Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone
Abstract
:1. Introduction
2. The Sierra Leone Case Study: Background and Survey
3. Conceptual Framework and Methodological Approach
3.1. Economic Viability
3.2. Efficiency Analysis: A DEA-Meta-Frontier
- Step 1: Estimation of Group Frontiers with Technology Discrimination
- Step 2: Estimation of Common Meta-Frontier
3.3. Regression Analysis: Structural Equation (SEM) Model
4. Findings and Discussion
4.1. Results of Meta-Frontier Efficiency Analysis
4.2. Results of Regression Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, P.; Deng, X.; Jiang, S. Global warming, grain production and its efficiency: Case study of major grain production region. Ecol. Indic. 2019, 105, 563–570. [Google Scholar] [CrossRef]
- Amjath-Babu, T.S.; Krupnik, T.J.; Aravindakshan, S.; Arshad, M.; Kaechele, H. Climate change and indicators of probable shifts in the consumption portfolios of dryland farmers in Sub-Saharan Africa: Implications for policy. Ecol. Indic. 2016, 67, 830–838. [Google Scholar] [CrossRef]
- Amjath-Babu, T.S.; Krupnik, T.J.; Kaechele, H.; Aravindakshan, S.; Sietz, D. Transitioning to groundwater irrigated intensified agriculture in Sub-Saharan Africa: An indicator based assessment. Agric. Water Manag. 2016, 168, 125–135. [Google Scholar] [CrossRef]
- Collier, P.; Dercon, S. African Agriculture in 50Years: Smallholders in a Rapidly Changing World? World Dev. 2014, 63, 92–101. [Google Scholar] [CrossRef]
- Chen, Z.; Huffman, W.E.; Rozelle, S. Farm technology and technical efficiency: Evidence from four regions in China. China Econ. Rev. 2009, 20, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Rue, C. The Role of Smallholder Farms in a Changing World. In The Role of Smallholder Farms in Food and Nutrition Security; Gomez y Paloma, S., Riesgo, L., Louhichi, K., Eds.; Springer International Publishing: Cham, Germany, 2020; pp. 13–28. [Google Scholar]
- Schultz, T.W. Changing Relevance of Agricultural Economics. Am. J. Agric. Econ. 1964, 46, 1004–1014. [Google Scholar] [CrossRef]
- Abler, D.G.; Sukhatme, V.A. The “efficient but poor” hypothesis. Rev. Agric. Econ. 2006, 28, 338–343. [Google Scholar] [CrossRef]
- Frelat, R.; Lopez-Ridaura, S.; Giller, K.E.; Herrero, M.; Douxchamps, S.; Djurfeldt, A.A.; Erenstein, O.; Henderson, B.; Kassie, M.; Paul, B.K. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc. Natl. Acad. Sci. USA 2016, 113, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture, 2014: Innovation in Family Farming; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- FAO. Guidelines for Agrarian Systems Diagnosis; FAO: Rome, Italy, 1999. [Google Scholar]
- O’Donnell, C.J.; Rao, D.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Li, Q.; Amjath-Babu, T.; Zander, P. Role of capitals and capabilities in ensuring economic resilience of land conservation efforts: A case study of the grain for green project in China’s Loess Hills. Ecol. Indic. 2016, 71, 636–644. [Google Scholar] [CrossRef]
- Saravia Matus, S.L.; Gomez y Paloma, S. Farm viability of (semi) subsistence smallholders in Sierra Leone. Afr. J. Agric. Resour. Econ. 2014, 9, 165–182. [Google Scholar]
- Mutabazi, K.D.; Amjath-Babu, T.; Sieber, S. Influence of livelihood resources on adaptive strategies to enhance climatic resilience of farm households in Morogoro, Tanzania: An indicator-based analysis. Reg. Environ. Chang. 2015, 15, 1259–1268. [Google Scholar] [CrossRef]
- Sesay, A.; Tejan-Kella, M.; Thompson, A. Agricultural Sector, Background Review for the PRSP; Government of Sierra Leone: Freetown, Sierra Leone, 2004. [Google Scholar]
- IFPRI. Rebuilding after Emergency: Revamping Agricultural Research in Sierra Leone after Civil War; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2009. [Google Scholar]
- GEF. Integrating Adaptation to Climate Change into Agricultural Production and Food Security in Sierra Leone. Available online: https://www.thegef.org/project/integrating-adaptation-climate-change-agricultural-production-and-food-security-sierra-leone (accessed on 22 January 2020).
- Wadsworth, R.; Jalloh, A.; Lebbie, A. Changes in Rainfall in Sierra Leone: 1981–2018. Climate 2019, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Schroth, G.; Läderach, P.; Martinez-Valle, A.I.; Bunn, C.; Jassogne, L. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Sci. Total Environ. 2016, 556, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govereh, J.; Jayne, T.S. Cash cropping and food crop productivity: Synergies or trade-offs? Agric. Econ. 2003, 28, 39–50. [Google Scholar] [CrossRef]
- Gomez y Paloma, S.; Acs, S.; Saravia Matus, S.; Baudouin, M.; Hites, G.; Sammeth, F. Rural Poverty Reduction and Food Security: The Case of Smallholders in Sierra Leone; Institute for Prospective and Technological Studies, Joint Research Centre: Seville, Spain, 2012. [Google Scholar]
- Saravia-Matus, S.; Gomez y Paloma, S. Implementation challenges to the National Sustainable Agriculture Development Plan (NSADP) for (semi) subsistence farmers in Sierra Leone. Cah. Agric. 2015, 24, 240–245. [Google Scholar]
- Unruh, J.D.; Turray, H. Land Tenure, Food Security and Investment in Postwar Sierra Leone; FAO LSP WP: Rome, Italy, 2006; Volume 22. [Google Scholar]
- NSADP. National Sustainable Agriculture Development Plan 2010–2030; NSADP: Munich, Germany, 2009. [Google Scholar]
- Ehui, S.K.; Spencer, D.S. Measuring the sustainability and economic viability of tropical farming systems: A model from sub-Saharan Africa. Agric. Econ. 1993, 9, 279–296. [Google Scholar]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Seiford, L.M.; Thrall, R.M. Recent developments in DEA: The mathematical programming approach to frontier analysis. J. Econom. 1990, 46, 7–38. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Logan, J.; Lovell, C.K. Measuring efficiency in production: With an application to electric utilities. In Managerial Issues in Productivity Analysis; Springer: Berlin/Heidelberg, Germany, 1985; pp. 185–214. [Google Scholar]
- Olesen, O.; Petersen, N. Incorporating quality into data envelopment analysis: A stochastic dominance approach. Int. J. Prod. Econ. 1995, 39, 117–135. [Google Scholar] [CrossRef]
- Wossink, A.; Denaux, Z.S. Environmental and cost efficiency of pesticide use in transgenic and conventional cotton production. Agric. Syst. 2006, 90, 312–328. [Google Scholar] [CrossRef]
- Manjunatha, A.; Speelman, S.; Aravindakshan, S.; Ts, A.B.; Mal, P. Impact of informal groundwater markets on efficiency of irrigated farms in India: A bootstrap data envelopment analysis approach. Irrig. Sci 2016, 34, 41–52. [Google Scholar]
- Cook, W.D.; Tone, K.; Zhu, J. Data envelopment analysis: Prior to choosing a model. Omega 2014, 44, 1–4. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.P.; O’donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Product. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- Aravindakshan, S.; Rossi, F.; Amjath-Babu, T.S.; Veettil, P.C.; Krupnik, T.J. Application of a bias-corrected meta-frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia. J. Product. Anal. 2018, 49, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Geta, E.; Bogale, A.; Kassa, B.; Elias, E. Productivity and Efficiency Analysis of Smallholder Maize Producers in Southern Ethiopia. J. Hum. Ecol. 2013, 41, 67–75. [Google Scholar] [CrossRef]
- Sherman, H.D.; Zhu, J. Service Productivity Management: Improving Service Performance using Data Envelopment Analysis (DEA); Springer: New York, NY, USA, 2006. [Google Scholar]
- Rodríguez-Díaz, J.; Camacho-Poyato, E.; López-Luque, R. Application of data envelopment analysis to studies of irrigation efficiency in Andalusia. J. Irrig. Drain. Eng. 2004, 130, 175–183. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Springer: New York, NY, USA, 2005. [Google Scholar]
- Galiano-Garrigós, A.; González-Avilés, Á.; Rizo-Maestre, C.; Andújar-Montoya, M.D. Energy efficiency and economic viability as decision factors in the rehabilitation of historic buildings. Sustainability 2019, 11, 4946. [Google Scholar] [CrossRef] [Green Version]
- Krikser, T.; Zasada, I.; Piorr, A. Socio-economic viability of urban agriculture—A comparative analysis of success factors in Germany. Sustainability 2019, 11, 1999. [Google Scholar] [CrossRef] [Green Version]
- Coppola, A.; Scardera, A.; Amato, M.; Verneau, F. Income levels and farm economic viability in Italian farms: An analysis of FADN data. Sustainability 2020, 12, 4898. [Google Scholar] [CrossRef]
- Bollen, K.A.; Noble, M.D. Structural equation models and the quantification of behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 15639–15646. [Google Scholar] [CrossRef] [Green Version]
- Department for International Development (DFID). Sustainable Livelihoods Guidance Sheets; DFID: London, UK, 2001; p. 150. [Google Scholar]
- Bogetoft, P.; Otto, L. Benchmarking with DEA, SFA, and R; Springer: New York, NY, USA, 2010. [Google Scholar]
- Simar, L.; Zelenyuk, V. On testing equality of distributions of technical efficiency scores. Econom. Rev. 2006, 25, 497–522. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Maasoumi, E.; Racine, J.S. A nonparametric test for equality of distributions with mixed categorical and continuous data. J. Econom. 2009, 148, 186–200. [Google Scholar] [CrossRef]
- Ofori-Bah, A.; Asafu-Adjaye, J. Scope economies and technical efficiency of cocoa agroforesty systems in Ghana. Ecol. Econ. 2011, 70, 1508–1518. [Google Scholar] [CrossRef]
- Mutoko, M.C.; Hein, L.; Shisanya, C.A. Farm diversity, resource use efficiency and sustainable land management in the western highlands of Kenya. J. Rural Stud. 2014, 36, 108–120. [Google Scholar] [CrossRef]
- Aravindakshan, S.; Krupnik, T.J.; Groot, J.C.J.; Speelman, E.N.; Amjath-Babu, T.S.; Tittonell, P. Multi-level socioecological drivers of agrarian change: Longitudinal evidence from mixed rice-livestock-aquaculture farming systems of Bangladesh. Agric. Syst. 2020, 177, 102695. [Google Scholar] [CrossRef]
- Aravindakshan, S.; Krupnik, T.J.; Amjath-Babu, T.S.; Speelman, S.; Tur-Cardona, J.; Tittonell, P.; Groot, J.C.J. Quantifying farmers’ preferences for cropping systems intensification: A choice experiment approach applied in coastal Bangladesh’s risk prone farming systems. Agric. Syst. 2021, 189, 103069. [Google Scholar] [CrossRef]
Variables | Agricultural Production Systems | |||
---|---|---|---|---|
Farmers in the Eastern Region [N = 186] | Farmers in the Northern Region [N = 389] | |||
Mean | Std. Dev | Mean | Std. Dev | |
Input Variables in Technical Efficiency Model (Acres, SLL) | ||||
Area of farm | 15.66 | 11.04 | 7.24 | 5.75 |
Cost of hired labor for food crops (hlf), | 1,813,334.00 | 1,828,343.00 | 1,977,900.00 | 1,901,616.00 |
Cost of hired labor for tree crops (hlt), | 2,721,325.00 | 10,877,240.00 | 735,167.60 | 1,329,612.00 |
Cost of family labor for food crops (flf), | 1,757,734.00 | 3,266,463.00 | 736,163.30 | 1,113,296.00 |
Cost of family labor for tree crops (flt), | 2,127,242.00 | 6,251,524.00 | 421,542.20 | 718,998.80 |
Cost of seed for food crops (sf) | 3,701,234.00 | 5,379,813.00 | 2,203,627.00 | 3,452,357.00 |
Cost of seed/sapling for tree crops (st) | 7,345,557.00 | 35,799,740.00 | 56,832.96 | 498,399.30 |
Output variable in technical efficiency model (SLL) | ||||
Annual farm income | 8,040,856.00 | 10,643,800.00 | 1,697,363.00 | 51,356,930.00 |
Numerical Variables | Eastern Region [N = 186] | Northern Region [N = 389] | ||||
---|---|---|---|---|---|---|
Mean | Std. Dev | Mean | Std. Dev | |||
Human capital | Age | Age is related to farming experience | 50.28 | 14.89 | 47.1 | 13.99 |
Human capital | Education | Education is expected to contribute to decision making capacity | 2.8 | 4.4 | 2.7 | 6.6 |
Physical capital | Postharvest storage facility | Percentage of output stored | 20.36 | 16.5 | 21.34 | 17.7 |
Livelihood strategy | Fallow | Number of years under fallow | 10.57 | 6.4 | 6.24 | 3.3 |
Livelihood strategy | Inverse Simpson Index | Crop concentration/Diversification | 4.18 | 1.18 | 2.9 | 1.1 |
Categorical Variables | Eastern Region [N = 186] | Northern Region [N = 389] | ||||
0 | 1 | 0 | 1 | |||
Social capital | Gender | Household head is male or female | 0.17 | 0.38 | 0.27 | 0.44 |
Livelihood strategy | Part Time Farmer | 1 if Farm-household Head is a part time farmer; 0 if Full Time Farmer | 0.027 | 0.16 | 0.12 | 0.32 |
Livelihood strategy | Livestock | Integration of livestock to cash or food crop farming | 1.32 | 2.25 | 0 | 0 |
Farms in the East [N = 186] | Farms in the North [N = 389] | |
---|---|---|
Meta-frontier efficiency | 0.58 *** (0.29) | 0.34 (0.27) |
Group-frontier efficiency | 0.74 *** (0.22) | 0.49 (0.24) |
Meta-technology ratio a | 0.76 *** (0.24) | 0.69 (0.31) |
Efficiency Index Range (%) | Farms in the East [N = 186] | Farms in the North [N = 389] | ||
---|---|---|---|---|
Frequency | (%) | Frequency | (%) | |
0.0–10.0 | 0 | 0.00 | 20 | 5.14 |
11.0–20.0 | 11 | 5.91 | 154 | 39.59 |
21.0–30.0 | 29 | 15.59 | 58 | 14.91 |
31.0–40.0 | 30 | 16.13 | 38 | 9.77 |
41.0–50.0 | 22 | 11.83 | 38 | 9.77 |
51.0–60.0 | 17 | 9.14 | 21 | 5.40 |
61.0–70.0 | 15 | 8.06 | 13 | 3.34 |
71.0–80.0 | 11 | 5.91 | 4 | 1.03 |
91.0–100.0 | 11 | 5.91 | 21 | 5.40 |
100.0 | 40 | 21.51 | 22 | 5.66 |
Meta-Frontier Technical Efficiency (MFTE) | ||||
---|---|---|---|---|
Est. | SE | Z-value | p(>|z|) | |
Inverse Simpson index | −0.017 ** | 0.01 | −2.167 | 0.030 |
Livestock | −0.005 | 0.00 | −1.080 | 0.280 |
Age | −0.001 | 0.00 | −0.922 | 0.357 |
Education | 0 | 0.00 | 0.246 | 0.805 |
Sex/Gender | 0.043 | 0.03 | 1.681 | 0.093 |
Part-time farmer | 0.095 ** | 0.05 | 2.107 | 0.035 |
Fallow practices | −0.007 *** | 0.00 | −4.435 | 0.000 |
Technical Support | −0.001 | 0.04 | −0.038 | 0.970 |
Postharvest storage facility | −0.001 * | 0.00 | −1.908 | 0.056 |
Reproductive Threshold (RT) | ||||
Inverse Simpson index | 0.031 *** | 0.01 | 2.921 | 0.004 |
Livestock | −0.009 | 0.01 | −1.261 | 0.208 |
Age | 0.001 | 0.00 | 0.711 | 0.477 |
Education | −0.001 | 0.00 | −0.417 | 0.677 |
Sex/Gender | 0.001 | 0.03 | −0.004 | 0.997 |
Part-Time Farmer | −0.119 ** | 0.06 | −2.003 | 0.045 |
Fallow Practices | 0.005 *** | 0.00 | 3.268 | 0.001 |
Postharvest storage facility | 0.001 | 0.00 | 0.038 | 0.971 |
MFTE (Manifest Variable) | 0.161 *** | 0.055 | 2.927 | 0.003 |
Model intercepts | ||||
MFTE | 0.246 *** | 0.050 | 4.948 | 0.000 |
RT | 0.740 *** | 0.070 | 10.551 | 0.000 |
Variances | ||||
MFTE | 0.055 *** | 0.006 | 8.459 | 0.000 |
RT | 0.091 *** | 0.009 | 9.729 | 0.000 |
Model Fit-Measures | ||||
Chisq | 3.376 | |||
Df | 1.000 | |||
p-value | 0.046 | |||
Gfi | 0.999 | |||
Cfi | 0.953 | |||
Tli | 0.104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravia-Matus, S.; Amjath-Babu, T.S.; Aravindakshan, S.; Sieber, S.; Saravia, J.A.; Gomez y Paloma, S. Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone. Sustainability 2021, 13, 4235. https://doi.org/10.3390/su13084235
Saravia-Matus S, Amjath-Babu TS, Aravindakshan S, Sieber S, Saravia JA, Gomez y Paloma S. Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone. Sustainability. 2021; 13(8):4235. https://doi.org/10.3390/su13084235
Chicago/Turabian StyleSaravia-Matus, Silvia, T. S. Amjath-Babu, Sreejith Aravindakshan, Stefan Sieber, Jimmy A. Saravia, and Sergio Gomez y Paloma. 2021. "Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone" Sustainability 13, no. 8: 4235. https://doi.org/10.3390/su13084235
APA StyleSaravia-Matus, S., Amjath-Babu, T. S., Aravindakshan, S., Sieber, S., Saravia, J. A., & Gomez y Paloma, S. (2021). Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone. Sustainability, 13(8), 4235. https://doi.org/10.3390/su13084235