-H.; Yang, C.-L. Not out of sight but out of mind: Developing a multi-criteria evaluation structure for green fishery harbors. Mar. Policy 2019, 100, 324–331. [Google Scholar] [CrossRef]
- Luna, M.; Llorente, I.; Cobo, A. Determination of feeding strategies in aquaculture farms using a multiple-criteria approach and genetic algorithms. Ann. Oper. Res. 2019. [Google Scholar] [CrossRef]
- Dorfan, L.; Mousavi Haghighi, M.H.; Mousavi, S.N. Optimized decision-making for shrimp fishery in Dayyer Port using the goal programming model. Casp. J. Environ. Sci. 2020, 18, 367–381. [Google Scholar] [CrossRef]
- Ahmadi Sani, N.; BabaieKafaky, S.; Pukkala, T.; Mataji, A. Integrated use of GIS, remote sensing and multi-criteria decision analysis to assess ecological land suitability in multi-functional forestry. J. For. Res. 2016, 27, 1127–1135. [Google Scholar] [CrossRef]
- Diaz-Balteiro, L.; Alfranca, O.; González-Pachón, J.; Romero, C. Ranking of industrial forest plantations in terms of sustainability: A multicriteria approach. J. Environ. Manag. 2016, 180, 123–132. [Google Scholar] [CrossRef]
- Çalişkan, E. Planning of environmentally sound forest road route using GIS & S-MCDM. Šumarski List 2017, 11–12, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Tecle, A.; Verdin, G.-P. Analytic hierarchy process application for multiple purpose forest resources management budget allocation in Durango, Mexico. Int. J. Anal. Hierarchy Process 2018, 10. [Google Scholar] [CrossRef]
- Gigović, L.; Jakovljević, G.; Sekulović, D.; Regodić, M. GIS multi-criteria analysis for identifying and mapping forest fire hazard: Nevesinje, Bosnia and Herzegovina. Teh. Vjesn. Tech. Gaz. 2018, 25, 891–897. [Google Scholar] [CrossRef]
- Korkmaz, M.; Gurer, D. Financial performance evaluation of forest village cooperatives: A multi-criteria TOPSIS approach. Cerne 2018, 24, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.S. Design of spatial PGIS-MCDA-based land assessment planning for identifying sustainable land-use adaptation priorities for climate change impacts. Agric. Syst. 2018, 167, 61–71. [Google Scholar] [CrossRef]
- Kacem, H.A.; Fal, S.; Karim, M.; Alaoui, H.M.; Rhinane, H.; Maanan, M. Application of fuzzy analytical hierarchy process for assessment of desertification sensitive areas in North West of Morocco. Geocarto Int. 2019. [Google Scholar] [CrossRef]
- Wu, B.; Meng, X.; Ye, Q.; Sharma, R.P.; Duan, G.; Lei, Y.; Fu, L. Method of estimating degraded forest area: Cases from dominant tree species from Guangdong and Tibet in China. Forests 2020, 11, 930. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Documents | 863 |
Sources (journals, books, among others) | 294 |
Author’s keywords (DE) | 2590 |
Period | 2016–2020 |
Average citations per document | 13.37 |
Authors | 2481 |
Author appearances | 3254 |
Authors of single-authored documents | 32 |
Authors of multi-authored documents | 2449 |
Single-authored documents | 35 |
Documents per author | 0.35 |
Authors per document | 2.87 |
Co-authors per document | 3.77 |
MCDM Applications | SDG | Number of Articles |
---|---|---|
The 2030 Agenda for Sustainable Development | All SDGs | 5 |
Multiple SDGs | Nexus approaches | 13 |
Economy: SDG 8, SDG 9, SDG 10, and SDG 12 | SDG8 | 6 |
SDG9 | 15 | |
SDG10 | 2 | |
SDG12 | 10 | |
Society: SDG 2, SDG 3, SDG 4, SDG 7, and SDG 11 | SDG2 | 11 |
SDG3 | 7 | |
SDG4 | 5 | |
SDG7 | 24 | |
SDG11 | 9 | |
Biosphere: SDG 6, SDG 13, SDG 14, and SDG 15 | SDG6 | 7 |
SDG13 | 14 | |
SDG14 | 6 | |
SDG15 | 9 |
MCDM Method | Ref. | Number of Articles | Classification [34] | |
---|---|---|---|---|
n | % | |||
AHP | [35] | 73 | 51.05 | Utility-based method |
TOPSIS | [36] | 31 | 21.68 | Compromise method |
DEMATEL | [37] | 13 | 9.09 | Other MCDM method |
PROMETHEE | [38] | 12 | 8.39 | Outranking method |
VIKOR | [39] | 11 | 7.69 | Compromise method |
ANP | [40] | 10 | 6.99 | Utility-based method |
ELECTRE | [41] | 10 | 6.99 | Outranking method |
COPRAS | [42] | 5 | 3.50 | Compromise method |
DEA | [43] | 5 | 3.50 | Multi-objective decision-making method |
EDAS | [44] | 5 | 3.50 | Compromise method |
GP | [45] | 5 | 3.50 | Multi-objective decision-making method |
SAW | [46] | 5 | 3.50 | Compromise method |
Remaining methods * | Various | <5 ** | 23.08 | See notes below. |
Source | Publisher | Number of Articles | Total Citations |
---|---|---|---|
Sustainability (Switzerland) | MDPI | 24 | 121 |
Journal of Cleaner Production | Elsevier | 7 | 181 |
Water Resources Management | Springer | 4 | 16 |
Sustainable Cities and Society | Elsevier | 3 | 39 |
Renewable and Sustainable Energy Reviews | Elsevier | 3 | 21 |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Karaşan and Kahraman (2018) [55] | IVN EDAS | Single MCDM. | National (Turkey) |
Oliveira et al. (2019) [56] | Fuzzy AHP + Fuzzy TOPSIS + PSA + network analysis. | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. Use of fuzzy logic. | National (Brazil) |
Resce and Schiltz (2020) [57] | HSMAA | Single MCDM. | Regional (EU) |
Breu et al. (2020) [58] | AHP + PSA + network analysis. | Combination of MCDM and non-MCDM methods. | National (Switzerland) |
Benítez and Liern (2020) [59] | Unweighted TOPSIS | Single MCDM. Case studies. | National (country unidentified) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Jayaraman et al. (2016) [60] | GP | Single MCDM. | National (UAE) |
Mukherjee et al. (2017) [61] | Fuzzy TOPSIS | Single MCDM. Use of fuzzy logic. | Local (Delhi, India) |
Monsonís-Payá et al. (2017) [62] | AHP | Single MCDM. | Regional (Europe) |
Karabulut et al. (2019) [63] | TOPSIS + correlation analysis + scenario planning | Combination of MCDM and non-MCDM methods. | Regional (Mediterranean region) |
Mostafaeipour and Sadeghi (2019) [64] | Fuzzy AHP + TODIM + SAW + TOPSIS + VIKOR + sensitivity analysis | Integration of MCDM methods. Use of fuzzy logic. Use of sensitivity analysis. | National (Iran) |
De and Majumder (2019) [65] | AHP + BFOA + FA | Integration of MCDM methods Combination of MCDM and non-MCDM methods. Use of artificial intelligence. | National (India) |
Llorente-Marrón et al. (2020) [66] | TOPSIS + DID | Combination of MCDM and non-MCDM methods. | National (Haiti) |
Pamučar et al. (2020) [67] | LBWA + WASPAS + sensitivity analysis | Integration of MCDM methods. Use of sensitivity analysis. | National (Iran) |
Munasinghe-Arachchige et al. (2020) [68] | PROMETHEE + sensitivity analysis | Single MCDM. Use of sensitivity analysis. | Unidentified |
Zamani et al. (2020) [69] | Fuzzy TOPSIS + Fuzzy PROMETHEE II | Integration of MCDM methods. Use of fuzzy logic. | Local (Jarreh, Iran) |
Kumar et al. (2020) [70] | Fuzzy TOPSIS | Single MCDM. Use of fuzzy logic. | Unidentified |
Radmehr et al. (2020) [71] | TOPSIS + NMOP | Integration of MCDM methods. | National (Iran) |
Das et al.(2020) [72] | MOLP | Single MCDM. | Local (Eastern India) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Michailidou et al. (2016) [73] | ELECTRE III + sensitivity analysis | Single MCDM. Use of sensitivity analysis. | National (Greece) |
Jafari-Moghadam et al. (2017) [74] | DEMATEL + ANP | Integration of MCDM methods. | National (Iran) |
Suganthi (2018) [75] | Fuzzy AHP + VIKOR + DEA | Integration of MCDM methods. Use of fuzzy logic. | National (unidentified country) |
Sitaridis and Kitsios (2020) [76] | PROMETHEE II + TOPSIS + Non-weighted method | Integration of MCDM methods. | National (Greece) |
Norese et al. (2020) [77] | ELECTRE II | Single MCDM. | National (South Africa) |
Prevolšek et al. (2020) [78] | DEX | Single MCDM. | National (Bosnia and Herzegovina) |
Das et al.(2020) [72] | MOLP | Single MCDM. | Local (Eastern India) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Stosic et al. (2016) [79] | AHP | Single MCDM. | Unidentified |
Wang et al. (2018) [80] | GPCA | Single MCDM. | National (China) |
Lee et al. (2018) [81] | ANP + DEMATEL + ZOGP | Integration of MCDM methods. | National (Taiwan) |
Yang et al. (2018) [82] | DEMATEL + ANP + VIKOR | Integration of MCDM methods. | National (China) |
Hung et al. (2019) [83] | DEA based on the slacks-based measure (SBM) + sensitivity analysis | Single MCDM. Use of sensitivity analysis. | National (Taiwan) |
Sansabas-Villalpando et al. (2019) [84] | Fuzzy CODAS + fuzzy AHP + sensitivity analysis | Integration of MCDM methods. Use of fuzzy logic. Use of sensitivity analysis. | Unidentified |
Lee et al. (2020) [85] | DEA + VIKOR | Combination of MCDM and non-MCDM methods. | National (Taiwan) |
Ovezikoglou et al. 2020) [86] | ELECTRE III + sensitivity analysis | Single MCDM. Use of sensitivity analysis. | Unidentified |
Gupta et al. (2020) [87] | BWM | Single MCDM. | National (India) |
Asees Awan and Ali (2019) [88] | Fuzzy VIKOR + GRA + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of fuzzy logic. Use of artificial intelligence. Use of sensitivity analysis. | Regional (China-Pakistan Economic Corridor) |
Yang and Wang (2020) [89] | Fuzzy AHP + fuzzy TOPSIS + sensitivity analysis | Integration of MCDM methods. Use of sensitivity analysis. | National (China) |
Turskis et al. (2020) [90] | AHP + fuzzy WASPAS + WSM | Integration of MCDM methods. Use of fuzzy logic. | Regional (Europe) |
Stoilova et al. (2020) [91] | ANP + Hierarchical Cluster Analysis + K-Means Cluster Analysis + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of sensitivity analysis. | Regional (Europe) |
Soares et al. (2020) [92] | Fuzzy SAW | Single MCDM. Use of fuzzy logic. | National (Brazil) |
Lai et al. (2020) [93] | Fuzzy Z- DNMA + Z-TOPSIS + Z-VIKOR + sensitivity analysis | Integration of MCDM methods. Use of sensitivity analysis. | Unidentified |
Author(s) | Method(s) | Methodological Approach | Context of Aplication |
---|---|---|---|
Labella et al. (2020) [94] | AHPSort II | Single MCDM. | Regional (Europe) |
Sant’Anna et al. (2020) [95] | CPP + sensitivity analysis | Single MCDM. Use of sensitivity analysis. | Regional (Some countries) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Khakzad and Reniers (2016) [96] | AHP + Bayesian Network (BN) | Combination of MCDM and non-MCDM methods. Use of artificial intelligence. | Unidentified |
Mangla et al. (2018) [97] | Fuzzy AHP + sensitivity analysis | Single MCDM. Use of sensitivity analysis. Use of fuzzy logic. | Unidentified |
Eikelboom et al. (2018) [98] | AHP + Delphi technique | Combination of MCDM and non-MCDM methods. | Unidentified |
Godlewska et al. (2019) [99] | TOPSIS | Single MCDM. | National (Polish) |
Bhatia et al.(2019) [100] | Fuzzy TOPSIS + fuzzy GRA + fuzzy VIKOR + sensitivity analysis | Integration of MCDM methods. Use of artificial intelligence. Use of fuzzy logic. Use of sensitivity analysis. | National (India) |
Schlickmann et al. (2020) [101] | AHP | Single MCDM. | Unidentified |
Cobos Mora and Solano Peláez (2020) [102] | AHP + GIS | Combination of MCDM and non-MCDM methods. | Local (Azuay, Ecuador) |
Bhalaji et al. (2020) [103] | Fuzzy DEMATEL + ANP + PROMETHEE | Integration of MCDM methods. Use of fuzzy logic. | National (India) |
Bose et al. (2020) [104] | ARAS + MABAC + COPRAS + MOOSRA | Integration of MCDM methods. | Unidentified |
Chauhan et al. (2020) [105] | DEMATEL | Single MCDM. | Local (Dehradun, Saharanpur, and Moradabad, India) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Fagioli et al. (2017) [106] | ELECTRE III | Single MCDM. | Regional (European Community countries) |
Emami et al. (2018) [107] | AHP + TOPSIS + SWOT analysis | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. | National (Iran) |
Jamil et al. (2018) [108] | Fuzzy AHP + GIS | Combination of MCDM and non-MCDM methods. Use of fuzzy logic. | Local (Bijnor, India) |
Aldababseh et al. (2018) [109] | AHP +GIS + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of sensitivity analysis. | Local (Emirate Abu Dabi, UAE) |
Ujoh et al. (2019) [110] | AHP +GIS | Combination of MCDM and non-MCDM methods. | Local (Benue, Nigeria) |
Deepa et al. (2019) [111] | MIW + AHP + CRITIC + COPRAS + SAW | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. | Local (Taiwan) |
Movarej et al. (2019) [112] | ANP | Single MCDM. | National (Iran) |
Banaeian and Pourhejazy (2020) [113] | Delphi technique + AHP + fuzzy TOPSIS | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. Use of fuzzy logic. | Local (Guilan, Iran) |
Sari et al. (2020) [114] | AHP + PROMETHEE | Integration of MCDM methods. | Local (Konya, Turkey) |
Puertas et al. (2020) [115] | TOPSIS + ELECTRE + CE | Integration of MCDM methods. | Regional (Europe) |
Zandi et al. (2020) [116] | Fuzzy AHP + fuzzy TOPSIS + FMEA + sensitivity analysis | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. Use of fuzzy logic. Use of sensitivity analysis. | Unidentified |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Hu and Tzeng (2017) [117] | Fuzzy DEMATEL + fuzzy ANP + fuzzy VIKOR | Integration of MCDM methods. Use of fuzzy logic. | Regional (OECD) |
Peiró-Palomino and Picazo-Tadeo (2018) [118] | DEA + Benefit-of-the-Doubt (BoD) principle + MOLP | Combination of MCDM and non-MCDM methods. | Regional (OECD Countries + Brazil, Russia and South Africa) |
Liu et al. (2019) [119] | DEMATEL+ ANP + VIKOR | Integration of MCDM methods. | National (China) |
Yazdani et al. (2020) [120] | DEMATEL + BWM + EDAS | Integration of MCDM methods. | National (Spain) |
Kolviret al.(2020) [121] | HANN + ANFIS + TOPSIS + SAW | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. Use of artificial intelligence. | Local (Central Iran) |
Trubnikov et al. (2020) [122] | AHP + Random Forest (RF) algorithm | Integration of MCDM methods. Use of artificial intelligence. | National (Russia) |
Halder et al. (2020) [123] | AHP + GIS | Combination of MCDM and non-MCDM methods. | Local (Rajpur–Sonarpur, India) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Kurilovas (2018) [124] | ETAS-M + UTAUT | Combination of MCDM and non-MCDM methods. | Unidentified |
Weng et al. (2019) [125] | DEMATEL + ANP + IPA | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. | National (China) |
Aldowah et al. (2019) [126] | DEMATEL | Single MCDM. | Unidentified |
Zia et al. (2019) [127] | AHP | Single MCDM. | National (Malaysia) |
Coco et al. (2020) [128] | DEA + SMAA | Combination of MCDM and non-MCDM methods. | Regional (OECD Countries) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Guerrero-Liquet et al. (2016) [129] | Delphi technique + SWOT analysis + AHP | Combination of MCDM and non-MCDM methods. | National (Dominican Republic) |
Wang et al. (2016) [130] | Fuzzy AHP | Single MCDM. Use of fuzzy logic. | Local (Jiangsum, China) |
Debbarma et al. (2017) [131] | AHP + PROMETHEE II + VIKOR | Integration of MCDM methods. | Unidentified |
Ocon et al. (2018) [132] | Fuzzy AHP + GRA | Combination of MCDM and non-MCDM methods. Use of fuzzy logic. Use of artificial intelligence. | Local (Marinduque, Philippines) |
Büyüközkan et al. (2018) [133] | Fuzzy AHP + fuzzy COPRAS | Integration of MCDM methods. Use of fuzzy logic. | National (Turkey) |
Ren and Toniolo (2018) [134] | DEMATEL + EDAS + ISWM + sensitivity analysis | Integration of MCDM methods. Use of sensitivity analysis. | Unidentified |
Mirjat et al. (2018) [135] | AHP + sensitivity analysis | Single MCDM. Use of sensitivity analysis. | National (Pakistan) |
Acar et al. (2018) [136] | Fuzzy AHP + sensitivity analysis | Single MCDM. Use of fuzzy logic. Use of sensitivity analysis. | Unidentified |
Simsek et al. (2018) [137] | MAUT | Single MCDM method. | Unidentified |
Acar et al. (2019) [138] | Fuzzy AHP + fuzzy TOPSIS + sensitivity analysis | Integration of MCDM methods. Use of fuzzy logic. Use of sensitivity analysis. | Unidentified |
Kumar et al. (2019) [139] | AHP | Single MCDM. | Local (Hilly, Nepal) |
Ingole et al. (2019) [140] | AHP | Single MCDM. | National (India) |
Aryanpur et al. (2019) [141] | AHP + TOPSIS + Summed Rank Analysis | Integration of MCDM methods. | National (Iran) |
Taylan et al. (2020) [142] | Extended fuzzy AHP + fuzzy VIKOR + fuzzy TOPSIS + sensitivity analysis | Integration of MCDM methods. | National (Saudi Arabia) |
Feng (2020) [143] | Fuzzy AHP + fuzzy AD + sensitivity analyses | Combination of MCDM and non-MCDM methods. Use of fuzzy logic. Use of sensitivity analysis. | National (China) |
Abdel-Basset et al. (2020) [144] | AHP + COPRAS + EDAS | Integration of MCDM methods. | Unidentified |
Jadoon et al. (2020) [145] | AHP + TOPSIS + sensitivity analysis | Integration of MCDM methods. Use of sensitivity analysis. | National (Pakistan) |
Rasheed et al. (2020) [146] | SMART + MAUT + sensitivity analysis | Integration of MCDM methods. Use of sensitivity analysis. | Regional (South Asian) |
Li et al. (2020) [147] | DEMATEL + GRA | Combination of MCDM and non-MCDM methods. Use of artificial intelligence. | Unidentified |
Phillis et al. (2020) [148] | PROMETHEE + sensitivity analysis | Single MCDM. Use of sensitivity analysis. | Regional (Europe) |
Solangi et al. (2020) [149] | Fuzzy AHP + fuzzy WASPAS + Delphi technique | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. Use of fuzzy logic. | National (Turkey) |
Kurttila et al. (2020) [150] | MA + MAV | Integration of MCDM methods. | National (Finland) |
Singh et al. (2020) [151] | AHP + PROMETHEE + ELECTRE + sensitivity analysis | Integration of MCDM methods. Use of sensitivity analysis. | National (Nepal) |
Neofytou et al. (2020) [152] | PROMETHEE II + AHP | Integration of MCDM methods. | National (14 countries of different continents, profiles, and progress concerning sustainable energy transition. |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Said et al. (2017) [153] | COPRAS | Single MCDM. | Local (Sarawak, Malaysia) |
Zinatizadeh et al. (2017) [154] | ELECTRE + TOPSIS + SAW + IFPPSI | Integration of MCDM methods. | Local (Kermanshah, Iran) |
Lehner et al. (2018) [155] | AHP + GIS + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of sensitivity analysis. | Local (generic) |
Gökçekuş et al. (2019) [156] | Fuzzy PROMETHEE | Single MCDM. Use of fuzzy logic. | Unidentified |
Ahmed et al. (2019) [157] | AHP + TOPSIS + OSM + sensitivity analysis | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. Use of sensitivity analysis. | Unidentified |
Phonphoton and Pharino (2019) [158] | AHP | Single MCDM. | Local (Bangkok, Thailand) |
Nesticò et al. (2020) [159] | ANP + ZOGP + fuzzy Delphi technique | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. Use of fuzzy logic. | Local (Campania, Italy) |
Mansour et al. (2020) [160] | AHP + PLS-SEM + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of sensitivity analysis. | Unidentified |
Chen and Zhang (2020) [161] | IOWA | Single MCDM. | Local (Liaoning, China) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Kumar et al. (2016) [162] | Fuzzy ELECTRE-III-H | Single MCDM. Use of fuzzy logic. | Local (Tarragona, Spain) |
Woltersdorf et al. (2018) [163] | AHP | Single MCDM. | Local (Outapi, Namibia) |
Salisbury et al. (2018) [164] | MAUT | Single MCDM. | Local (eThekwini, South Africa) |
Ezbakhe et al. (2018) [165] | MAUT and ELECTRE III | Two single MCDM methods are used separately. | National (Kenya) |
Nie et al. (2018) [166] | BWM + DEMATEL + fuzzy TOPSIS + sensitivity analysis | Integration of MCDM methods. Use of fuzzy logic. Use of sensitivity analysis. | Local (industrial regions in China) |
Vidal et al. (2019) [167] | ELECTRE III + scenario analysis + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of sensitivity analysis. | Unidentified |
Oliveira Campos et al. (2020) [168] | TOPSIS | Single MCDM. | Local (Itaperuna, Brazil) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Song et al. (2016) [169] | TOPSIS + RUS + Delphi technique + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of sensitivity analysis. | National (South Korea) |
Panhalkar and Jarag (2017) [170] | AHP + GIS | Combination of MCDM and non-MCDM methods. | Local (Maharashtra, India) |
Maanan et al. (2017) [171] | GIS + AHP | Combination of MCDM and non-MCDM methods. | National (Morocco) |
Brudermann and Sangkakool (2017) [172] | AHP + SWOT analysis | Combination of MCDM and non-MCDM methods. | Regional (Europe) |
Zahmatkesh and Karamouz (2017) [173] | AHP + Monte Carlo (MC) simulation | Combination of MCDM and non-MCDM methods. | Local (New York, USA) |
Seenirajan et al. (2018) [174] | AHP+ GIS | Combination of MCDM and non-MCDM methods. | Local (Ambasamudram, India) |
Mallick et al. (2018) [175] | Fuzzy AHP + WLC + GIS + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of fuzzy logic. Use of sensitivity analysis. | Local (Asee, Saudi Arabia) |
Mistage and Bilotta (2018) [176] | AHP + sensitivity analysis | Single MCDM. Use of sensitivity analysis. | Unidentified |
Alhumaid et al. (2018) [177] | AHP + PROMETHEE II + Sensitivity analysis | Integration of MCDM methods. Use of sensitivity analysis. | Local (Buraydah, Saudi Arabia) |
Yazdani et al. (2019) [178] | SWARA + FMEA + EDAS + Sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of sensitivity analysis. | Local (Alboraya, Spain) |
Florindo et al. (2020) [179] | Fuzzy TOPSIS + SWOT analysis | Combination of MCDM and non-MCDM methods. Use of fuzzy logic. | National (Brazil) |
Stričević et al. (2020) [180] | AHP + TOPSIS | Integration of MCDM methods. | National (Serbia) |
Dutta et al. (2020) [181] | AHP | Single MCDM. | Local (West Bengal, India) |
Gandini et al. (2020) [182] | AHP + VF + GIS | Integration of MCDM methods. Combination of MCDM and non-MCDM methods. | Local (Northern Spain) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Wijenayake et al. (2016) [183] | AHP + GIS | Combination of MCDM and non-MCDM methods. | National (Sri Lanka) |
Nayak et al. (2018) [184] | AHP + GIS | Combination of MCDM and non-MCDM methods. | Local (Central Himalayas, India) |
Henríquez-Antipa and Cárcamo (2019) [185] | SWOT analysis + AHP | Combination of MCDM and non-MCDM methods. | National (Chile) |
Chen et al. (2019) [186] | Delphi technique + AHP | Combination of MCDM and non-MCDM methods. | National (Taiwan) |
Luna et al. (2019) [187] | AHP + GA | Integration of MCDM Methods. Use of artificial intelligence. | National (Spain) |
Dorfan et al. (2020) [188] | Fuzzy AHP + GPM | Integration of MCDM methods. Use of fuzzy logic. | Local (Dayyer Port, Iran) |
Author(s) | Method(s) | Methodological Approach | Context of Application |
---|---|---|---|
Ahmadi Sani et al. (2016) [189] | GIS + AHP | Combination of MCDM and non-MCDM methods. | Local (Zagros, Iran) |
Diaz-Balteiro et al. (2016) [190] | GP | Single MCDM. | Local (Northwestern Spain) |
Çalişkan (2017) [191] | GIS + S-TOPSIS | Combination of MCDM and non-MCDM methods. | Local (Trabzon, Turkey) |
Tecle and Verdin (2018) [192] | AHP + sensitivity analysis | Single MCDM. Use of sensitivity analysis. | Local (Durango, Mexico) |
Gigović et al. (2018) [193] | GIS + AHP | Combination of MCDM and non-MCDM methods. | Local (Nevesinje, Bósnnia) |
Korkmaz and Gurer (2018) [194] | TOPSIS | Single MCDM. | Local (Bucak and Sutculer, Turkey) |
Jeong (2018) [195] | PROMETHEE + PGIS + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of sensitivity analysis. | National (Spain) |
Kacem et al. (2019) [196] | GIS + fuzzy AHP + sensitivity analysis | Combination of MCDM and non-MCDM methods. Use of fuzzy logic. Use of sensitivity analysis. | National (Morocco) |
Wu et al. (2020) [197] | AHP | Single MCDM. | Local (Guandong and Tibet, China) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, M.; Almeida, M.F.; Calili, R. Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda. Sustainability 2021, 13, 4129. https://doi.org/10.3390/su13084129
Sousa M, Almeida MF, Calili R. Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda. Sustainability. 2021; 13(8):4129. https://doi.org/10.3390/su13084129
Chicago/Turabian StyleSousa, Manuel, Maria Fatima Almeida, and Rodrigo Calili. 2021. "Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda" Sustainability 13, no. 8: 4129. https://doi.org/10.3390/su13084129