Multicriteria Ranking for the Efficient and Effective Assessment of Police Departments
Abstract
:1. Introduction
2. Methodology
2.1. Effectiveness: The Pact for Life Initiative
2.2. Efficiency: Conditional Frontier Analysis
2.3. Outranking: PROMETHEE II Net Flow
3. Data, Application, and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daraio, C.; Simar, L.; Wilson, P.W. Quality as a latent heterogeneity factor in the efficiency of universities. Econ. Model. 2021, 99, 105485. [Google Scholar] [CrossRef]
- Dismuke, C.E.; Sena, V. Is there a trade-off between quality and productivity? The case of diagnostic technologies in Portugal. Ann. Oper. Res. 2001, 107, 101–116. [Google Scholar] [CrossRef]
- Nuti, S.; Daraio, C.; Speroni, C.; Vainieri, M. Relationships between technical efficiency and the quality and costs of health care in Italy. Int. J. Qual. Heal. Care 2011, 23, 324–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storto, C.L. The trade-off between cost efficiency and public service quality: A non-parametric frontier analysis of Italian major municipalities. Cities 2016, 51, 52–63. [Google Scholar] [CrossRef]
- Nepomuceno, T.C.C.; Silva, W.M.N.; Nepomuceno, K.T.C.; Barros, I.K.F. A DEA-based complexity of needs approach for hospital beds evacuation during the COVID-19 outbreak. J. Heal. Eng. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, F.; Cabello, J. MRP-PCI: A multiple reference point based partially compensatory composite indicator for sustainability assessment. Sustainability 2021, 13, 1261. [Google Scholar] [CrossRef]
- Seibert, R.; Macagnan, C.; Dixon, R. Priority stakeholders’ perception: Social responsibility indicators. Sustainability 2021, 13, 1034. [Google Scholar] [CrossRef]
- Pereira, D.V.E.S.; Mota, C.M.D.M. Human development index based on ELECTRE TRI-C multicriteria method: An application in the city of Recife. Soc. Indic. Res. 2016, 125, 19–45. [Google Scholar] [CrossRef]
- Morais, D.C.; De Almeida, A.T. Integrated model of problem structuring and multicriteria group decision making for social sustainable development. Braz. J. Oper. Prod. Manag. 2009, 6, 27–49. [Google Scholar]
- Martins, C.L.; López, H.M.L.; de Almeida, A.T.; Almeida, J.A.; Bortoluzzi, M.B.D.O. An MCDM project portfolio web-based DSS for sustainable strategic decision making in an electricity company. Ind. Manag. Data Syst. 2017, 117, 1362–1375. [Google Scholar] [CrossRef] [Green Version]
- Daraio, C.; Kerstens, K.; Nepomuceno, T.; Sickles, R.C. Empirical surveys of frontier applications: A meta-review. Int. Trans. Oper. Res. 2020, 27, 709–738. [Google Scholar] [CrossRef] [Green Version]
- Daraio, C.; Nepomuceno, T.C.C.; Costa, A.P.C.S. Theoretical and empirical advances in the assessment of productive efficiency since the introduction of DEA: A bibliometric analysis. Int. J. Oper. Res. 2021, 1. [Google Scholar] [CrossRef]
- Aldamak, A.; Zolfaghari, S. Review of efficiency ranking methods in data envelopment analysis. Measurement 2017, 106, 161–172. [Google Scholar] [CrossRef]
- Lee, J.; Choi, G. A dominance-based network method for ranking efficient decision-making units in data envelopment analysis. Sustainability 2019, 11, 2059. [Google Scholar] [CrossRef] [Green Version]
- Nepomuceno, T.C.C.; Santiago, K.T.M.; Daraio, C.; Costa, A.P.C.S. Exogenous crimes and the assessment of public safety efficiency and effectiveness. Ann. Oper. Res. 2020, 1–34. [Google Scholar] [CrossRef]
- Daraio, C.; Simar, L. Introducing environmental variables in nonparametric frontier models: A probabilistic approach. J. Prod. Anal. 2005, 24, 93–121. [Google Scholar] [CrossRef]
- Daraio, C.; Simar, L. Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Daraio, C.; Simar, L. Conditional nonparametric frontier models for convex and nonconvex technologies: A unifying approach. J. Prod. Anal. 2007, 28, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Benayoun, R.; Roy, B.; Sussman, N. Manual de Reference du Programme Electre: Note De Synthese et Formaton; Direction Scientifque SEMA: Paris, France, 1966; Volume 25. [Google Scholar]
- Roy, B. Classement et choix en présence de points de vue multiples (la méthode ELECTRE). Rev. d’Inform. Rech. Opérationelle 1968, 8, 57–75. [Google Scholar]
- Brans, J.P. L’Ingénierie de la Décision: Élaboration d’Instruments d’Aide à la Décision. La Méthode PROMETHEE; Presses de l’Université Laval: Québec, QC, Canada, 1982. [Google Scholar]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The PROMETHEE method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Mareschal, B.; Brans, J.P.; Vincke, P. PROMETHEE: A New Family of Outranking Methods in Multicriteria Analysis; No. 2013/9305; Universite Libre de Bruxelles: Bruxelles, Belgium, 1984. [Google Scholar]
- Belton, V.; Stewart, T.J. Multiple Criteria Decision Analysis: An Integrated Approach; Kluwer Academic Publisher: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Figueira, J.; Greco, S.; Ehrogott, M. Multiple Criteria Decision Analysis: State of the Art Surveys; Springer Science and Business Media: New York, NY, USA, 2016. [Google Scholar]
- Behzadian, M.; Kazemzadeh, R.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Huber, S.; Geiger, M.J.; de Almeida, A.T. Multiple Criteria Decision Making and Aiding; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- De Almeida, A.T.; Alencar, M.H.; Garcez, T.V.; Ferreira, R.J.P. A systematic literature review of multicriteria and multi-objective models applied in risk management. IMA J. Manag. Math. 2017, 28, 153–184. [Google Scholar] [CrossRef]
- Deprins, D.; Simar, L.; Tulkens, L. Measuring labor efficiency in post offices. In The Performance of Public Enterprises: Concepts and Measurement; Marchand, M., Pestieau, P., Tulkens, H., Eds.; North-Holland: Amsterdam, The Netherlands, 1984; pp. 243–267. [Google Scholar]
- Ratton, J.L.; Daudelin, J. Construction and deconstruction of a homicide reduction policy: The case of pact for life in Pernambuco, Brazil. Int. J. Criminol. Sociol. 2018, 7, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Ratton, J.L.; Galvão, C.; Fernandez, M. Pact for life and the reduction of homicides in the state of Pernambuco. Stab. Int. J. Secur. Dev. 2014, 3, 18. [Google Scholar] [CrossRef]
- Mota, C.M.D.M.; de Figueiredo, C.J.J.; Pereira, D.V.E.S. Identifying areas vulnerable to homicide using multiple criteria analysis and spatial analysis. Omega 2020, 100, 102211. [Google Scholar] [CrossRef]
- De Figueiredo, C.J.J.; Pereira, D.V.D.S.; Mota, C.M.D.M. Multi-criteria approach with spatial analysis and remote sensing for public security planning. GI_Forum 2017, 1, 164–172. [Google Scholar] [CrossRef]
- Menezes, T.; Silveira-Neto, R.; Monteiro, C.; Ratton, J.L. Spatial correlation between homicide rates and inequality: Evidence from urban neighborhoods. Econ. Lett. 2013, 120, 97–99. [Google Scholar] [CrossRef]
- Figueiredo, C.; Mota, C. Learning preferences in a spatial multiple criteria decision approach: An application in public security planning. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1403–1432. [Google Scholar] [CrossRef]
- De Figueiredo, C.J.J.; Mota, C.M.D.M. A classification model to evaluate the security level in a city based on GIS-MCDA. Math. Probl. Eng. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nepomuceno, T.C.C.; Costa, A.P.C.S. Spatial visualization on patterns of disaggregate robberies. Oper. Res. 2019, 19, 857–886. [Google Scholar] [CrossRef]
- De Gusmão, A.P.; Pereira, R.M.A.; Silva, M.M.; Borba, B.F.D.C. The use of a decision support system to aid a location problem regarding a public security facility. In Lecture Notes in Business Information Processing; Freitas, P., Dargam, F., Moreno, J., Eds.; Springer: Cham, Switzerland, 2019; Volume 348. [Google Scholar]
- Nepomuceno, T.C.C.; De Moura, J.A.; E Silva, L.C.; Costa, A.P.C.S. Alcohol and violent behavior among football spectators: An empirical assessment of Brazilian’s criminalization. Int. J. Law. Crime Justice 2017, 51, 34–44. [Google Scholar] [CrossRef]
- Daraio, C.; Simar, L. Directional distances and their robust versions: Computational and testing issues. Eur. J. Oper. Res. 2014, 237, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Daraio, C.; Simar, L.; Wilson, P.W. Fast and efficient computation of directional distance estimators. Ann. Oper. Res. 2020, 288, 805–835. [Google Scholar] [CrossRef] [Green Version]
- Nepomuceno, T.C.C.; Daraio, C.; Costa, A.P.C.S. Combining multi-criteria and directional distances to decompose non-compensatory measures of sustainable banking efficiency. Appl. Econ. Lett. 2020, 27, 329–334. [Google Scholar] [CrossRef]
- Wang, K.; Xian, Y.; Lee, C.-Y.; Wei, Y.-M.; Huang, Z. On selecting directions for directional distance functions in a non-parametric framework: A review. Ann. Oper. Res. 2019, 278, 43–76. [Google Scholar] [CrossRef]
- Briec, W. A graph-type extension of Farrell technical efficiency measure. J. Prod. Anal. 1997, 8, 95–110. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. Directional distance DEA Models. In Advances in DEA Theory and Applications: With Extensions to Forecasting Models, 1st ed.; Tome, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; Chapter 3; pp. 20–27. [Google Scholar]
- Daraio, C.; Simar, L. Efficiency and benchmarking with directional distances: A data-driven approach. J. Oper. Res. Soc. 2016, 67, 928–944. [Google Scholar] [CrossRef] [Green Version]
- Färe, R.; Grosskopf, S.; Whittaker, G. Directional output distance functions: Endogenous directions based on exogenous normalization constraints. J. Prod. Anal. 2013, 40, 267–269. [Google Scholar] [CrossRef]
- Barron, F.H. Selecting a best multi-attribute alternative with partial information about attribute weights. Acta Psychol. 1992, 80, 91–103. [Google Scholar] [CrossRef]
- Nepomuceno, T.C.; Costa, A.P.C. Resource allocation with time series DEA applied to Brazilian federal saving banks. Econ. Bull. 2019, 39, 1384–1392. [Google Scholar]
- Nepomuceno, T.C.C.; De Carvalho, V.D.H.; Costa, A.P.C.S. Time-series directional efficiency for knowledge benchmarking in service organizations. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 1159, pp. 333–339. [Google Scholar] [CrossRef]
- Nepomuceno, K.; Nepomuceno, T.; Sadok, D. Measuring the internet technical efficiency: A ranking for the world wide web pages. IEEE Lat. Am. Trans. 2020, 18, 1119–1125. [Google Scholar] [CrossRef]
Variable. | Total | Min. | Max. | Median | Mean | 1st Q. | 3rd Q. | Std. Dev. |
---|---|---|---|---|---|---|---|---|
Input | ||||||||
Officers | 1430 | 3.000 | 48.000 | 8.000 | 9.862 | 6.000 | 11.000 | 6.36 |
Outputs | ||||||||
Violent Crime | 1212 | 0.000 | 42.000 | 5.000 | 8.359 | 3.000 | 11.000 | 9.24 |
Street Mugging | 1334 | 0.0 | 79.0 | 5.0 | 9.2 | 1.0 | 10.0 | 13.24 |
Carjacking | 298 | 0.000 | 25.000 | 1.000 | 2.055 | 0.000 | 2.000 | 3.89 |
Environmental Factors | ||||||||
Violent Crime | 2905 | 0.00 | 198.00 | 13.00 | 20.03 | 7.00 | 26.00 | 23.94 |
Street Mugging | 20,890 | 2.0 | 2198.0 | 42.0 | 144.1 | 19.0 | 135.0 | 300.9 |
Carjacking | 10,180 | 1.00 | 1161.00 | 25.00 | 70.21 | 11.00 | 63.00 | 127.92 |
DMUs | Position (L4) | Position (Unique) | Position (L3) |
---|---|---|---|
Cumaru | 1 | 1 | 11 |
Lagoa do Ouro | 2 | 6 | 6 |
Água Preta | 3 | 8 | 9 |
Itaquitinga | 4 | 3 | 7 |
Jucati | 5 | 1 | 1 |
Terezinha | 6 | 11 | 24 |
Camocim de São Félix | 7 | 7 | 1 |
Jataúba | 8 | 5 | 4 |
Joaquim Nabuco | 9 | 15 | 26 |
Correntes | 10 | 16 | 14 |
Position | Compensatory Position | DMUs | Net Flow | Effectiveness | Relative Inefficiency |
---|---|---|---|---|---|
1 | 18 | Jucati | 0.456 | 0.333 | 0.000 |
2 | 37 | Saloá | 0.279 | 0.250 | 0.000 |
3 | 69 | Camocim de São Félix | 0.006 | 0.154 | 0.000 |
Position | Compensatory Position | DMUs | Net Flow | Effectiveness | Relative Inefficiency |
---|---|---|---|---|---|
4 | 2 | Cumaru | 0.778 | 1.000 | 0.250 |
5 | 4 | Lagoa do Ouro | 0.686 | 0.600 | 0.333 |
6 | 10 | Água Preta | 0.579 | 0.500 | 0.333 |
7 | 11 | Itaquitinga | 0.545 | 0.444 | 0.200 |
8 | 19 | Terezinha | 0.452 | 0.600 | 0.400 |
9 | 26 | Calçado | 0.363 | 0.500 | 0.389 |
10 | 32 | Jataúba | 0.315 | 0.286 | 0.167 |
11 | 35 | Joaquim Nabuco | 0.284 | 0.500 | 0.381 |
12 | 36 | Correntes | 0.281 | 0.333 | 0.250 |
13 | 40 | Jatobá | 0.219 | 0.500 | 0.476 |
14 | 45 | Moreilândia | 0.205 | 0.667 | 0.541 |
15 | 46 | Catende | 0.195 | 0.432 | 0.466 |
16 | 47 | Canhotinho | 0.193 | 0.250 | 0.200 |
17 | 60 | Quipapá | 0.063 | 0.500 | 0.541 |
18 | 61 | Araçoiaba | 0.060 | 0.422 | 0.500 |
19 | 62 | Petrolândia | 0.053 | 0.400 | 0.458 |
20 | 67 | Tabira | 0.014 | 0.444 | 0.444 |
21 | 68 | Santa Cruz | 0.010 | 0.400 | 0.500 |
22 | 71 | São Caitano | −0.006 | 0.187 | 0.259 |
23 | 76 | Mirandiba | −0.033 | 0.500 | 0.545 |
24 | 78 | Jaqueira | −0.039 | 0.272 | 0.428 |
25 | 79 | Amaraji | −0.042 | 0.300 | 0.466 |
26 | 80 | Ipubi | −0.051 | 0.307 | 0.444 |
27 | 85 | Lagoa de Itaenga | −0.076 | 0.166 | 0.190 |
28 | 87 | Agrestina | −0.083 | 0.333 | 0.444 |
29 | 90 | Riacho das Almas | −0.098 | 0.250 | 0.428 |
30 | 91 | Custódia | −0.103 | 0.4545 | 0.566 |
31 | 93 | Ouricuri | −0.124 | 0.500 | 0.648 |
32 | 96 | Tamandaré | −0.157 | 0.347 | 0.533 |
33 | 107 | Floresta | −0.259 | 0.181 | 0.393 |
34 | 109 | Angelim | −0.282 | 0.200 | 0.400 |
35 | 110 | Brejo da Madre de Deus | −0.293 | 0.355 | 0.545 |
36 | 111 | Águas Belas | −0.295 | 0.136 | 0.296 |
37 | 116 | Palmares | −0.328 | 0.232 | 0.375 |
38 | 119 | Bom Conselho | −0.364 | 0.250 | 0.444 |
39 | 121 | Belém de Maria | −0.375 | 0.200 | 0.428 |
40 | 125 | Cortês | −0.404 | 0.125 | 0.333 |
41 | 127 | Araripina | −0.423 | 0.166 | 0.461 |
42 | 128 | Aliança | −0.438 | 0.210 | 0.500 |
43 | 135 | Toritama | −0.577 | 0.152 | 0.500 |
44 | 138 | João Alfredo | −0.586 | 0.142 | 0.515 |
45 | 140 | Sertânia | −0.599 | 0.181 | 0.518 |
Position | Compensatory Position | DMUs | Net Flow | Effectiveness | Relative Inefficiency |
---|---|---|---|---|---|
46 | 1 | Paranatama | 0.819 | 0.000 | 0.166 |
47 | 3 | Jupi | 0.761 | 0.000 | 0.0555 |
48 | 5 | Goiana | 0.681 | 0.000 | 0.288 |
49 | 6 | Santa Terezinha | 0.597 | 0.000 | 0.333 |
50 | 7 | Venturosa | 0.586 | −0.166 | 0.208 |
51 | 8 | Sanharó | 0.586 | −0.111 | 0.166 |
52 | 9 | Casinhas | 0.583 | −0.182 | 0.166 |
53 | 12 | Lajedo | 0.542 | −0.107 | 0.091 |
54 | 13 | Iati | 0.540 | −0.166 | 0.266 |
55 | 14 | Bezerros | 0.529 | 0.020 | 0.354 |
56 | 15 | Nazaré da Mata | 0.512 | 0.100 | 0.424 |
57 | 16 | Escada | 0.459 | −0.021 | 0.411 |
58 | 17 | Ribeirão | 0.456 | 0 | 0.416 |
59 | 20 | Cabo de Santo Agostinho | 0.443 | −0.294 | 0.144 |
60 | 21 | Macaparana | 0.429 | −0.111 | 0.375 |
61 | 22 | Brejão | 0.392 | −0.166 | 0.333 |
62 | 23 | Feira Nova | 0.378 | 0.000 | 0.375 |
63 | 24 | Camutanga | 0.377 | 0.000 | 0.444 |
64 | 25 | Tuparetama | 0.377 | 0.000 | 0.444 |
65 | 27 | Cupira | 0.351 | −0.464 | 0.111 |
66 | 28 | Vitória de Santo Antão | 0.339 | −0.430 | 0.166 |
67 | 29 | Limoeiro | 0.336 | −0.227 | 0.111 |
68 | 30 | Vertentes | 0.335 | −0.315 | 0.285 |
69 | 31 | Camaragibe | 0.318 | −0.277 | 0.363 |
70 | 33 | Itambé | 0.314 | −0.111 | 0.416 |
71 | 34 | Itaíba | 0.310 | 0.000 | 0.476 |
72 | 38 | Ferreiros | 0.277 | −0.333 | 0.166 |
73 | 39 | Barreiros | 0.265 | −0.304 | 0.333 |
74 | 41 | Capoeiras | 0.219 | −0.333 | 0.333 |
75 | 42 | Sairé | 0.209 | −0.143 | 0.381 |
76 | 43 | Belo Jardim | 0.205 | −0.589 | 0.143 |
77 | 44 | Timbaúba | 0.205 | −0.307 | 0.372 |
78 | 48 | Caetés | 0.193 | −0.363 | 0.333 |
79 | 49 | Serrita | 0.189 | 0.000 | 0.518 |
80 | 50 | Taquaritinga do Norte | 0.176 | −0.500 | 0.333 |
81 | 51 | Rio Formoso | 0.155 | −0.176 | 0.466 |
82 | 52 | Sirinhaém | 0.155 | −0.518 | 0.200 |
83 | 53 | Pesqueira | 0.138 | −0.272 | 0.285 |
84 | 54 | Trindade | 0.122 | −0.210 | 0.407 |
85 | 55 | Machados | 0.090 | −0.666 | 0.277 |
86 | 56 | Arcoverde | 0.086 | −0.090 | 0.529 |
87 | 57 | São José do Egito | 0.080 | 0.000 | 0.545 |
88 | 58 | Santa Maria da Boa Vista | 0.077 | −0.090 | 0.547 |
89 | 59 | Ibimirim | 0.074 | −0.071 | 0.555 |
90 | 63 | São Bento do Una | 0.046 | −0.280 | 0.500 |
91 | 64 | Passira | 0.041 | −0.333 | 0.388 |
92 | 65 | Belém do São Francisco | 0.031 | 0.000 | 0.606 |
93 | 66 | São Vicente Ferrer | 0.019 | −0.545 | 0.285 |
94 | 70 | Tupanatinga | −0.002 | −0.444 | 0.428 |
95 | 72 | Serra Talhada | −0.014 | −0.025 | 0.597 |
96 | 73 | Paudalho | −0.017 | −0.115 | 0.463 |
97 | 74 | Afrânio | −0.020 | −0.500 | 0.388 |
98 | 75 | São João | −0.021 | −1.000 | 0.200 |
99 | 77 | São Benedito do Sul | −0.037 | −1.500 | 0.166 |
100 | 81 | Vicência | −0.053 | −0.647 | 0.407 |
101 | 82 | Panelas | −0.054 | −0.727 | 0.375 |
102 | 83 | São Joaquim do Monte | −0.063 | −1.900 | 0.133 |
103 | 84 | Lagoa Grande | −0.069 | −1.000 | 0.333 |
104 | 86 | Lagoa do Carro | −0.080 | −1.375 | 0.208 |
105 | 88 | Carpina | −0.083 | −0.551 | 0.283 |
106 | 89 | Gameleira | −0.089 | −0.529 | 0.407 |
107 | 92 | Barra de Guabiraba | −0.121 | −1.166 | 0.333 |
108 | 94 | Bonito | −0.133 | −1.416 | 0.250 |
109 | 95 | Santa Cruz do Capibaribe | −0.142 | −0.288 | 0.473 |
110 | 97 | Salgueiro | −0.168 | −0.150 | 0.636 |
111 | 98 | Tracunhaém | −0.172 | −0.375 | 0.444 |
112 | 99 | Bom Jardim | −0.173 | −1.154 | 0.333 |
113 | 100 | Chã Grande | −0.174 | −0.666 | 0.388 |
114 | 101 | Tacaimbó | −0.174 | −0.666 | 0.388 |
115 | 102 | Primavera | −0.175 | −0.571 | 0.444 |
116 | 103 | Moreno | −0.184 | −0.311 | 0.388 |
117 | 104 | Vertente do Lério | −0.207 | −1.333 | 0.333 |
118 | 105 | Altinho | −0.210 | −1.500 | 0.200 |
119 | 106 | Surubim | −0.214 | −0.421 | 0.509 |
120 | 108 | São José da Coroa Grande | −0.263 | −1.277 | 0.407 |
121 | 112 | Xexéu | −0.295 | −0.714 | 0.458 |
122 | 113 | Buíque | −0.299 | −0.900 | 0.407 |
123 | 114 | Palmeirina | −0.301 | −1.000 | 0.4 |
124 | 115 | Iguaraci | −0.306 | −1.000 | 0.333 |
125 | 117 | Flores | −0.338 | −0.333 | 0.600 |
126 | 118 | Orobó | −0.349 | −3.000 | 0.333 |
127 | 120 | São Lourenço da Mata | −0.368 | −0.444 | 0.433 |
128 | 122 | São José do Belmonte | −0.381 | −0.375 | 0.600 |
129 | 123 | Orocó | −0.390 | −1.200 | 0.444 |
130 | 124 | Betânia | −0.400 | −1.000 | 0.476 |
131 | 126 | Condado | −0.421 | −2.000 | 0.380 |
132 | 129 | Glória do Goitá | −0.485 | −0.800 | 0.500 |
133 | 130 | Alagoinha | −0.500 | −2.000 | 0.388 |
134 | 131 | Cabrobó | −0.518 | −1.000 | 0.431 |
135 | 132 | Terra Nova | −0.543 | −2.000 | 0.444 |
136 | 133 | Parnamirim | −0.557 | −0.833 | 0.566 |
137 | 134 | Itapissuma | −0.577 | −0.833 | 0.583 |
138 | 136 | Exu | −0.584 | −1.600 | 0.500 |
139 | 137 | Tacaratu | −0.585 | −4.000 | 0.444 |
140 | 139 | Gravatá | −0.587 | −1.000 | 0.500 |
141 | 141 | Carnaíba | −0.637 | −3.000 | 0.4762 |
142 | 142 | Chã de Alegria | −0.647 | −1.500 | 0.500 |
143 | 143 | Bodocó | −0.710 | −1.333 | 0.566 |
144 | 144 | Pombos | −0.727 | −1.571 | 0.500 |
145 | 145 | Afogados da Ingazeira | −0.780 | −1.333 | 0.608 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nepomuceno, T.C.C.; Daraio, C.; Costa, A.P.C.S. Multicriteria Ranking for the Efficient and Effective Assessment of Police Departments. Sustainability 2021, 13, 4251. https://doi.org/10.3390/su13084251
Nepomuceno TCC, Daraio C, Costa APCS. Multicriteria Ranking for the Efficient and Effective Assessment of Police Departments. Sustainability. 2021; 13(8):4251. https://doi.org/10.3390/su13084251
Chicago/Turabian StyleNepomuceno, Thyago C. C., Cinzia Daraio, and Ana Paula C. S. Costa. 2021. "Multicriteria Ranking for the Efficient and Effective Assessment of Police Departments" Sustainability 13, no. 8: 4251. https://doi.org/10.3390/su13084251
APA StyleNepomuceno, T. C. C., Daraio, C., & Costa, A. P. C. S. (2021). Multicriteria Ranking for the Efficient and Effective Assessment of Police Departments. Sustainability, 13(8), 4251. https://doi.org/10.3390/su13084251