Water Conflicts: From Ancient to Modern Times and in the Future
Abstract
:1. Prolegomena
“If roads lead to civilization, then water leads to peace.”Shimon Peres (1923–2016)
“Anyone who can solve the problems of water will be worthy of two Nobel Prizes–one for peace and one for science.”John F. Kennedy (1917–1963) National Water Commission Hearings (1966).
1.1. Water Conflict Chronology
1.2. Water Governance
2. Water Conflicts in Prehistoric Times (ca 3200–1150 BC)
Water Conflicts in the Eastern Mediterranean during the Bronze Age
3. Water Conflicts in Historical Time (ca 750 BC–330 AD)
3.1. Water Conflicts in Archaic, Classical, and Hellenistic Periods
“Ές δὲ τὴν Ἀθηναίων πόλιν ἐξαπιναίως ἐσέπεσε, καὶ τὸ πρῶτον ἐν τῷ Πειραιεῖ ἥψατο τῶν ἀνθρώπων, ὥστε καὶ ἐλέχθη ὑπ᾽ αὐτῶν ὡς οἱ Πελοποννήσιοι φάρμακα ἐσβεβλήκοιεν ἐς τὰ φρέατα· κρῆναι γὰρ οὔπω ἦσαν αὐτόθι. ὕστερον δὲ καὶ ἐς τὴν ἄνω πόλιν ἀφίκετο, καὶ ἔθνῃσκον πολλῷ μᾶλλον ἤδη.”It is translated as [17]:
“He suddenly fell in Athens. He first appeared in Piraeus, where it was reported that the Peloponnesians had poisoned the wells (Piraeus did not yet have fountains) and then spread to the upper city, where too many began to die”[Thucydides, 2. 48 2].
“ἐγένετο μὲν οὖν ἔρις τοῖς ἀνθρώποις μὴ λοιμὸν ὠνομάσθαι ἐν τῷ ἔπει ὑπὸ τῶν παλαιῶν, ἀλλὰ λιμόν, ἐνίκησε δὲ ἐπὶ τοῦ παρόντος εἰκότως λοιμὸν εἰρῆσθαι· οἱ γὰρ ἄνθρωποι πρὸς ἃ ἔπασχον τὴν μνήμην ἐποιοῦντο.”It is translated as [17]:
“Many quarrels took place then, because others said that the oracle did not speak of an infection [disease] but of famine [hunger], but the prevailing opinion was that the right one was an infection because people interpreted the oracle according to their diseases.”[Thucydides, 2. 54.3]
“When the Sakiyas and Koliyas waged a terrible war;About sharing the river Rohini,Blood, gushing like a spring, flooded the waters,The Buddha, coming to know of it,Did what was needful;To end the long-drawn discord and;To bring both sides together.All shall be well if good men try.”
3.2. Water Conflicts in Roman Times
4. Water Conflicts in Medieval Times (ca 330–1400 AD)
5. Water Conflicts in Early and Mid-Modern Times (ca 1400–1900 AD)
6. Water Conflicts in Contemporary Times (1900 AD–Present)
7. Potential and Emerging Trends
7.1. Domestic and Transboundary Water Conflicts
7.2. Public Health Issues
7.3. Use of Non-Conventional Water Resources as a Means to Mitigate Water Competitions and Conflicts
7.4. Water Conflicts and Climate Variability
7.5. New Approaches of Negotiation and Governance
8. Epilogue
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kornfeld, I.E. Mesopotamia: A History of Water and Law. In The Evolution of the Law and Politics of Water; Springer: Berlin/Heidelberg, Germany, 2009; pp. 21–36. [Google Scholar]
- Richard, S. Archaeological Sources for the History of Palestine: The Early Bronze Age: The Rise and Collapse of Urbanism. Biblic. Archaeol. 1987, 50, 22–43. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water De-velopment Report. NPJ Clean Water 2019, 15. Available online: https://www.nature.com/articles/s41545-019-0039-9 (accessed on 21 January 2021).
- Dalezios, N.; Angelakis, A.N.; Eslamian, S. Water Scarcity Manage-ment: Part 1: Methodological framework. Int. J. Hydr. Sci. Technol. 2018, 17, 1–40. [Google Scholar]
- Seckler, D.; Barker, R.; Amarasinghe, U. Water Scarcity in the Twenty-first Century. Int. J. Water Resour. Dev. 1999, 15, 29–42. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef]
- WHO Lives. Newsletter. 2020. Available online: http://wholives.org/our-mission/mission/?gclid=CjwKCAjw3-bzBRBhEiwAgnnLCr51foeneb56jlhCX12fFqn0KtIAQNotg9HgoTderngL22I46bp1bxoCIVIQAvD_BwE) (accessed on 30 December 2020).
- Turton, A.R.; Hattingh, H.J.; Maree, G.A.; Roux, D.J.; Claassen, M.; Strydon, W.F. Governance as Trialogue: Government-Society-Science in Transition; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Burstein, S. The Babyloniaca of Berossus. In Sources and Monographs, Sources from the Ancient Near East; Undena Publication: Malibu, CA, USA, 1978; Volume 1, Fascicle 5. [Google Scholar]
- Brockley, M. The Environment Weapon: Water in Ancient Mesopotamia. ICE Case Studies. Available online: http://mandalaprojects.com/ice/ice-cases/sumerianwater.htm (accessed on 30 December 2020).
- Krasilnikoff, J.; Angelakis, A.N. Water management and its judicial contexts in ancient Greece: A review from the earliest times to the Roman period. Hydrol. Res. 2019, 21, 245–258. [Google Scholar] [CrossRef]
- Garnsey, P. Famine and Food Supply in the Graeco-Roman World. Responses to Risk and Crisis; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Krasilnikoff, J.A. Irrigation as innovation in ancient Greek agriculture. World Archaeol. 2010, 42, 108–121. [Google Scholar] [CrossRef]
- Shep, L.J.; Slaughter, R.J.; Vale, A. The death of Alexander the Great due to poisoning? What it Veratrum album. Chem. Toxicol. 2014, 52, 72–77. [Google Scholar]
- Langmuir, A.D.; Worthen, T.D.; Solomon, J.; Ray, C.G.; Petersen, E. The Thucydides syndrome. A new hypothesis for the cause of the Plague of Athens. N. Engl. J. Med. 1985, 313, 1027–1030. [Google Scholar] [CrossRef]
- Yapitzakis, C. Αθηναικός λοιμός και Κορονοιός, Το Βήμα 6/04/2020, Athens, Greece. Available online: https://www.tovima.gr/printed_post/athinaikos-loimos-kai-koronoioscr/ (accessed on 25 March 2021). (In Greek).
- Stuart-Jones, H.; Powell, J.E. Thucydides Historiae, 2nd ed.; Clarendon Press: Oxford, UK, 1963; Volume II. [Google Scholar]
- Guhan, S. The Cauvery River Dispute: Towards Conciliation; Madras, Frontline Publication, Kasturi and Sons: The Hindu Publisher: Chennai, Tamil Nadu, India, 1993; p. 47. [Google Scholar]
- Connolly, P. El Contratista de Don Porfirio. La construcción del Gran Canal de Desagüe; 3 vols; Universidad Autónoma Metropolitana Azcapotzalco, División de Ciencias Sociales y Humanidades Mexico City: Mexico City, Mexico, 1991. (In Spanish) [Google Scholar]
- Arnaud-Lindet, M.P. Histoire et Politique à Rome; Breal: Paris, France, 2001; p. 259. [Google Scholar]
- Bennett, C.E. Frontinus: Stratagems. Aqueducts of Rome. Loeb Classical Library. 1925. Available online: https://it1lib.org/book/920103/e9cbff (accessed on 12 January 2021).
- De Souza, P. Piracy in the Graeco-Roman World; Cambridge University Press: Cambridge, UK, 2002; pp. 128–129. [Google Scholar]
- Murphy-O’Vonnor, J.; Cunliffe, B. The Holy Land: An Oxford Archaeological Guide, 5th ed.; Oxford University Press: New York, NY, USA, 2008; pp. 378–385. [Google Scholar]
- Delbruck, H. Warfare in Antiquity; University of Nebraska Press: Lincoln, NE, USA, 1990; Volume 1, pp. 499–507. [Google Scholar]
- Samarani, G. La Cina del Novecento. Dalla Fine Dell’impero ad Oggi; Einaudi: Rome, Italy, 2008; p. 156. Available online: https://it1lib.org/book/3511969/490bde (accessed on 6 April 2021).
- Miccio, B.; Potenza, U. Acquedotti di Napoli; AMAN: Naples, Italy, 1994; p. 60. [Google Scholar]
- Mubārakfūrī, S. The Sealed Nectar: Biography of the Noble Prophet, Darussalam. Available online: https://www.muslim-library.com/dl/books/English_ArRaheeq_AlMakhtum_THE_SEALED_NECTAR.pdf (accessed on 6 April 2021).
- Delli Priscoli, J. Water and Civilization: Conflict, Cooperation, and the Roots of a New Eco Realism. In Proceedings of the 8th Stockholm World Water Symposium, Stockholm, Sweden, 10–13 August 1998; Available online: http://www.genevahumanitarianforum.org/docs/Priscoli.pdf (accessed on 6 April 2021).
- Magnusson, R.; Squatriti, P. The Technologies of Water in Medieval Italy. In Working with Water in Medieval Europe. Technology and Resource-Use Technology and Change in History; Squatriti, P., Ed.; Leiden, Boston & Köln: Leiden, The Netherlands, 2000; Volume 3, p. 250. [Google Scholar]
- Holt, R. Medieval England’s Water-Related Technologies. In Working with Water in Medieval Europe. Technology and Resource-Use (Technology and Change in History; Squatriti, P., Ed.; Leiden, Boston & Köln: Leiden, The Netherlands, 2000; Volume 3, p. 51. [Google Scholar]
- Grewe, K. Water Technology in Medieval Germany. In Working with Water in Medieval Europe. Technology and Resource-Use Technology and Change in History; Squatriti, P., Ed.; Leiden, Boston & Köln: Leiden, The Netherlands, 2000; Volume 3, p. 157. [Google Scholar]
- Ewert, U. Water, Public Hygiene and Fire Control in Medieval Towns: Facing Collective Goods Problems while Ensuring the Quality of Life. Hist. Soc. Res. 2007, 32, 222–251. [Google Scholar]
- Poulsen, B.; Gundersen, O.E. Between sea and river: Water in medieval Scandinavian towns. Wiley Interdiscip. Rev. Water 2019, 6, e1346. [Google Scholar] [CrossRef]
- Honan, W.H. Scholar Sees Leonardo’s Influence on Machiavelli. An Article. The New York Times, 8 December 1996; p. 18. [Google Scholar]
- León-Portilla, M. The Early Civilizations of Mesoamerica. The Mexicas (Aztecs). The Cambridge History of Lain America; Bethell, L., Ed.; Cambridge University Press: Cambridge, UK, 1984; Volume 1, pp. 3–36. [Google Scholar]
- Musset, A. De l’Eau Vive à l’Eau Morte. Enjeux Techniques et Culturels dans la Vallée de Mexico (XVIe-XIXe Siècles); Éditions Recherche sur les Civilisations (ERC): Paris, France, 1991. [Google Scholar]
- Bakewell, P. Mining in colonial Spanish America. In The Cambridge History of Latin America; Bethell, L., Ed.; Cambridge University Press: Cambridge, UK, 1984; Volume 3, pp. 105–151. [Google Scholar]
- Florescano, E. The formation and economic structure of the hacienda in New Spain. In The Cambridge History of Latin America; Bethell, L., Ed.; Cambridge University Press: Cambridge, UK, 1984; Volume 2, pp. 153–188. [Google Scholar]
- Brundage, B.C. A Rain of Darts. The Mexica Aztecs; University of Texas Press: Austin, TX, USA, 1972. [Google Scholar]
- Gibson, C. The Aztecs under Spanish Rule. A History of the Indians of the Valley of Mexico, 1519–1810; Stanford University Press: Stanford, CA, USA, 1964. [Google Scholar]
- Gurría Lacroix, J. El Desagüe del Valle de México durante la Época Novohispana; Universidad Nacional Autónoma de México, Instituto de Investigaciones Históricas: Mexico City, Mexico, 1978. [Google Scholar]
- Departamento del Distrito Federal, Secretaría de Obras y Servicios (DDF-SOS). Memoria de las Obras del Sistema de Drenaje Profundo del Distrito Federal; DDF: Mexico City, Mexico, 1975. [Google Scholar]
- Lemoine Villicaña, E. El Desagüe del Valle de México durante la Epoca Independiente; UNAM-IIH: Mexico City, Mexico, 1978. [Google Scholar]
- Hoberman, L.S. Technological Change in a Traditional Society: The Case of the Desague in Colonial Mexico. Technol. Cult. 1980, 21, 386. [Google Scholar] [CrossRef]
- Fox, D.J. Man-Water Relationships in Metropolitan Mexico. Geogr. Rev. 1965, 55, 523. [Google Scholar] [CrossRef]
- Chevalier, F. Land and Society in Colonial Mexico: The Great Haciendas; University of California Press: Los Angeles, CA, USA, 1963. [Google Scholar]
- Riley, J.D.; Horn, R. Postconquest Coyoacan: Nahua-Spanish Relations in Central Mexico, 1519–1690. Am. Hist. Rev. 1999, 104, 961. [Google Scholar] [CrossRef]
- Barraqué, B. Urban Water Conflict; UNESCO: Boca Raton, FL, USA, 2010; Volume 8. [Google Scholar]
- Lorge, P. War, Politics and Society in Early Modern China, 900–1795; Routledge India: New Delhi, India, 2006; p. 147. [Google Scholar]
- Hillel, D. Lash of the Dragon. Nat. Hist. 1991, 28–37. [Google Scholar]
- Xin, X. The Jews of Kaifeng, China: History, Culture, and Religion; Ktav Publishing Inc.: Brooklyn, NY, USA, 2003; p. 47. ISBN 978-0-88125-791-5. [Google Scholar]
- Storozum, M.; Lu, P.; Wang, S.; Chen, P.; Yang, R.; Ge, Q.; Cao, J.; Wan, J.; Wang, H.; Qin, Z.; et al. Geoarchaeological evidence of the AD 1642 Yellow River flood that destroyed Kaifeng, a former capital of dynastic China. Sci. Rep. 2020, 10, 3765. [Google Scholar] [CrossRef]
- Chatzis, K. Brève histoire des computers d’eau à Paris, 1880–1930. (archives). Terrains Trav. 2006, 11, 159–178. [Google Scholar] [CrossRef]
- Brooks, D.B.; Trottier, J.; Giordano, G. Transboundary Water Issues in Israel, Palestine, and the Jordan River Basin: An Overview; Springer Nature: Berlin, Germany, 2020. [Google Scholar]
- Wolf, A.T. Conflict and Cooperation Over Transboundary Waters. Human Development Report 2006; Human Development Report Office Occasional Paper UN: Brooklyn, NY, USA, 2006. [Google Scholar]
- Barrett, S. Conflict and Cooperation in Managing International Water Resources‖ CSERGE Working Paper London Business School and Centre for Social and Economic Research on the Global Environment; University College London and University of East Anglia: London, UK, 1994. [Google Scholar]
- Rehman, H.; Kamal, A. Indus Basin River System-Flooding and Flood Mitigation Ministry of Water and Power, Islamabad, Pakistan. 2005. Available online: http://www.riversymposium.com/2005/index.php?element (accessed on 6 April 2021).
- Pearce, F. Water War. Nat. Sci. 2002, 174, 18. [Google Scholar]
- Wirsing, R.G.; Jasparro, C. Spotlight on Indus River Diplomacy: India, Pakistan, and the Baglihar Dam Dispute. Asia-Pacific Center for Security Studies 2006. Available online: http://www.apcss.org/Publications/APSSS/IndusRiverDiplomacy.Wirsing.Jasparro.pdf (accessed on 6 April 2021).
- Sridhar, S. The Indus Waters Treaty‖. Security Research Review: 2005, Volume 1. Available online: http://www.bharat-kshak.com/SRR/Volume13/sridhar.html (accessed on 6 April 2021).
- Tello, E. La Guerra del agua’ en Barcelona. Alternativas Económico-Ecológicas para un Desafío Socioambiental. La Eficiencia del Agua en las Ciudades; Estevan, A., Viñuales, V., Eds.; Bakeaz: Bilbao, Spain; Fundación Ecología y Desarrollo: Zaragoza, Spain, 2000; pp. 277–298. [Google Scholar]
- Kundzewicz, Z.W.; Kowalczak, P. The potential for water conflict is on the increase. Nat. Cell Biol. 2009, 459, 31. [Google Scholar] [CrossRef]
- Peek, K. Where Will the World’s Water Conflicts Erupt? Available online: https://www.popsci.com/article/science/where-will-worlds-water-conflicts-erupt-infographic/ (accessed on 22 April 2020).
- Wilson Center. Yemen Beyond the Headlines: Population, Health, Natural Resources, and Institutions. 2011. Available online: https://www.wilsoncenter.org/event/yemen-beyond-the-headlines-population-health-natural-resources-and-institutions (accessed on 6 April 2021).
- Ahmed, N. Yemen’s Collapse Is a Taste of Things to Come. Middle East Eye 2015. Available online: https://www.middleeasteye.net/fr/node/33266 (accessed on 6 April 2021).
- Maystadt, J.-F.; Ecker, O. Extreme Weather and Civil War: Does Drought Fuel Conflict in Somalia through Livestock Price Shocks? Am. J. Agric. Econ. 2014, 96, 1157–1182. [Google Scholar] [CrossRef] [Green Version]
- Mungongo, H.G.; Mbonile, M.J. The Innovative Adaptation Structures of Agropastoral Communities to the Impact of Climate Change and Variability in Semi-Arid of Tanzania: A Case of Kiteto and Kilindi Districts. J. Geogr. Assoc. Tanzan. 2016, 39. [Google Scholar]
- Alii, D.R. Water as a weapon in the ancient times (but not only): Considerations about technical and ethical aspects. In Proceedings of the 4th IWA International Symposium on Water and Wastewater Technologies in Ancient Civilizations, Coimbra, Portugal, 17–19 September 2016. [Google Scholar]
- Lang, Y. High Dam: The Sword of Damocles. In Yangtze! Yangtze! Probe International; Qing, D., Ed.; Earthscan Publications: London, UK, 1994; pp. 229–240. [Google Scholar]
- Serageldin, I. Water: Conflicts set to arise within as well as between states. Nat. Cell Biol. 2009, 459, 163. [Google Scholar] [CrossRef] [Green Version]
- McCracken, M.; Wolf, A.T. Updating the Register of International River Basins of the world. Int. J. Water Resour. Dev. 2018, 35, 732–782. [Google Scholar] [CrossRef]
- Kibaroglu, A. An analysis of Turkey’s water diplomacy and its evolving position vis-à-vis international water law. Water Int. 2014, 40, 153–167. [Google Scholar] [CrossRef]
- Barnaby, W. Do nations go to war over water? Nat. Cell Biol. 2009, 458, 282–283. [Google Scholar] [CrossRef]
- Buchholz, K. Unsafe Water Kills More People than Disasters and Conflict. Available online: https://www.statista.com/chart/17445/global-access-to-safe-drinking-water/ (accessed on 24 April 2020).
- Rodríguez-Labajos, B.; Martínez-Alier, J. Political ecology of water conflicts. Wiley Interdiscip. Rev. Water 2015, 2, 537–558. [Google Scholar] [CrossRef]
- Fenwick, A. Waterborne Infectious Diseases--Could They Be Consigned to History? Science 2006, 313, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- Adegoke, A.A.; Amoah, I.D.; Stenström, T.A.; Verbyla, M.E.; Mihelcic, J.R. Epidemiological Evidence and Health Risks Associated with Agricultural Reuse of Partially Treated and Untreated Wastewater: A Review. Front. Public Health 2018, 6, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, A.; Yasar, A.; Tabinda, A.; Abubakar, M. Water-Borne Diseases, Cost of Illness and Willingness to Pay for Diseases Interventions in Rural Communities of Developing Countries. Iran. J. Public Health 2012, 41, 39–49. [Google Scholar] [PubMed]
- Dare, A.M.; Ayinde, I.A.; Shittu, A.M.; Sam-Wobo, S.O.; Akinbode, S.O. Determinants of Cost of Treating Water-Borne Diseases Among Rural Households in South West Nigeria. J. Adv. Dev. Econ. 2019, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Royston, M.G. Pollution Prevention Pays; Elsevier BV: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.J.; Jenkins, A.; Ferrier, R.C.; Li, H.; Luo, W.; et al. Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 2015, 77, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Praveen, P.K.; Ganguly, S.; Wakchaure, R.; Para, P.A.; Mahajan, T.; Qadri, K.; Kamble, S.; Sharma, R.; Shekhar, S.; Dalai, N. Water-borne diseases and its effect on domestic animals and human health: A Review. Int. J. Emerg. Technol. Adv. Eng. 2016, 6, 242–245. [Google Scholar]
- Saravanan, V.S.; Idenal, M.A.; Saiyed, S.; Saxena, D.; Gerke, S. Urbanization and human health in urban India: Institutional analysis of water-borne diseases in Ahmedabad. Health Policy Plan. 2016, 31, 1089–1099. [Google Scholar] [CrossRef] [Green Version]
- Brubacher, J.; Allen, D.M.; Déry, S.J.; Parkes, M.W.; Chhetri, B.; Mak, S.; Sobie, S.; Takaro, T.K. Associations of five food- and water-borne diseases with ecological zone, land use and aquifer type in a changing climate. Sci. Total Environ. 2020, 728, 138808. [Google Scholar] [CrossRef]
- Plowright, R.K.; Sokolow, S.H.; Gorman, M.E.; Daszak, P.; Foley, J.E. Causal inference in disease ecology: Investigating ecological drivers of disease emergence. Front. Ecol. Environ. 2008, 6, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.M.; Civitello, D.J.; Brace, A.J.; Feichtinger, E.M.; Ortega, C.N.; Richardson, J.C.; Sauer, E.L.; Liu, X.; Rohr, J.R. Spatial scale modulates the strength of ecological processes driving disease distributions. Proc. Natl. Acad. Sci. USA 2016, 113, E3359–E3364. [Google Scholar] [CrossRef] [Green Version]
- Dunn, R.R.; Davies, T.J.; Harris, N.C.; Gavin, M.C. Global drivers of human pathogen richness and prevalence. Proc. R. Soc. B Boil. Sci. 2010, 277, 2587–2595. [Google Scholar] [CrossRef]
- Herrador, B.R.G.; de Blasio, B.F.; MacDonald, E.; Nichols, G.; Sudre, B.; Vold, L.; Semenza, J.C.; Nygård, K. Analytical studies assessing the association between extreme precipitation or temperature and drinking water-related waterborne infections: A review. Environ. Health 2015, 14, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, B.; Fazil, A. Climate change and infectious diseases: The challenges: How will climate change impact microbial foodborne disease in Canada? Can. Commun. Dis. Rep. 2019, 45, 108. [Google Scholar] [CrossRef] [PubMed]
- WHO. Water Safety Plan Manual: How to Develop and Implement a Water Safety Plan; WHO: Genova, Switzerland, 2009. [Google Scholar]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabri, N.A.; Schmitt, H.; Van Der Zaan, B.; Gerritsen, H.W.; Zuidema, T.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2020, 8, 102245. [Google Scholar] [CrossRef]
- Zerva, I.; Alexandropoulou, I.; Panopoulou, M.; Melidis, P.; Ntougias, S. Antibiotic Resistance Genes Dynamics at the Different Stages of the Biological Process in a Full-Scale Wastewater Treatment Plant. In Proceedings of the 3rd EWaS International Conference on “Insights on the Water-Energy-Food Nexus”, Lefkada Island, Greece, 27–30 June 2018; Volume 2, p. 650. [Google Scholar]
- Al Salah, D.M.M.; Laffite, A.; Poté, J. Occurrence of Bacterial Markers and Antibiotic Resistance Genes in Sub-Saharan Rivers Receiving Animal Farm Wastewaters. Sci. Rep. 2019, 9, 14847. [Google Scholar] [CrossRef]
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems–A review. Sci. Total Environ. 2019, 697, 134023. [Google Scholar] [CrossRef]
- Tan, D.T.; Shuai, D. Research highlights: Antibiotic resistance genes: From wastewater into the environment. Environ. Sci. Water Res. Technol. 2015, 1, 264–267. [Google Scholar] [CrossRef]
- Bartram, J.; Fewtrell, L.; Stenström, T.-A. Harmonised Assessment of Risk and Risk Management for Water-Related Infectious Disease: An Overview; IWA Publishing: London, UK, 2001. [Google Scholar]
- Ganoulis, J. Risk analysis of wastewater reuse in agriculture. Int. J. Recycl. Org. Waste Agric. 2012, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Salgot, M.; Huertas, E.; Weber, S.; Dott, W.; Hollender, J. Wastewater reuse and risk: Definition of key objectives. Desalination 2006, 187, 29–40. [Google Scholar] [CrossRef]
- EU. The Drinking Water Directive (98/83/EC); European Union Publisher: Brussels, Belgium, 1998. [Google Scholar]
- UN. Population 2030: Demographic Challenges and Ppportunities for Sustainable Development Planning; UN Department of Economic and Social Affairs: New York, NY, USA, 2015; Available online: https://www.un.org/en/development/desa/population/publications/pdf/trends/Population2030.pdf (accessed on 6 April 2021).
- European Commission. Proposal for a Regulation of The European Parliament and of The Council on Min-Imum Requirements for Water Reuse (337 Final) 2018. Available online: ec.europa.eu/environment/water/reuse.htm (accessed on 6 April 2021).
- Del Estado, B.O. Real Decreto 1620/2007, de 7 Diciembre por el que se Establece el Régimen Jurídico de la Reutilización de las Aguas Depuradas. 2007. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2007-21092 (accessed on 6 April 2021).
- Paranychianakis, N.V.; Salgot, M.; Snyder, S.A.; Angelakis, A.N. Water Reuse in EU States: Necessity for Uniform Criteria to Mitigate Human and Environmental Risks. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1409–1468. [Google Scholar] [CrossRef]
- Tzanakakis, V.A.; Angelakis, A.N.; Paranychianakis, N.V.; Dialynas, Y.G.; Tchobanoglous, G. Challenges and Opportunities for Sustainable Management of Water Resources in the Island of Crete, Greece. Water 2020, 12, 1538. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Bello, O.S.; Oluyori, A.P.; Inyinbor, H.E.; Fadiji, A.E. Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects. Food Control. 2019, 98, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Menegassi, L.C.; Rossi, F.; Dominical, L.D.; Tommaso, G.; Montes, C.R.; Gomide, C.A.; Gomes, T.M. Reuse in the agro-industrial: Irrigation with treated slaughterhouse effluent in grass. J. Clean. Prod. 2020, 251, 119698. [Google Scholar] [CrossRef]
- Vergine, P.; Salerno, C.; Libutti, A.; Beneduce, L.; Gatta, G.; Berardi, G.; Pollice, A. Closing the water cycle in the agro-industrial sector by reusing treated wastewater for irrigation. J. Clean. Prod. 2017, 164, 587–596. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Ruiz-Rosa, I.; García-Rodríguez, F.J.; Mendoza-Jiménez, J. Development and application of a cost management model for wastewater treatment and reuse processes. J. Clean. Prod. 2016, 113, 299–310. [Google Scholar] [CrossRef]
- Della Gatta, G.; Libutti, A.; Gagliardi, A.; Beneduce, L.; Brusetti, L.; Borruso, L.; Disciglio, G.; Tarantino, E. Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil. Agric. Water Manag. 2015, 149, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Teh, C.Y.; Wu, T.Y.; Juan, J.C. Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant. Ind. Crop. Prod. 2014, 56, 17–26. [Google Scholar] [CrossRef]
- Amor, C.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review. Water 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Yannopoulos, S.; Giannopoulou, I.; Kaiafa-Saropoulou, M. Investigation of the Current Situation and Prospects for the Development of Rainwater Harvesting as a Tool to Confront Water Scarcity Worldwide. Water 2019, 11, 2168. [Google Scholar] [CrossRef] [Green Version]
- Kotsifakis, K.; Kourtis, I.; Feloni, E.; Baltas, E. Assessment of Rain Harvesting and RES Desalination for Meeting Water Needs in an Island in Greece. Adv. Utop. Stud. Sacred Archit. 2019, 10, 59–62. [Google Scholar]
- Kuntz Maykot, J.; Ghisi, E. Assessment of A Rainwater Harvesting System in A Multi-Storey Residential Building in Brazil. Water 2020, 12, 546. [Google Scholar] [CrossRef] [Green Version]
- Elgert, L.; Austin, P.; Picchione, K. Improving water security through rainwater harvesting: A case from Guatemala and the potential for expanding coverage. Int. J. Water Resour. Dev. 2015, 32, 765–780. [Google Scholar] [CrossRef]
- Saurí, D.; Palau-Rof, L. Urban drainage in Barcelona: From hazard to resource? Water Altern. 2017, 10, 1–14. [Google Scholar]
- Suleiman, L.; Olofsson, B.; Saurí, D.; Palau-Rof, L. A breakthrough in urban rain-harvesting schemes through planning for urban greening: Case studies from Stockholm and Barcelona. Urban For. Urban Green. 2020, 51, 126678. [Google Scholar] [CrossRef]
- Gwenzi, W.; Dunjana, N.; Pisa, C.; Tauro, T.; Nyamadzawo, G. Water quality and public health risks associated with roof rainwater harvesting systems for potable supply: Review and perspectives. Sustain. Water Qual. Ecol. 2015, 6, 107–118. [Google Scholar] [CrossRef]
- GhaffarianHoseini, A.; Tookey, J.; GhaffarianHoseini, A.; Yusoff, S.M.; Hassan, N.B. State of the art of rainwater harvesting systems towards promoting green built environments: A review. Desalination Water Treat. 2015, 57, 1–10. [Google Scholar] [CrossRef]
- Lee, K.E.; Mokhtar, M.; Hanafiah, M.M.; Halim, A.A.; Badusah, J. Rainwater harvesting as an alternative water resource in Malaysia: Potential, policies and development. J. Clean. Prod. 2016, 126, 218–222. [Google Scholar] [CrossRef]
- Devkota, J.; Schlachter, H.; Apul, D. Life cycle based evaluation of harvested rainwater use in toilets and for irrigation. J. Clean. Prod. 2015, 95, 311–321. [Google Scholar] [CrossRef]
- Morales-Pinzón, T.; Rieradevall, J.; Gasol, C.M.; Gabarrell, X. Modelling for economic cost and environmental analysis of rainwater harvesting systems. J. Clean. Prod. 2015, 87, 613–626. [Google Scholar] [CrossRef]
- García-Rodríguez, L. Seawater desalination driven by renewable energies: A review. Desalination 2002, 143, 103–113. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and sustainability–An appraisal and current perspective. Water Res. 2016, 89, 87–106. [Google Scholar] [CrossRef]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Khawaji, A.D.; Kutubkhanah, I.K.; Wie, J.-M. Advances in seawater desalination technologies. Desalination 2008, 221, 47–69. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nanosci. Technol. 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Voutchkov, N. Energy use for membrane seawater desalination–current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Economic, social and governance adaptation readiness for mitigation of climate change vulnerability: Evidence from 192 countries. Sci. Total Environ. 2019, 656, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Biswal, B. Assessing the Impact of Climate Change on Water Resources: The Challenge Posed by a Mul-titude of Options. In Hydrology in a Changing World: Challenges in ModelingSingh; Dhanya, C.T., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 185–204. [Google Scholar]
- Koutsoyiannis, D. Revisiting the global hydrological cycle: Is it intensifying? Hydrol. Earth Syst. Sci. 2020, 24, 3899–3932. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Brown, T.J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Clim. 2011, 32, 772–780. [Google Scholar] [CrossRef]
- Kloos, J.; Gebert, N.; Rosenfeld, T.; Renaud, F. Climate Change, Water Conflicts and Human Security. Regional Assessment and Policy Guidelines for the Mediterranean, Middle East and Sahel. CLICO Final Report; United Nations University–Institute for Environment and Human Security: Bonn, Germany, 2013. [Google Scholar]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Barnett, J.; Adger, W.N. Climate change, human security and violent conflict. Political Geogr. 2007, 26, 639–655. [Google Scholar] [CrossRef]
- Reeves, T.; Thomas, G.; Ramsay, G. Save and Grow in Practice: Maize, Rice, Wheat—A Guide to Sustainable Cereal Production; UN Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Alemu, T.; Mengistu, A. Impacts of Climate Change on Food Security in Ethiopia: Adaptation and Mitigation Options: A Review. In Climate Change Management; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 397–412. [Google Scholar]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.S.; Patz, J.A. Emerging Threats to Human Health from Global Environmental Change. Annu. Rev. Environ. Resour. 2009, 34, 223–252. [Google Scholar] [CrossRef] [Green Version]
- Semenza, J.C.; Herbst, S.; Rechenburg, A.; Suk, J.E.; Höser, C.; Schreiber, C.; Kistemann, T. Climate Change Impact Assessment of Food- and Waterborne Diseases. Crit. Rev. Environ. Sci. Technol. 2012, 42, 857–890. [Google Scholar] [CrossRef] [Green Version]
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N. Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Cissé, G. Food-borne and water-borne diseases under climate change in low- and middle-income countries: Further efforts needed for reducing environmental health exposure risks. Acta Trop. 2019, 194, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Geisen, S.; Wall, D.H.; van der Putten, W.H. Challenges and Opportunities for Soil Biodiversity in the Anthropocene. Curr. Biol. 2019, 29, R1036–R1044. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhou, X.; Hale, L.; Yuan, M.; Ning, D.; Feng, J.; Shi, Z.; Li, Z.; Feng, B.; Gao, Q.; et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 2019, 3, 612–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernacchi, C.J.; Kimball, B.A.; Quarles, D.R.; Long, S.P.; Ort, D.R. Decreases in Stomatal Conductance of Soybean under Open-Air Elevation of [CO2] Are Closely Coupled with Decreases in Ecosystem Evapotranspiration. Plant Physiol. 2007, 143, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.B.; Dermody, O.; Klein, S.P.; Locke, A.M.; McGrath, J.M.; Paul, R.E.; Rosenthal, D.M.; Ruiz-Vera, U.M.; Siebers, M.H.; Strellner, R.; et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2016, 2, 16132. [Google Scholar] [CrossRef]
- Macdonald, G.M. Water, climate change, and sustainability in the southwest. Proc. Natl. Acad. Sci. USA 2010, 107, 21256–21262. [Google Scholar] [CrossRef] [Green Version]
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Theisen, O.M.; Holtermann, H.; Buhaug, H. Climate Wars? Assessing the Claim That Drought Breeds Conflict. Int. Secur. 2012, 36, 79–106. [Google Scholar] [CrossRef]
- Patterson, J.J.; Huitema, D. Institutional innovation in urban governance: The case of climate change adaptation. J. Environ. Plan. Manag. 2018, 62, 374–398. [Google Scholar] [CrossRef] [Green Version]
- Baranyai, G. Emerging Challenges to Transboundary Water Governance. Water Gov. Concepts Methods Pract. 2019, 1, 53–68. [Google Scholar]
- Espíndola, I.B.; Ribeiro, W.C. Transboundary waters, conflicts and international cooperation-examples of the La Plata basin. Water Int. 2020, 45, 329–346. [Google Scholar] [CrossRef]
- Hewitt, C.D.; Allis, E.; Mason, S.J.; Muth, M.; Pulwarty, R.; Shumake-Guillemot, J.; Bucher, A.; Brunet, M.; Fischer, A.M.; Hama, A.M.; et al. Making Society Climate Resilient: International Progress under the Global Framework for Climate Services. Bull. Am. Meteorol. Soc. 2020, 101, E237–E252. [Google Scholar] [CrossRef] [Green Version]
- Valipour, M.; Briscoe, R.; Falletti, L.; Juuti, P.S.; Katko, T.S.; Rajala, R.P.; Kumar, R.; Khan, S.; Chnaraki, M.; Angelakis, A. Water-Driven Music Technologies through Centuries. J 2021, 4, 1–21. [Google Scholar]
- Kuzdas, C.; Wiek, A. Governance scenarios for addressing water conflicts and climate change impacts. Environ. Sci. Policy 2014, 42, 181–196. [Google Scholar] [CrossRef]
- Walz, V. Achieving Sustainable Environmental Peace in Asymmetric Transboundary Water Conflicts–Human Rights-Based Approach to Water Cooperation in the Israel-Palestine Case 2020. Available online: https://lup.lub.lu.se/student-papers/search/publication/9031735 (accessed on 6 April 2021).
- Petersen-Perlman, J.D.; Veilleux, J.C.; Wolf, A.T. International water conflict and cooperation: Challenges and opportunities. Water Int. 2017, 42, 105–120. [Google Scholar] [CrossRef]
- Yuan, L.; He, W.; Degefu, D.M.; Liao, Z.; Wu, X.; An, M.; Zhang, Z.; Ramsey, T.S. Transboundary water sharing problem; a theoretical analysis using evolutionary game and system dynamics. J. Hydrol. 2020, 582, 124521. [Google Scholar] [CrossRef]
- Xie, L.; Warner, J. The politics of securitization: China’s competing security agendas and their impacts on securitizing shared rivers. Eurasian Geogr. Econ. 2021, 1–30. [Google Scholar] [CrossRef]
- Scholz, J.T.; Stiftel, B. Adaptive Governance and Water Conflict: New Institutions for Collaborative Planning. Resources for the Future; Routledge: Washington, DC, USA, 2010. [Google Scholar]
- Hirsch, T. Water wars: Designing a civic game about water scarcity. In Proceedings of the 8th ACM Conference on Designing Interactive Systems, Aarhus, Denmark, 5 August 2010; pp. 340–343. [Google Scholar]
- Grünwald, R.; Feng, Y.; Wang, W. Reconceptualization of the Transboundary Water Interaction Nexus (TWINS): Approaches, opportunities and challenges. Water Int. 2020, 45, 458–478. [Google Scholar] [CrossRef]
- Tian, G.-L.; Liu, J.-N.; Li, X.-Y.; Li, Y.-Q.; Yin, H. Water rights trading: A new approach to dealing with trans-boundary water conflicts in river basins. Hydrol. Res. 2020, 22, 133–152. [Google Scholar] [CrossRef] [Green Version]
- Madani, K. Game theory and water resources. J. Hydrol. 2010, 381, 225–238. [Google Scholar] [CrossRef]
- Wei, S.; Yang, H.; Abbaspour, K.; Mousavi, J.; Gnauck, A. Game theory based models to analyze water conflicts in the Middle Route of the South-to-North Water Transfer Project in China. Water Res. 2010, 44, 2499–2516. [Google Scholar] [CrossRef] [PubMed]
- Jury, W.A.; Vaux, H. The role of science in solving the world’s emerging water problems. Proc. Natl. Acad. Sci. USA 2005, 102, 15715–15720. [Google Scholar] [CrossRef] [Green Version]
- Ilias, D. Transboundary Waters. Master’s Thesis, National Technical University, Athens, Greece, 2013. [Google Scholar]
- Tulloch, J. Water Conflicts: Fight or Flight? Allianz. 2009. Available online: www.knowledge.allianz.com (accessed on 26 August 2009).
- Wolf, A.T. Indigenous Approaches to Water Conflict Negotiations and Implications for International Waters. Int. Negot. J. Theory Pract. 2000, 5, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Mays, L.W. Water Supply Systems Security; McGraw-Hill: New York City, NY, USA, 2004. [Google Scholar]
- Mays, L.W. Water Resources Sustainability; McGraw-Hill: New York City, NY, USA, 2007. [Google Scholar]
- Mays, L.W. Water Resources Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Peña-Ramos, J.; Bagus, P.; Fursova, D. Water Conflicts in Central Asia: Some Recommendations on the Non-Conflictual Use of Water. Sustainability 2021, 13, 3479. [Google Scholar] [CrossRef]
- Ramos, J.A.P.; Cuadri, A.J.B. El agua dulce en la agenda de seguridad internacional de comienzos del siglo XXI. Pre-bie3, Madrid, Spain. 2013, p. 25. Available online: http://www.ieee.es/publicaciones-new/documentos-de-opinion/2013/DIEEEO67-2013.html (accessed on 6 April 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelakis, A.N.; Valipour, M.; Ahmed, A.T.; Tzanakakis, V.; Paranychianakis, N.V.; Krasilnikoff, J.; Drusiani, R.; Mays, L.; El Gohary, F.; Koutsoyiannis, D.; et al. Water Conflicts: From Ancient to Modern Times and in the Future. Sustainability 2021, 13, 4237. https://doi.org/10.3390/su13084237
Angelakis AN, Valipour M, Ahmed AT, Tzanakakis V, Paranychianakis NV, Krasilnikoff J, Drusiani R, Mays L, El Gohary F, Koutsoyiannis D, et al. Water Conflicts: From Ancient to Modern Times and in the Future. Sustainability. 2021; 13(8):4237. https://doi.org/10.3390/su13084237
Chicago/Turabian StyleAngelakis, Andreas N., Mohammad Valipour, Abdelkader T. Ahmed, Vasileios Tzanakakis, Nikolaos V. Paranychianakis, Jens Krasilnikoff, Renato Drusiani, Larry Mays, Fatma El Gohary, Demetris Koutsoyiannis, and et al. 2021. "Water Conflicts: From Ancient to Modern Times and in the Future" Sustainability 13, no. 8: 4237. https://doi.org/10.3390/su13084237