Fabrication of Poly (Acrylonitrile-Co-Methyl Methacrylate) Nanofibers Containing Boron via Electrospinning Method: A Study on Size Distribution, Thermal, Crystalline, and Mechanical Strength Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer Solution Preparation
2.3. Electrospinning
2.4. Thermal Stabilization of PANMM Fibers
2.5. Characterization
3. Results and Discussion
3.1. Investigation of the SEM of the Nanofibers
3.2. Investigation of Chemical Structure of the Nanofibers
3.3. Investigation of the Thermal Properties of the Nanofibers
3.4. Investigation of the Structure of BA, PAN Nanofibers and PAN + BA
3.5. Investigation of the Mechanical Strength of the Modified Nanofibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chand, S. Review carbon fibers for composites. J. Mater. Sci. 2000, 35, 1303–1313. [Google Scholar] [CrossRef]
- Al-Enizi, A.M.; Zagho, M.M.; Elzatahry, A.A. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials 2018, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, S.A.; Dhavale, S.B.; Patil, A.H.; Patil, P.S. Brief overview of electrospun polyacrylonitrile carbon nanofibers: Prepara-tion process with applications and recent trends. Mater. Des. Process. Commun. 2019, 1, e83. [Google Scholar] [CrossRef] [Green Version]
- Le, N.L.; Nunes, S.P. Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 2016, 7, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, M.; Zohoori, S. Review for application of electrospinning and electrospun nanofibers technology in textile indus-try. J. Nanostructure Chem. 2016, 6, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Sahay, R.; Kumar, P.; Sridhar, R.; Jayaraman, S.; Venugopal, J.; Mhaisalkar, S. Electrospun composite nanofibers and their mul-tifaceted applications. J. Mater. Chem. 2012. [Google Scholar] [CrossRef]
- Mustafov, S.D.; Mohanty, A.K.; Misra, M.; Seydibeyoğlu, M.Ö. Fabrication of conductive Lignin/PAN carbon nano-fibers with enhanced graphene for the modified electrodes. Carbon 2019, 147, 262–275. [Google Scholar] [CrossRef]
- Tao, X.; Zhou, S.; Ma, J.; Xiang, Z.; Hou, R.; Wang, J.; Li, X. A facile method to prepare ZrC nanofibers by electrospinning and pyrolysis of polymeric precursors. Ceram. Int. 2017, 43, 3910–3914. [Google Scholar] [CrossRef]
- Tao, X.; Zhou, S.; Xiang, Z.; Ma, J.; Hou, R.; Zhu, Y.; Wei, X. Fabrication of continuous ZrB2 nanofibers derived from boron-containing polymeric precursors. J. Alloy. Compd. 2017, 697, 318–325. [Google Scholar] [CrossRef]
- Nayak, R.; Padhye, R.; Arnold, L. Melt-Electrospinning of nanofibers. In Electrospun Nanofibers; Woodhead Publishing Series in Textiles; Woodhead Publishing: Cambridge, UK, 2017; pp. 11–40. [Google Scholar] [CrossRef]
- Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35. [Google Scholar] [CrossRef]
- Alcalá-Sánchez, D.; Tapia-Picazo, J.-C.; Bonilla-Petriciolet, A.; Luna-Bárcenas, G.; López-Romero, J.M.; Álvarez-Castillo, A. Analysis of Terpolymerization systems for the development of carbon fiber precursors of PAN. Int. J. Polym. Sci. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Mohamed, A.; Yousef, S.; Abdelnaby, M.A.; Osman, T.A.; Hamawandi, B.; Toprak, M.S.; Muhammed, M.; Uheida, A. Photocata-lytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers. Sep. Purif. Technol. 2017, 182, 219–223. [Google Scholar] [CrossRef]
- Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun nanofibers: New generation materials for advanced ap-plications. Mater. Sci. Eng. B 2017, 217, 36–48. [Google Scholar] [CrossRef]
- Nagarajan, S.; Belaid, H.; Pochat-Bohatier, C.; Teyssier, C.; Iatsunskyi, I.; Coy, E.; Balme, S.; Cornu, D.; Miele, P.; Kalkura, N.S.; et al. Design of boron nitride/gelatin electrospun nanofibers for bone tissue engineering. ACS Appl. Mater. Interfaces 2017, 9, 33695–33706. [Google Scholar] [CrossRef]
- Dadvar, S.; Tavanai, H.; Dadvar, H.; Morshed, M.; Ghodsi, F.E. UV-protection and photocatalytic properties of electrospun polyacrylonitrile nanofibrous mats coated with TiO2 nanofilm via sol–gel. J. Sol-Gel Sci. Technol. 2011, 59, 269–275. [Google Scholar] [CrossRef]
- Cakmak, Y.; Canbolat, M.F.; Cakmak, E.; Dayik, M. Production and characterization of boron nitride-doped nanofiber mats created through electrospinning. J. Ind. Text. 2016, 47, 993–1005. [Google Scholar] [CrossRef]
- Song, X.; Ma, Y.; Wang, J.; Liu, B.; Yao, S.; Cai, Q.; Liu, W. Homogeneous and flexible mullite nanofibers fabricated by electro-spinning through diphasic mullite sol–gel route. J. Mater. Sci. 2018, 53, 14871–14883. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Shawgi, N.; Li, S.; Wang, S. A Novel method of synthesis of high purity nano plated boron carbide powder by a solid-state reaction of poly (vinyl alcohol) and boric acid. Ceram. Int. 2017, 43, 10554–10558. [Google Scholar] [CrossRef]
- Mittal, G.; Rhee, K.Y.; Mišković-Stanković, V.; Hui, D. Reinforcements in multi-scale polymer composites: Processing, properties, and applications. Compos. Part B: Eng. 2018, 138, 122–139. [Google Scholar] [CrossRef]
- Reid, R. Update on Boron Toxicity and Tolerance in Plants. In Advances in Plant Animal Boron Nutrition; Xu, F., Goldbach, H.E., Brown, P.H., Bell, R.W., Fujiwara, T., Hunt, C.D., Goldberg, S., Shi, L., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 83–90. [Google Scholar]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym. Rev. 2012, 52, 234–258. [Google Scholar] [CrossRef]
- Grassie, N.; Mcguchan, R. Pyrolysis of polyacrylonitrile and related polymers—IV. Thermal analysis of polyacrylonitrile in the presence of additives. Eur. Polym. J. 1971, 7, 1503–1514. [Google Scholar] [CrossRef]
- Hwang, H.; Barakat, N.; Kanjwal, M.; Sheikh, F.; Kim, H.; Abadir, M. Boron nitride nanofibers by the electrospinning technique. Macromol. Res. 2010, 18, 551–557. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, B.-H. Influence of boron content on the structure and capacitive properties of electrospun polyacryloni-trile/pitch-based carbon nanofiber composites. Synth. Met. 2018, 242, 1–7. [Google Scholar] [CrossRef]
- Ju, A.Q.; Guang, S.Y.; Xu, H.Y. Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile co-polymers. Carbon 2013, 54, 323–335. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, W.L.; Zhao, X.S.; Xu, J.J.; Liu, P.Q. Preparation, flame retardancy and thermal degradation behaviors of poly-acrylonitrile fibers modified with diethylenetriamine and zinc ions. J. Therm. Anal. Calorim. 2016, 124, 719–728. [Google Scholar] [CrossRef]
- Andrei, R.D.; Marinoiu, A.; Marin, E.; Enache, S.; Carcadea, E. Carbon nanofibers production via the electrospinning process. Energies 2020, 13, 3029. [Google Scholar] [CrossRef]
- Shimada, I.; Takahagi, T.; Fukuhara, M.; Morita, K.; Ishitani, A. FT-IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers. J. Polym. Sci. Part A: Polym. Chem. 1986, 24, 1989–1995. [Google Scholar] [CrossRef]
- Kim, D.; You, M.; Seol, J.H.; Ha, S.; Kim, Y.A. Enhanced thermal conductivity of individual polymeric nanofiber incorpo-rated with boron nitride nanotubes. J. Phys. Chem. C 2017, 121, 7025–7029. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Zhou, T.; Liu, X.; Yuan, Q.; Zhang, A. New understanding on the reaction pathways of the polyacrylonitrile copolymer fiber pre-oxidation: Online tracking by two-dimensional correlation FTIR spectroscopy. RSC Adv. 2016, 6, 4397–4409. [Google Scholar] [CrossRef]
- Wiles, K.B. Determination of Reactivity Ratios for Acrylonitrile/Methyl Acrylate Radical Copolymerization via Nonlinear Methodologies Using Real Time FTIR. Master’s Thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2002. [Google Scholar]
- Coleman, M.M.; Sivy, G.T. Fourier transform IR studies of the degradation of polyacrylonitrile copolymers-I. Introduction and comparative rates of the degradation of three copolymers below 200 °C and under reduced pressure. Carbon 1981, 19, 123–126. [Google Scholar] [CrossRef]
- Faraji, S.; Yardim, M.F.; Can, D.S.; Sarac, A.S. Characterization of polyacrylonitrile, poly (acrylonitrile-co-vinyl acetate), and poly (acrylonitrile-co-itaconic acid) based activated carbonnanofibers. J. Appl. Polym. Sci. 2017, 134, 1–10. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Zha, J.-W.; Li, W.-K.; Li, C.-Q.; Wang, S.-J.; Wen, Y.; Dang, Z.-M. Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning. Compos. Sci. Technol. 2018, 156, 1–7. [Google Scholar] [CrossRef]
- Haddadi, S.A.; Ramazani, A.S.; Talebi, S.; Fattahpour, S.; Hasany, M. Investigation of the effect of nanosilica on rheological, thermal, mechanical, structural, and piezoelectric properties of poly (vinylidene fluoride) nanofibers fabricated using an electrospinning technique. Ind. Eng. Chem. Res. 2017, 56, 12596–12607. [Google Scholar] [CrossRef]
- Boland, C.S.; Barwich, S.; Khan, U.; Coleman, J.N. High stiffness nano-composite fibres from polyvinylalcohol filled with graphene and boron nitride. Carbon 2016, 99, 280–288. [Google Scholar] [CrossRef]
- Wen, Y.; Lu, Y.G.; Qin, X.Y.; Xiao, H. Preparation of polyacrylonitrile high modulus carbon fibers by catalytic graphitization using boron. Mater. Sci. Forum 2011, 686, 778–783. [Google Scholar] [CrossRef]
Sample Code | PANMM Concentration (%) | BA Concentration (%) | Magnetic Stirrer (h) | Ultrasonic (min) |
---|---|---|---|---|
S1 | 5% (w/v) | − | 24 | − |
S2 | 12% (w/v) | − | 24 | − |
S3 | 20% (w/v) | − | 24 | − |
S4 | 12% (w/v) | 10% (w/w) | 24 | 6 |
S5 | 12% (w/v) | 30% (w/w) | 24 | 6 |
S6 | 12% (w/v) | 50% (w/w) | 24 | 6 |
Sample | Work of Rupture (gf/den) | Modulus (cN/tex) | Max Stress (cN/tex) | Extension at Max Load (%) |
---|---|---|---|---|
PANMM | 3.179 | 309.1 | 21 | 25.31 |
PANMM + BA | 3.547 | 255 | 19.76 | 29.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi, M.; Moghimifar, Z.; Kumar, P.S.; Javadian, H.; Farsadrooh, M. Fabrication of Poly (Acrylonitrile-Co-Methyl Methacrylate) Nanofibers Containing Boron via Electrospinning Method: A Study on Size Distribution, Thermal, Crystalline, and Mechanical Strength Properties. Sustainability 2021, 13, 4342. https://doi.org/10.3390/su13084342
Sadeghi M, Moghimifar Z, Kumar PS, Javadian H, Farsadrooh M. Fabrication of Poly (Acrylonitrile-Co-Methyl Methacrylate) Nanofibers Containing Boron via Electrospinning Method: A Study on Size Distribution, Thermal, Crystalline, and Mechanical Strength Properties. Sustainability. 2021; 13(8):4342. https://doi.org/10.3390/su13084342
Chicago/Turabian StyleSadeghi, Meisam, Zahra Moghimifar, P. Senthil Kumar, Hamedreza Javadian, and Majid Farsadrooh. 2021. "Fabrication of Poly (Acrylonitrile-Co-Methyl Methacrylate) Nanofibers Containing Boron via Electrospinning Method: A Study on Size Distribution, Thermal, Crystalline, and Mechanical Strength Properties" Sustainability 13, no. 8: 4342. https://doi.org/10.3390/su13084342
APA StyleSadeghi, M., Moghimifar, Z., Kumar, P. S., Javadian, H., & Farsadrooh, M. (2021). Fabrication of Poly (Acrylonitrile-Co-Methyl Methacrylate) Nanofibers Containing Boron via Electrospinning Method: A Study on Size Distribution, Thermal, Crystalline, and Mechanical Strength Properties. Sustainability, 13(8), 4342. https://doi.org/10.3390/su13084342