Rasch Model for Assessing Propensity to Entomophagy
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Philosophy of Rasch Model Analysis
2.2. Questionnaire and Data Collection
2.3. Rasch Models as Basis for Fundamental Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture–Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- FAO. Edible Insects Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers perspective on circular economy strategy for reducing food waste. Sustde 2017, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Henkion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arena, E.; Mazzaglia, A.; Selvaggi, R.; Pecorino, B.; Fallico, B.; Serranò, M.; Pappalardo, G. Exploring Consumer’s Propensity to Consume Insect-Based Foods. Empirical Evidence from a Study in Southern Italy. Appl. Syst. Innov. 2020, 3, 38. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Consumer perception and behaviour regarding sustainable protein consumption: A systematic review. Trends Food Sci. Technol. 2017, 61, 11–25. [Google Scholar] [CrossRef]
- Van Huis, A. Insects as food and feed, a new emerging agricultural sector: A review. J. Insects Food Feed 2020, 6, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Deppermann, A.; Havlík, P.; Valin, H.; Boere, E.; Herrero, M.; Vervoort, J.; Mathijs, E. The market impacts of shortening feed supply chains in Europe. Food Sec. 2018, 10, 1401–1410. [Google Scholar] [CrossRef] [Green Version]
- Hoek, A.C.; Elzerman, J.E.; Hageman, R.; Kok, F.J.; Luning, P.A.; de Graaf, C. Are meat substitutes liked better over time? A repeated in-home use test with meat substitutes or meat in meals. Food Qual. Prefer. 2013, 28, 253–263. [Google Scholar] [CrossRef]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019, 59, 2169–2188. [Google Scholar] [CrossRef]
- Van der Weele, C.; Feindt, P.; van der Goot, A.J.; Mierlo, B.; Boekel, M. Meat alternatives: An integrative comparison. Trends Food Sci. Technol. 2019, 88, 505–512. [Google Scholar] [CrossRef]
- Sanchez-Sabate, R.; Sabaté, J. Consumer attitudes towards environmental concerns of meat consumption: A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 1220. [Google Scholar] [CrossRef] [Green Version]
- Oonincx, D.G.; de Boer, I.J. Environmental impact of the production of mealworms as a protein source for humans a life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [Green Version]
- Smetana, S.; Palanisamy, M.; VolkerHeinz, A.M. Sustainability of insect use for feed and food: Life Cycle Assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Adegbeyea, M.J.; Ravi Kanth Reddyb, P.; Obaisi, A.I.; Elghandourd, M.M.M.Y.; Oyebamiji, K.J.; AZM Salem, O.T.; Morakinyo-Fasipe, M.; Cipriano-Salazar, M.; Camacho-Díaz, L.M.. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations - An overview. J. Clean. Prod. 2020, 242, 118319. [Google Scholar] [CrossRef]
- Jensen, K.; Kristensen, T.N.; Heckmann, L.H.; Sørensen, J.G. Breeding and maintaining high-quality insects. In Insects as Food and Feed; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; pp. 174–198. [Google Scholar]
- Van Huis, A.; Oonincx, D.G. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Deroy, O.; Reade, B.; Spence, C. The insectivore’s dilemma and how to take the West out of it. Food Qual. Prefer 2015, 44, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Rumpold, B.A.; Schluter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Halloran, A.; Vantomme, P.; Hanboonsong, Y.; Ekesi, S. Regulating edible insects: The challenge of addressing food security, nature conservation, and the erosion of traditional food culture. J. Food Secur. 2015, 7, 739–746. [Google Scholar] [CrossRef]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Becoming an insectivore: Results of an experiment. Food Qual. Prefer 2016, 51, 118–122. [Google Scholar] [CrossRef]
- Martins, Y.; Pliner, P. “Ugh! That’s disgusting!”: Identification of the characteristics of foods underlying rejections based on disgust. Appetite 2006, 46, 75–85. [Google Scholar] [CrossRef]
- Sogari, G. Entomophagy and Italian consumers: An exploratory analysis. Prog. Nutr. 2015, 17, 311–316. [Google Scholar]
- Lombardi, A.; Vecchio, R.; Borrello, M.; Caracciolo, F.; Cembalo, L. Willingness to pay for insect-based food: The role of information and carrier. Food Qual. Prefer. 2019, 72, 177–187. [Google Scholar] [CrossRef]
- Pliner, P.; Hobden, K.L. Development of a scale to measure the trait of food neophobia in humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- Laureati, M.; Proserpio, C.; Jucker, C.; Savoldelli, S. New sustainable protein sources: Consumers’ willingness to adopt insects as feed and food. Ital. J. Food Sci. 2016, 28, 652–668. [Google Scholar]
- Piha, S.; Pohjanheimo, T.; Lähteenmäki-Uutela, A.; Křečková, Z.; Otterbring, T. The effects of consumer knowledge on the willingness to buy insect food: An exploratory cross-regional study in Northern and Central Europe. Food Qual. Prefer. 2018, 70, 1–10. [Google Scholar] [CrossRef]
- Elorinne, A.-L.; Niva, M.; Vartiainen, O.; Väisänen, P. Insect Consumption Attitudes among Vegans, Non-Vegan Vegetarians, and Omnivores. Nutrients 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- House, J. Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Appetite 2016, 107, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Pernille, N.; Videbæka, K.; Grunerta, G. Disgusting or delicious? Examining attitudinal ambivalence towards entomophagy among Danish consumers. Food Qual. Prefer. 2020, 83, 103913. [Google Scholar]
- Batat, W.; Peter, P. The healthy and sustainable bugs appetite: Factors affecting entomophagy acceptance and adoption in Western food cultures. J. Consum. Mark. 2020, 37, 291–303. [Google Scholar] [CrossRef]
- Balzan, S.; Fasolato, L.; Maniero, S.; Novelli, E. Edible insects and young adults in a north-east Italian city an exploratory study. Br. Food J. 2016, 118, 318–326. [Google Scholar] [CrossRef]
- Orsi, L.; Voege, L.L.; Stranieri, S. Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. Food Res. Int. 2019, 125, 108573. [Google Scholar] [CrossRef]
- La Barbera, F.; Verneau, F.; Videbæk, P.N.; Amato, M.; Grunert, K.G. A self-report measure of attitudes toward the eating of insects: Construction and validation of the Entomophagy Attitude Questionnaire. Food Qual. Prefer. 2020, 79, 103757. [Google Scholar] [CrossRef]
- Jensen, N.H.; Lieberoth, A. We will eat disgusting foods together–Evidence of the normative basis of Western entomophagy-disgust from an insect tasting. Food Qual Prefer. 2019, 72, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Sogari, G.; Menozzi, D.; Mora, C. Sensory-liking expectations and perceptions of processed and unprocessed insect products. Int. J. Food Syst. Dyn. 2018, 9, 314–320. [Google Scholar]
- Verneau, F.; La Barbera, F.; Kolle, S.; Amato, M.; Del Giudice, T.; Grunert, K. The effect of communication and implicit associations on consuming insects: An experiment in Denmark and Italy. Appetite 2016, 106, 30–36. [Google Scholar] [CrossRef]
- Bond, T.G.; Fox, C.M. Applying the Rasch Model: Fundamental Measurement in the Human Sciences, 3rd ed.; Routledge: New York, NY, USA; London, UK, 2015. [Google Scholar]
- Kimberlin, C.L.; Winterstein, A.G. Validity and reliability of measurement instruments used in research. Am. J. Health Pharm. 2008, 65, 2276–2284. [Google Scholar] [CrossRef]
- Yasin, R.M.; Yunus, F.A.N.; Rus, R.C.; Ahmad, A.; Rahim, M.B. Validity and Reliability Learning Transfer Item Using Rasch Measurement Model. Procedia Soc. Behav. Sci. 2015, 204, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Gay, D. Airasian, The Rating Scale Model. In Handbook of Modern Item Response Theory; Linden, W.J., Hambleton, R.K., Eds.; Springer: New York, NY, USA, 2003; Chapter 4; pp. 67–148. [Google Scholar]
- Hagquist, C.; Bruce, M.B.; Gustavsson, J.P. Using the Rasch model in nursing research: An introduction and illustrative example. Int. J. Nurs. Stud. 2009, 46, 380–393. [Google Scholar] [CrossRef]
- Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests; University of Chicago Press: Chicago, IL, USA, 1960. [Google Scholar]
- Tennant, A.; Conaghan, P.G. The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis Rheum. 2007, 57, 1358–1362. [Google Scholar] [CrossRef]
- Hanafi, N.M.; Rahman, A.A.; Mukhtar, M.I.; Ahmad, J.; Warman, S. Validity and Reliability of Competency Assessment Implementation (CAI) Instrument Using Rasch Model. Int. J. Soc. Educ. Econ. Manag. Eng. 2014, 8, 162–167. [Google Scholar]
- Azrilah, A.A. Rasch Model Fundamentals: Scale Construct and Measurement Structure; Integrated Advance Planning Sdn Bhd.: Kuala Lumpur, Malaysia, 2011. [Google Scholar]
- Wright, B.D. Sample-free test calibration and person measurement. In Proceedings of the ETS Invitational Conference on Testing Problems; MESA Research Memorandum; ETS: Princeton, NJ, USA, 1968. [Google Scholar]
- Foti, V.T.; Scuderi, A.; Stella, G.; Timpanaro, G. Consumer purchasing behaviour for “biodiversity-friendly” vegetable products: Increasing importance of informal relationships. Agric. Econ. 2019, 65, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Gere, A.; Székely, G.; Kovács, S.; Kókai, Z.; Sipos, L. Readiness to adopt insects in Hungary: A case study. Food Qual. Prefer. 2017, 59, 81–86. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Andrich, D. A rating formulation for ordered response categories. Psychometrika 1978, 43, 561–573. [Google Scholar] [CrossRef]
- Bassi, I.; Gori, E.; Iseppi, L. Assessing environmental awareness towards protection of the Alps: A case study. Land Use Policy 2019, 87, 104028. [Google Scholar] [CrossRef]
- Boyle, K. Contingent valuation in practice. In A Primer on Nonmarket Valuation; Champ, P.A., Boyle, K., Brown, T.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ashraf, R.; Merunka, D. The use and misuse of student samples: An empirical investigation of European marketing research. J. Consum. Behav. 2017, 16, 295–308. [Google Scholar] [CrossRef]
- Depositario, D.P.T.; Nayga, R.M., Jr.; Wu, X.; Laude, T.P. Should students be used as subjects in experimental auctions? Econ. Lett. 2009, 102, 122–124. [Google Scholar] [CrossRef]
- Mjelde, J.W.; Israel Schwarzlose, A.A.; Dudensing, R.M.; Jin, Y.; Cherrington, L.K.; Chen, J. Subject pool effects among the general population and students: A choice experiment example. Appl. Econ. Lett. 2016, 23, 1018–1021. [Google Scholar] [CrossRef]
- Rasch, G. On general laws and the meaning of measurement in psychology. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Theory of Probability, Davis, CA, USA, 20 June–30 July 1960; Volume IV, pp. 321–333. [Google Scholar]
- Rasch, G. On Specific Objectivity: An attempt at formalizing the request for generality and validity of scientific statements. Dan. Yearb. Philos. 1977, 14, 58–94. [Google Scholar]
- Campbell, N.R. An Account of the Principles of Measurement and Calculation; Longmans, Green & Co: London, UK, 1928. [Google Scholar]
- Engelhard, G., Jr. Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 1st ed.; Routledge: New York, NY, USA; London, UK, 2013. [Google Scholar]
- Cembalo, L.; Karabatsos, G. Axiomatic measurement theory as a basis for model selection in item-response theory. In Proceedings of the 32th Annual Conference for the Society for Mathematical Psychology, Santa Cruz, CA, USA, 23 June 1999. [Google Scholar]
- Hambleton, R.K.; Swaminathan, H. Item Response Theory: Principles and Applications; Kluwer-Nijho: Boston, MA, USA, 1985. [Google Scholar]
- Allen, M.J.; Yen, W.M. Introduction to Measurement Theory; Waveland Press: Long Grove, IL, USA, 2002. [Google Scholar]
- Wright, B.D.; Masters, G.N. Rating Scale Analysis. Rasch Measurement; MESA Press: Chicago, CA, USA, 1982. [Google Scholar]
- Battauz, M.; Bellio, R.; Gori, E. Covariate Measurement Error Adjustment for Multilevel Models with Application to Educational Data. J. Educ. Behav. Stat. 2011, 36, 283–306. [Google Scholar] [CrossRef]
- Linacre, J.M. Category, step and threshold: Definitions & disordering. Rasch Meas. Trans. 2001, 15, 794. [Google Scholar]
- Lord, F.M.; Novick, M.R. Statistical Theories of Mental Test Scores; Addison-Wesley Publishing Company: Boston, MA, USA, 1968. [Google Scholar]
- Linacre, J.M. WINSTEPS, MESA Press: Chicago, IL, USA, 2002.
- Bond, T.G.; Fox, C.M. Applying the Rasch Model: Fundamental Measurement in the Human Sciences; Routledge: Oxon, UK, 2007. [Google Scholar]
- Smith, E.V., Jr. Understanding Rasch measurement: Detecting and evaluating the impact of multidimenstionality using item fit statistics and principal component analysis of residuals. J. Appl. Meas. 2002, 3, 205–231. [Google Scholar]
- Sogari, G.; Bogueva, D.; Marinova, D. Australian Consumers’ Response to Insects as Food. Agriculture 2019, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Linacre, J.M. Rasch model estimation: Further topics. J. Appl. Meas. 2004, 5, 95–110. [Google Scholar]
- Palmieri, N.; Perito, M.A.; Macrì, M.C.; Lupi, C. Exploring consumers’ willingness to eat insects in Italy. Br. Food J. 2019, 121, 2937–2950. [Google Scholar] [CrossRef]
- Sogari, G.; Menozzi, D.; Mora, C. Exploring young foodies׳ knowledge and attitude regarding entomophagy: A qualitative study in Italy. Int. J. Gastron. Food Sci. 2017, 7, 16–19. [Google Scholar] [CrossRef]
- Megido, R.C.; Gierts, C.; Bleckerb, C.; Brostaux, Y.; Haubrugea, É.; Alabia, T.; Francisa, F. Consumer acceptance of insect-based alternative meat products in Western countries. Food Qual. Prefer. 2016, 52, 237–243. [Google Scholar] [CrossRef]
- Tan, H.S.G.; van den Berg, E.; Stieger, M. The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. Food Qual. Prefer. 2016, 52, 222–231. [Google Scholar] [CrossRef]
- Hartmann, C.; Shi, J.; Giusto, A.; Siegrist, M. The psychology of eating insects: A cross-cultural comparison between Germany and China. Food Qual. Prefer. 2015, 44, 148–156. [Google Scholar] [CrossRef]
- Schlup, Y.; Brunner, T. Prospects for insects as food in Switzerland: A tobit regression. Food Qual. Prefer. 2018, 64, 37–46. [Google Scholar] [CrossRef]
- Flight, I.; Leppard, P.; Cox, D.N. Food neophobia and associations with cultural diversity and socio-economic status amongst rural and urban Australian adolescents. Appetite 2003, 41, 51–59. [Google Scholar] [CrossRef]
- Galati, A.; Tulone, A.; Moavero, P.; Crescimanno, M. Consumer interest in information regarding novel food technologies in Italy: The case of irradiated foods. Food Res. Int. 2019, 119, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Roma, R.; Ottomano Palmisano, G.; De Boni, A. Insects as novel food: A consumer attitude analysis through the dominance-based rough set approach. Foods 2020, 9, 387. [Google Scholar] [CrossRef] [Green Version]
- Toti, E.; Massaro, L.; Kais, A.; Aiello, P.; Palmery, M.; Peluso, I. Entomophagy: A Narrative Review on Nutritional Value, Safety, Cultural Acceptance and A Focus on the Role of Food Neophobia in Italy. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 46. [Google Scholar] [CrossRef]
- Van Huis, A. Edible insects are the future? Proc. Nutr. Soc. 2016, 75, 294–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onwezena, M.C.; van den Puttelaara, J.; Veraina, M.C.D.; Veldkamp, T. Consumer acceptance of insects as food and feed: The relevance of affective factors. Food Qual. Prefer. 2019, 77, 51–63. [Google Scholar] [CrossRef]
- Cicatiello, C.; De Rosa, B.; Franco, S.; Lacetera, N. Consumer approach to insects as food: Barriers and potential for consumption in Italy. Br. Food J. 2016, 118, 2271–2286. [Google Scholar] [CrossRef]
- Ruby, M.B.; Rozin, P.; Chan, C. Determinants of willingness to eat insects in the USA and India. J. Insects Food Feed 2015, 1, 215–225. [Google Scholar] [CrossRef]
- Tuccillo, F.; Marino, M.G.; Torri, L. Italian consumers’ attitudes towards entomophagy: Influence of human factors and properties of insects and insect-based food. Food Res. Int. 2020, 137, 109619. [Google Scholar] [CrossRef]
- Torri, L.; Tuccillo, F.; Bonelli, S.; Piraino, S.; Leoned, A. The attitudes of Italian consumers towards jellyfish as novel food. Food Qual. Prefer. 2020, 79, 103782. [Google Scholar] [CrossRef]
- Petersen, M.; Olson, O.; Rao, S. University Student Perspectives of Entomophagy: Positive Attitudes Lead to Observability and Education Opportunities. J. Insect Sci. 2020, 20, 1–6. [Google Scholar] [CrossRef]
- La Barbera, F.; Verneau, F.; Amato, M.; Grunert, K. Understanding Westerners’ disgust for the eating of insects: The role of food neophobia and implicit associations. Food Qual. Prefer. 2018, 64, 120–125. [Google Scholar] [CrossRef]
Items | Codes |
---|---|
Country of origin | D1 |
Personal eating habits (omnivore, vegetarian, vegan, other) | D2 |
Have you ever heard about ”Entomophagy” (the practice of eating insects)? | D3 |
Are you aware that in some parts of the world insects are considered a delicacy? | D4 |
Do you know how many species of insects are edible? | D5 |
Have you ever eaten insects? | D6 |
What type of insect-based products have you tried? | D7 |
Are you aware that we frequently eat insects without being aware of it? | D8 |
How often do you eat an insect-based meal? | D9 |
How do insects fit into your diet? | D10 |
For which reasons would you decide to eat insects? | D11 |
In case of hunger or need, would you eat insects? | D12 |
Which of the foods below do you not eat (raw or cooked)? | D13 |
How difficult do you think it is to find these edible insects? | D14 |
How much would you be willing to pay for 10 g of ready-to-eat insects? | D15 |
Which nutritional component do you think is the most present in insects? | D16 |
Which are in your opinion the pros of eating insects? | D17 |
In your opinion, what are the cons of eating insects? | D18 |
Which age group would you think is most interested in eating insects? | D19 |
Are you interested in receiving more information about it? | D20 |
Would you be more willing to eat insects if you had a better understanding of the practice of entomophagy? | D21 |
Which insect(s) would you consider eating among the ones listed below? | D22 |
Would you prefer to eat local or exotic species of insects? | D23 |
What type of insect-based products would you try? | D24 |
Where do you expect to find insect-based products on sale? | D25 |
In your opinion, who is responsible for the safety of insect-based products for human consumption? | D26 |
Would you eat animal products (meat, milk, etc.) produced by livestock fed with insects? | D27 |
Would you add an insect-based product to the diet of your pet? | D28 |
What feeling does this picture provoke in you? (Giant wasps) | D29 |
What feeling does this picture provoke in you? (Mealworms) | D30 |
What feeling does this picture provoke in you? (Locusts with chocolate) | D31 |
What feeling does this picture provoke in you? (Insect mix) | D32 |
Characteristics | Classes | % |
---|---|---|
Gender | Female | 59.5 |
Age | 20–30 | 43.9 |
Education | Graduates High school | 55.3 21.3 |
Country | Italy | 85.4 |
Eating habits | Omnivorous | 91.3 |
Summary of 23 Measured (Non-Extreme) Item | ||||||||
---|---|---|---|---|---|---|---|---|
Total Score | Count | Measure | Model S.E. 5 | Infit 1 | Outfit 2 | |||
MNSQ 3 | ZSTD 4 | MNSQ | ZSTD | |||||
Mean | 230.2 | 411.0 | 0.00 | 0.15 | 1.02 | 0.05 | 0.90 | −0.42 |
SEM | 42.2 | 13.7 | 0.32 | 0.01 | 0.04 | 0.51 | 0.07 | 0.35 |
P. SD | 198.9 | 64.3 | 1.48 | 0.03 | 0.020 | 2.38 | 0.31 | 1.63 |
S.SD | 203.4 | 65.7 | 1.51 | 0.03 | 0.21 | 2.44 | 0.32 | 1.67 |
Max. | 675.0 | 437.0 | 2.77 | 0.26 | 1.49 | 4.49 | 1.41 | 2.81 |
Min. | 19.0 | 164.0 | −3.60 | 0.11 | 0.64 | −5.14 | 0.27 | −3.86 |
Item reliability | 0.99 |
Summary of 437 Measured (Extreme and Non-Extreme) Person | ||||||||
---|---|---|---|---|---|---|---|---|
Total Score | Count | Measure | Model S.E. | Infit | Outfit | |||
MNSQ | ZSTD | MNSQ | ZSTD | |||||
Mean | 12.1 | 21.6 | −2.04 | 0.84 | n.c. | n.c. | n.c. | n.c. |
SEM | 0.3 | 0.0 | 0.11 | 0.02 | n.c. | n.c. | n.c. | n.c. |
P. SD | 6.2 | 0.8 | 2.38 | 0.50 | n.c. | n.c. | n.c. | n.c. |
S.SD | 6.2 | 0.8 | 2.38 | 0.50 | n.c. | n.c. | n.c. | n.c. |
Max. | 29.0 | 22.0 | 3.43 | 1.88 | n.c. | n.c. | n.c. | n.c. |
Min. | 1.0 | 18.0 | −5.83 | 0.49 | n.c. | n.c. | n.c. | n.c. |
Person reliability | 0.83 |
Summary of 362 Measured (Non-Extreme) Person | ||||||||
---|---|---|---|---|---|---|---|---|
Total Score | Count | Measure | Model S.E. | Infit | Outfit | |||
MNSQ | ZSTD | MNSQ | ZSTD | |||||
Mean | 13.6 | 21.6 | −1.26 | 0.62 | 1.00 | 0.07 | 0.88 | 0.02 |
SEM | 0.3 | 0.0 | 0.10 | 0.01 | 0.02 | 0.05 | 0.03 | 0.04 |
P. SD | 5.8 | 0.8 | 1.82 | 0.19 | 0.32 | 1.00 | 0.51 | 0.71 |
S.SD | 5.8 | 0.8 | 1.82 | 0.19 | 0.32 | 1.00 | 0.51 | 0.71 |
Max. | 29.0 | 22.0 | 3.43 | 1.10 | 2.19 | 3.25 | 2.89 | 2.24 |
Min. | 2.0 | 18.0 | −4.51 | 0.49 | 0.44 | −2.63 | 0.13 | −1.74 |
Person reliability | 0.87 |
Item | Total Score | Measure | Model S.E. | Infit | Outfit | Exact Match | |||
---|---|---|---|---|---|---|---|---|---|
MNSQ | ZSTD | MNSQ | ZSTD | OBS% | EXP% | ||||
D20 | 295 | −3.60 | 0.17 | 1.49 | 4.49 | 1.41 | 1.35 | 78.5 | 86.3 |
D24.4 | 94 | 0.40 | 0.14 | 1.25 | 3.41 | 1.39 | 1.48 | 76.8 | 79.9 |
D15M | 132 | 1.17 | 0.16 | 1.38 | 2.69 | 1.34 | 2.29 | 60.7 | 67.9 |
D15F | 197 | 0.33 | 0.13 | 1.31 | 3.07 | 1.29 | 2.81 | 57.8 | 65.4 |
D22.7 | 132 | −0.31 | 0.13 | 1.17 | 2.72 | 1.16 | 0.92 | 70.2 | 76.9 |
D30 | 430 | 0.57 | 0.16 | 1.12 | 1.46 | 1.15 | 0.56 | 77.5 | 81.4 |
D24.1 | 202 | −1.55 | 0.14 | 1.14 | 2.01 | 1.04 | 0.36 | 72.9 | 78.3 |
D11.3 | 158 | −0.77 | 0.13 | 1.09 | 1.50 | 1.12 | 0.86 | 71.3 | 76.2 |
D11.6 | 68 | 0.98 | 0.16 | 1.12 | 1.43 | 0.98 | 0.06 | 82.0 | 83.9 |
D24.2 | 129 | −0.26 | 0.13 | 1.05 | 0.88 | 1.03 | 0.23 | 75.7 | 77.1 |
D31 | 637 | 0.18 | 0.11 | 1.00 | 0.07 | 1.03 | 0.32 | 71.3 | 70.2 |
D22.2 | 159 | −0.79 | 0.13 | 1.00 | 0.05 | 0.85 | −1.07 | 74.9 | 76.3 |
D22.5 | 88 | 0.53 | 0.14 | 0.96 | −0.48 | 0.94 | −.14 | 82.0 | 80.7 |
D11.4 | 28 | 2.27 | 0.22 | 0.88 | −0.77 | 0.45 | −1.53 | 93.1 | 92.7 |
D22.3 | 86 | 0.57 | 0.15 | 0.88 | −1.74 | 0.65 | −1.40 | 83.7 | 81.0 |
D21 | 259 | −2.70 | 0.15 | 0.87 | −1.61 | 0.73 | −1.42 | 85.1 | 83.2 |
D22.6 | 72 | 0.88 | 0.15 | 0.87 | −1.68 | 0.58 | −1.47 | 84.8 | 83.2 |
D32 | 549 | 1.37 | 0.13 | 0.84 | −2.07 | 0.82 | −1.05 | 77.2 | 74.8 |
D22.1 | 172 | −1.02 | 0.13 | 0.83 | −2.94 | 0.66 | −2.78 | 81.5 | 76.5 |
D22.4 | 19 | 2.77 | 0.26 | 0.83 | −0.90 | 0.27 | −2.29 | 95.0 | 94.9 |
D24.3 | 105 | 0.19 | 0.14 | 0.82 | −2.88 | 0.63 | −1.87 | 83.7 | 78.7 |
D29 | 608 | 1.06 | 0.13 | 0.82 | −2.39 | 0.79 | −1.98 | 80.5 | 77.4 |
D23 | 675 | −2.25 | 0.14 | 0.64 | −5.14 | 0.48 | −3.86 | 89.2 | 81.3 |
Mean | 230.2 | 0.00 | 0.15 | 1.02 | 0.10 | 0.90 | -0.4 | 78.5 | 79.3 |
P. SD | 198.9 | 1.48 | 0.03 | 0.20 | 2.40 | 0.31 | 1.6 | 8.7 | 6.6 |
Item | Total Score | Measure | Model S.E. | Infit | Outfit | Exact Match | |||
---|---|---|---|---|---|---|---|---|---|
MNSQ | ZSTD | MNSQ | ZSTD | OBS% | EXP% | ||||
D22.4 | 19 | 2.77 | 0.26 | 0.83 | −0.90 | 0.27 | −2.29 | 95.0 | 94.9 |
D11.4 | 28 | 2.27 | 0.22 | 0.88 | −0.77 | 0.45 | −1.53 | 93.1 | 92.7 |
D32 | 549 | 1.37 | 0.13 | 0.84 | −2.07 | 0.82 | −1.05 | 77.2 | 74.8 |
D15M | 132 | 1.17 | 0.16 | 1.38 | 2.69 | 1.34 | 2.29 | 60.7 | 67.9 |
D29 | 608 | 1.06 | 0.13 | 0.82 | −2.39 | 0.79 | −1.98 | 80.5 | 77.4 |
D11.6 | 68 | 0.98 | 0.16 | 1.12 | 1.43 | 0.98 | 0.06 | 82.0 | 83.9 |
D22.6 | 72 | 0.88 | 0.15 | 0.87 | −1.68 | 0.58 | −1.47 | 84.8 | 83.2 |
D30 | 430 | 0.57 | 0.16 | 1.12 | 1.46 | 1.15 | 0.56 | 77.5 | 81.4 |
D22.3 | 86 | 0.57 | 0.15 | 0.88 | −1.74 | 0.65 | −1.40 | 83.7 | 81.0 |
D22.5 | 88 | 0.53 | 0.14 | 0.96 | −0.48 | 0.94 | −0.14 | 82.0 | 80.7 |
D24.4 | 94 | 0.40 | 0.14 | 1.25 | 3.41 | 1.39 | 1.48 | 76.8 | 79.9 |
D15F | 197 | 0.33 | 0.13 | 1.31 | 3.07 | 1.29 | 2.81 | 57.8 | 65.4 |
D24.3 | 105 | 0.19 | 0.14 | 0.82 | −2.88 | 0.63 | −1.87 | 83.7 | 78.7 |
D31 | 637 | 0.18 | 0.11 | 1.00 | 0.07 | 1.03 | 0.32 | 71.3 | 70.2 |
D24.2 | 129 | −0.26 | 0.13 | 1.05 | 0.88 | 1.03 | 0.23 | 75.7 | 77.1 |
D22.7 | 132 | −0.31 | 0.13 | 1.17 | 2.72 | 1.16 | 0.92 | 70.2 | 76.9 |
D11.3 | 158 | −0.77 | 0.13 | 1.09 | 1.50 | 1.12 | 0.86 | 71.3 | 76.2 |
D22.2 | 159 | −0.79 | 0.13 | 1.00 | 0.05 | 0.85 | −1.07 | 74.9 | 76.3 |
D22.1 | 172 | −1.02 | 0.13 | 0.83 | −2.94 | 0.66 | −2.78 | 81.5 | 76.5 |
D24.1 | 202 | −1.55 | 0.14 | 1.14 | 2.01 | 1.04 | 0.36 | 72.9 | 78.3 |
D23 | 675 | −2.25 | 0.14 | 0.64 | −5.14 | 0.48 | −3.86 | 89.2 | 81.3 |
D21 | 259 | −2.70 | 0.15 | 0.87 | −1.61 | 0.73 | −1.42 | 85.1 | 83.2 |
D20 | 295 | −3.60 | 0.17 | 1.49 | 4.49 | 1.41 | 1.35 | 78.5 | 86.3 |
Mean | 230.2 | 0.00 | 0.15 | 1.02 | 0.1 | 0.90 | −0.4 | 78.5 | 79.3 |
P. SD | 198.9 | 1.48 | 0.03 | 0.20 | 2.4 | 0.31 | 1.6 | 8.7 | 6.6 |
Person Count | Mean Measure | S.E. Mean | P. SD | S. SD | Median | Model Separation | Model Reliability | RMSE | True SD | Code |
---|---|---|---|---|---|---|---|---|---|---|
430 | −1.92 | 0.16 | 3.37 | 3.38 | −0.99 | 2.47 | 0.86 | 1.27 | 3.12 | * |
172 | −0.89 | 0.24 | 3.10 | 3.10 | −0.04 | 2.59 | 0.87 | 1.11 | 2.89 | 1 |
258 | −2.61 | 0.21 | 3.37 | 3.38 | −1.87 | 2.27 | 0.84 | 1.36 | 3.09 | 2 |
Person Code | Code | Mean Measure | Difference S.E. | t | welch-2 sided | |||||
d.f. | Prob. | |||||||||
1 | 2 | 1.73 | 0.32 | 5.45 | 387 | 0.000 | ||||
ANOVA—Person | ||||||||||
Source | Sum of Squares | d.f. | Mean Squares | F-test | Prob > F | |||||
Gender | 307.38 | 1 | 307.38 | 27.72 | 0.0000 | |||||
Error | 4580.96 | 428 | 10.70 | |||||||
Total | 4888.34 | 429 | 11.39 |
Food Consumed | Medium Propensity—Yes | Medium Propensity—No | F Test p-Value |
---|---|---|---|
13.1 Shrimps | −1.57 | −2.67 | 0.0000 |
13.2 Squid | −1.58 | −2.67 | 0.0000 |
13.3 Octopus | −1.60 | −2.68 | 0.0000 |
13.4 Mussels | −1.67 | −2.60 | 0.0000 |
13.5 Clams | −1.57 | −2.73 | 0.0000 |
13.6 Oysters | −1.84 | −2.55 | 0.0046 |
13.7 Offal | −2.02 | −2.19 | 0.6665 |
13.8 Fish eggs | −1.78 | −2.59 | 0.0013 |
13.9 Game | −1.70 | −2.63 | 0.0002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iseppi, L.; Rizzo, M.; Gori, E.; Nassivera, F.; Bassi, I.; Scuderi, A. Rasch Model for Assessing Propensity to Entomophagy. Sustainability 2021, 13, 4346. https://doi.org/10.3390/su13084346
Iseppi L, Rizzo M, Gori E, Nassivera F, Bassi I, Scuderi A. Rasch Model for Assessing Propensity to Entomophagy. Sustainability. 2021; 13(8):4346. https://doi.org/10.3390/su13084346
Chicago/Turabian StyleIseppi, Luca, Marcella Rizzo, Enrico Gori, Federico Nassivera, Ivana Bassi, and Alessandro Scuderi. 2021. "Rasch Model for Assessing Propensity to Entomophagy" Sustainability 13, no. 8: 4346. https://doi.org/10.3390/su13084346
APA StyleIseppi, L., Rizzo, M., Gori, E., Nassivera, F., Bassi, I., & Scuderi, A. (2021). Rasch Model for Assessing Propensity to Entomophagy. Sustainability, 13(8), 4346. https://doi.org/10.3390/su13084346