Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making
Abstract
:1. Introduction
2. Inclusion of the Technological Dimension in the Sustainability Concept
3. Increasing Focus on Sustainability in Real Estate Investment Projects
4. Sustainability Measurement Tools for Real Estate Projects
5. Methodological Procedures for Composing a Real Estate Sustainability Index
- W is Kendall’s coefficient of concordance;
- S is the sum of the deviation of ranks from the mean;
- n is the number of objects (criteria) (i = 1, 2, …, n);
- m is the number of experts (j = 1, 2, …, m).
6. Results and Discussions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banihashemi, S.; Hosseini, M.R.; Golizadeh, H.; Sankaran, S. Critical success factors (CSFs) for integration of sustainability into construction project management practices in developing countries. Int. J. Proj. Manag. 2017, 35, 1103–1119. [Google Scholar] [CrossRef]
- Toan, N.Q.; Tam, N.V.; Hai, D.T.; Quy, N.L.D. Critical factors affecting labor productivity within construction project implementation: A project manager’s perspective. Entrep. Sustain. Issues 2020, 8, 751–763. [Google Scholar] [CrossRef]
- European Commission. Energy Performance of Buildings. 2019. Available online: https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-performance-of-buildings/overview (accessed on 22 September 2020).
- Elkington, J. Cannibals with Forks: The Triple Bottom Line of 21st Century Business; Capstone Publishing: Oxford, UK, 1997. [Google Scholar]
- Rajnoha, R.; Lesníková, P. Strategic Performance Management System and Corporate Sustainability Concept-Specific Parametres in Slovak Enterprises. J. Compet. 2016, 8, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Vogt, M.; Weber, C. Current challenges to the concept of sustainability. Glob. Sustain. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Venturini, O.J.; Júnior, J.C.F.; Palacio, J.C.E.; Batlle, E.A.O.; Carvalho, M.; Lora, E.E.S. Indicators for sustainability assessment of biofuels: Economic, environmental, social, and technological dimensions. In Biofuels for a More Sustainable Future; Elsevier: Amsterdam, The Netherlands, 2020; pp. 73–113. [Google Scholar] [CrossRef]
- Alcívar, I.L.; Santa Cruz, F.G.; Mero, N.M.; Hidalgo-Fernández, A. Study of Corporate Sustainability Dimensions in the Cooperatives of Ecuador. Sustainability 2020, 12, 462. [Google Scholar] [CrossRef] [Green Version]
- Clune, W.H.; Zehnder, A.J. The evolution of sustainability models, from descriptive, to strategic, to the three pillars framework for applied solutions. Sustain. Sci. 2020, 1–6. [Google Scholar] [CrossRef]
- Tian, N.; Tang, S.; Che, A.; Wu, P. Measuring regional transport sustainability using super-efficiency SBM-DEA with weighting preference. J. Clean. Prod. 2020, 242, 118474. [Google Scholar] [CrossRef]
- Wu, J.; Wu, T. Sustainability Indicators and Indices: An Overview. In Handbook of Sustainability Management. Available online: https://doi.org/10.1142/9789814354820_0004 (accessed on 8 October 2020).
- Dobrovolskienė, N.; Tamošiūnienė, R. An index to measure sustainability of a business project in the construction industry: Lithuanian case. Sustainability 2016, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Sarma, U.; Karnitis, G.; Zuters, J.; Karnitis, E. District heating networks: Enhancement of the efficiency. Insights Reg. Dev. 2019, 1, 200–213. [Google Scholar] [CrossRef] [Green Version]
- El Iysaouy, L.; El Idrissi, N.E.; Tvaronavičienė, M.; Lahbabi, M.; Oumnad, A. Towards energy efficiency: Case of Morocco. Insights Reg. Dev. 2019, 1, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Nasr, A.K.; Kashan, M.K.; Maleki, A.; Jafari, N.; Hashemi, H. Assessment of Barriers to Renewable Energy Development Using Stakeholders Approach. Entrep. Sustain. Issues 2020, 7, 2526–2541. [Google Scholar] [CrossRef] [Green Version]
- Igaliyeva, L.; Niyazbekova, S.; Serikova, M.; Kenzhegaliyeva, Z.; Mussirov, G.; Zueva, A.; Tyurina, Y.; Maisigova, L. Towards environmental security via energy efficiency: A case study. Entrep. Sustain. Issues 2020, 7, 3488–3499. [Google Scholar] [CrossRef]
- Dobrovolskienė, N. Finansinių išteklių paskirstymas projektų portfelyje atsižvelgiant į darnumo aspektus. Ph.D. Thesis, Vilnius Gediminas Technical University (VGTU), Vilnius, Lithuania, 2016. (In Lithuanian). [Google Scholar]
- Danish, M.S.S.; Senjyu, T.S. Green Building Efficiency and Sustainability Indicators. In Green Building Management and Smart Automation; IGI Global: Hershey, PA, USA, 2020; pp. 128–145. [Google Scholar] [CrossRef]
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- García-Pérez, I.; Fernández-Izquierdo, M.Á.; Muñoz-Torres, M.J. Microfinance institutions fostering sustainable development by region. Sustainability 2020, 12, 2682. [Google Scholar] [CrossRef] [Green Version]
- Dušková, M. Key enabling technologies and measuring of the company performance in relation to sustainable development: Evaluation model design. Int. J. Innov. Sustain. Dev. 2021, 15, 1–34. [Google Scholar] [CrossRef]
- United Nations. Paris Agreement. 2015. Available online: https://ec.europa.eu/clima/policies/international/negotiations/paris_en (accessed on 27 January 2021).
- Bivainis, J. Vadyba Studentams: Mokomoji Knyga; Vilniaus Gedimino Technikos Universitetas: Vilnius, Lithuania, 2011; Available online: https://dx.doi.org/10.3846/1229-S (accessed on 30 November 2020).
- Skibniewski, M.J.; Zavadskas, E.K. Technology development in construction: A continuum from distant past into the future. J. Civ. Eng. Manag. 2013, 19, 136–147. [Google Scholar] [CrossRef]
- Kildienė, S. Tvarios Statybos Technologijų Plėtros Daugiapakopis Vertinimas. Ph.D. Thesis, Vilnius Gediminas Technical University (VGTU), Vilnius, Lithuania, 2014. (In Lithuanian). [Google Scholar]
- Nowotny, J.; Dodson, J.; Fiechter, S.; Gür, T.M.; Kennedy, B.; Macyk, W.; Rahman, K.A. Towards global sustainability: Education on environmentally clean energy technologies. Renew. Sustain. Energy Rev. 2018, 81, 2541–2551. [Google Scholar] [CrossRef]
- Bulbul, S.; Ertugrul, G.; Arli, F. Investigation of usage potentials of global energy systems. Int. Adv. Res. Eng. J. 2018, 2, 58–67. [Google Scholar]
- Rogalev, A.; Komarov, I.; Kindra, V.; Zlyvk, O. Entrepreneurial assessment of sustainable development technologies for power energy sector. Enterp. Sustain. Issues 2018, 6, 429–445. [Google Scholar] [CrossRef] [Green Version]
- Tyo, A.; Jazykbayeva, B.; Ten, T.; Kogay, G.; Spanova, B. Development tendencies of heat and energy resources: Evidence of Kazakhstan. Entrep. Sustain. Issues 2019, 7, 1514–1524. [Google Scholar] [CrossRef]
- Dudin, M.N.; Frolova, E.E.; Protopopova, O.V.; Mamedov, A.A.; Odintsov, S.V. Study of innovative technologies in the energy industry: Nontraditional and renewable energy sources. Entrep. Sustain. Issues 2019, 6, 1704–1713. [Google Scholar] [CrossRef]
- Orhan, M.F.; Kahraman, H.; Babu, B.S. Approaches for integrated hydrogen production based on nuclear and renewable energy sources: Energy and exergy assessments of nuclear and solar energy sources in the United Arab Emirates. Int. J. Hydrog. Energy 2017, 42, 2601–2616. [Google Scholar] [CrossRef]
- Chehabeddine, M.; Tvaronavičienė, M. Securing regional development. Insights Reg. Dev. 2020, 2, 430–442. [Google Scholar] [CrossRef]
- Mazzoni, F. Circular economy and eco-innovation in Italian industrial clusters. Best practices from Prato textile cluster. Insights Reg. Dev. 2020, 2, 661–676. [Google Scholar] [CrossRef]
- Qiu, L.; Jie, X.; Wang, Y.; Zhao, M. Green product innovation, green dynamic capability, and competitive advantage: Evidence from Chinese manufacturing enterprises. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 146–165. [Google Scholar] [CrossRef]
- Marcelino-Sádaba, S.; González-Jaen, L.F.; Pérez-Ezcurdia, A. Using project management as a way to sustainability. From a comprehensive review to a framework definition. J. Clean. Prod. 2015, 99, 1–16. [Google Scholar] [CrossRef]
- Dobrovolskienė, N.; Tamošiūnienė, R.; Banaitis, A.; Ferreira, F.A.; Banaitienė, N.; Taujanskaitė, K.; Meidutė-Kavaliauskienė, I. Developing a composite sustainability index for real estate projects using multiple criteria decision making. Oper. Res. 2019, 19, 617–635. [Google Scholar] [CrossRef]
- Durdyev, S.; Zavadskas, E.K.; Thurnell, D.; Banaitis, A.; Ihtiyar, A. Sustainable construction industry in Cambodia: Awareness, drivers and barriers. Sustainability 2018, 10, 392. [Google Scholar] [CrossRef] [Green Version]
- Si, J.; Marjanovic-Halburd, L.; Nasiri, F.; Bell, S. Assessment of building-integrated green technologies: A review and case study on applications of Multi-Criteria Decision Making (MCDM) method. Sustain. Cities Soc. 2016, 27, 106–115. [Google Scholar] [CrossRef]
- Amending Directive on Energy Performance of Buildings. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.156.01.0075.01.ENG (accessed on 27 December 2020).
- Eurostat. Europe 2020-Overview. 2019. Available online: https://ec.europa.eu/eurostat/web/europe-2020-indicators (accessed on 27 December 2020).
- Ramboll. Sustainable Buildings Content Sustainable Buildings Make. 2019. Available online: https://ramboll.com/-/media/files/rgr/documents/markets/buildings/s/sustainable-buildings-market-study_2019_web.pdf?la=en (accessed on 21 January 2021).
- Lazauskas, M. Statybos Projektų Darnos Vertinimo Kompleksinis Modelis. Ph.D. Thesis, Vilnius Gediminas Technical University (VGTU), Vilnius, Lithuania, 2015. (In Lithuanian). [Google Scholar]
- Szery, K.; Sunindijo, R.Y. Occupant Satisfaction in Sustainable and Conventional Higher Education Buildings. In Eurasian Business Perspectives; Springer: Cham, Switzerland, 2019; pp. 95–111. [Google Scholar]
- Mahmoud, S.; Zayed, T.; Fahmy, M. Development of sustainability assessment tool for existing buildings. Sustain. Cities Soc. 2019, 44, 99–119. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Wang, X.; Xu, Y.; Chen, P.H. A review of studies on green building assessment methods by comparative analysis. Energy Build. 2017, 146, 152–159. [Google Scholar] [CrossRef]
- Hamedani, A.Z.; Huber, F. A comparative study of DGNB, LEED and BREEAM certificate systems in urban sustainability The Sustainable City VII, Vol. 1 121. Trans. Ecol. Environ. 2012, 155, 121–132. [Google Scholar]
- Kaklauskas, A.; Kelpsiene, L.; Zavadskas, E.K.; Bardauskiene, D.; Kaklauskas, G.; Urbonas, M.; Sorakas, V. Crisis management in construction and real estate: Conceptual modeling at the micro-, meso-and macro-levels. Land Use Policy 2011, 28, 280–293. [Google Scholar] [CrossRef]
- Morano, P.; Guarini, M.R.; Tajani, F.; Anelli, D. Sustainable Redevelopment: The Cost-Revenue Analysis to Support the Urban Planning Decisions. In International Conference on Computational Science and Its Applications; Springer: Cham, Switzerland, 2020; pp. 968–980. [Google Scholar]
- Bottero, M.; Ferretti, V. Integrating the analytic network process (ANP) and the driving force-pressure-state-impact-responses (DPSIR) model for the sustainability assessment of territorial transformations. Manag. Environ. Qual. Int. J. 2010. [Google Scholar] [CrossRef]
- Vučićević, B.; Jovanović, M.; Afgan, N.; Turanjanin, V. Assessing the sustainability of the energy use of residential buildings in Belgrade through multi-criteria analysis. Energy Build. 2014, 69, 51–61. [Google Scholar] [CrossRef]
- Siew, R.Y.; Balatbat, M.C.; Carmichael, D.G. A proposed framework for assessing the sustainability of infrastructure. Int. J. Constr. Manag. 2016, 16, 1–18. [Google Scholar] [CrossRef]
- Dahl, A.L. Achievements and gaps in indicators for sustainability. Ecol. Indic. 2012, 17, 14–19. [Google Scholar] [CrossRef]
- Pintér, L.; Hardi, P.; Martinuzzi, A.; Hall, J. Bellagio STAMP: Principles for sustainability assessment and measurement. Ecol. Indic. 2012, 17, 20–28. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2012, 15, 281–299. [Google Scholar] [CrossRef]
- Waas, T.; Hugé, J.; Block, T.; Wright, T.; Benitez-Capistros, F.; Verbruggen, A. Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability 2014, 6, 5512–5534. [Google Scholar] [CrossRef] [Green Version]
- O’Ryan, R.; Pereira, M. Participatory indicators of sustainability for the salmon industry: The case of Chile. Mar. Policy 2015, 51, 322–330. [Google Scholar] [CrossRef]
- Mazzanti, M.; Mazzarano, M.; Pronti, A.; Quatrosi, M. Fiscal policies, public investments and wellbeing: Mapping the evolution of the EU. Insights Reg. Dev. 2020, 2, 725–749. [Google Scholar] [CrossRef]
- Vasconcelos, V.V. Social justice and sustainable regional development: Reflections on discourse and practice in public policies and public budget. Insights Reg. Dev. 2021, 3, 10–28. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Kirwan, K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. 2014, 46, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Mainali, B.; Silveira, S. Using a sustainability index to assess energy technologies for rural electrification. Renew. Sustain. Energy Rev. 2015, 41, 1351–1365. [Google Scholar] [CrossRef]
- Oliveira, E.C.B.D.; Alencar, L.H.; Costa, A.P.C.S. A decision model for energy companies that sorts projects, classifies the project manager and recommends the final match between project and project manager. Production 2016, 26, 91–104. [Google Scholar] [CrossRef]
- Ruiz, F.; Cabello, J.M.; Pérez-Gladish, B. Building Ease-of-Doing-Business synthetic indicators using a double reference point approach. Technol. Forecast. Soc. Chang. 2018, 131, 130–140. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Zavadskas, E.K.; Radzeviciene, A.; Ubarte, I.; Podviezko, A.; Podvezko, V.; Kuzminske, A.; Banaitis, A.; Binkyte, A.; Bucinskas, V. Quality of city life multiple criteria analysis. Cities 2018, 72, 82–93. [Google Scholar] [CrossRef]
- Bithas, K. A bioeconomic approach to sustainability with ecological thresholds as an operational indicator. Environ. Sustain. Indic. 2020, 6, 100027. [Google Scholar] [CrossRef]
- Lütje, A.; Wohlgemuth, V. Tracking Sustainability Targets with Quantitative Indicator Systems for Performance Measurement of Industrial Symbiosis in Industrial Parks. Adm. Sci. 2020, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.; Swain, C.K.; Kumar, A.; Nayak, A.K. Nitrogen Footprint: A Useful Indicator of Agricultural Sustainability. In Nutrient Dynamics for Sustainable Crop Production; Springer: Singapore, 2020; pp. 135–156. [Google Scholar]
- Reid, J.; Rout, M. Developing sustainability indicators–The need for radical transparency. Ecol. Indic. 2020, 110, 105941. [Google Scholar] [CrossRef]
- Binder, C.R.; Hutter, M.; Pang, M.; Webb, R. System science and sustainability assessment. Sustain. Assess. Urban Syst. 2020, 30, 30–64. [Google Scholar]
- Chen, C.; Yu, Y.; Osei-Kyei, R.; Chan, A.P.C.; Xu, J. Developing a project sustainability index for sustainable development in transnational public–private partnership projects. Sustain. Dev. 2019, 27, 1034–1048. [Google Scholar] [CrossRef]
- Carvalho, A.C.V.D.; Granja, A.D.; Silva, V.G.D. Use of a card game tool to capture end users’ preferences and add sustainability value to social housing projects. Ambiente Construído 2020, 20, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Turskis, Z. Multiple criteria decision making (MCDM) methods in economics: An overview. Technol. Econ. Dev. Econ. 2011, 17, 397–427. [Google Scholar] [CrossRef] [Green Version]
- Kasim, M.M. Multi-criteria decision making methods for determining computer preference index. J. Inf. Commun. Technol. 2020, 10, 137–148. [Google Scholar]
- Paredes-Gazquez, J.D.; Rodriguez-Fernandez, J.M.; de la Cuesta-Gonzalez, M. Measuring corporate social responsibility using composite indices: Mission impossible? The case of the electricity utility industry. Rev. Contab. 2016, 19, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Marttunen, M.; Belton, V.; Lienert, J. Are objectives hierarchy related biases observed in practice? A meta-analysis of environmental and energy applications of multi-criteria decision analysis. Eur. J. Oper. Res. 2018, 265, 178–194. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, V. From stakeholders analysis to cognitive mapping and Multi-Attribute Value Theory: An integrated approach for policy support. Eur. J. Oper. Res. 2016, 253, 524–541. [Google Scholar] [CrossRef]
- Ferreira, F.A.; Spahr, R.W.; Sunderman, M.A. Using multiple criteria decision analysis (MCDA) to assist in estimating residential housing values. Int. J. Strateg. Prop. Manag. 2016, 20, 354–370. [Google Scholar] [CrossRef]
- Marinakis, V.; Doukas, H.; Xidonas, P.; Zopounidis, C. Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the sustainable energy action plan. Omega 2017, 69, 1–16. [Google Scholar] [CrossRef]
- Galariotis, E.; Guyot, A.; Doumpos, M.; Zopounidis, C. A novel multi-attribute benchmarking approach for assessing the financial performance of local governments: Empirical evidence from France. Eur. J. Oper. Res. 2016, 248, 301–317. [Google Scholar] [CrossRef]
- Xidonas, P.; Mavrotas, G.; Hassapis, C.; Zopounidis, C. Robust multiobjective portfolio optimization: A minimax regret approach. Eur. J. Oper. Res. 2017, 262, 299–305. [Google Scholar] [CrossRef]
- Korotkov, V.; Wu, D. Evaluating the quality of solutions in project portfolio selection. Omega 2020, 91, 102029. [Google Scholar] [CrossRef]
- Allaoui, H.; Guo, Y.; Choudhary, A.; Bloemhof, J. Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Comput. Oper. Res. 2018, 89, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Liu, Y.; Liang, H.; Chiclana, F.; Herrera-Viedma, E. Strategic weight manipulation in multiple attribute decision making. Omega (UK) 2018, 75, 1339–1351. [Google Scholar] [CrossRef] [Green Version]
- Podvezko, V. The Comparative Analysis of MCDA Methods SAW and COPRAS. Eng. Econ. 2011, 22, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017. [Google Scholar] [CrossRef]
- Srisawat, C. Comparison of MCDM methods for intercrop selection in rubber plantations. J. Inf. Commun. Technol. 2020, 15, 165–182. [Google Scholar] [CrossRef]
- Ibrahim, A.; Surya, R.A. The Implementation of Simple Additive Weighting (SAW) Method in Decision Support System for the Best School Selection in Jambi. J. Phys. Conf. Ser. 2019, 1338, 012054. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Garg, H. TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput. Appl. Math. 2018, 37, 1319–1329. [Google Scholar] [CrossRef]
- Lakshmi, T.M.; Venkatesan, V.P.; Martin, A. An Identification of Better Engineering College with Conflicting Criteria using Adaptive TOPSIS. Int. J. Mod. Educ. Comput. Sci. 2016, 8, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, K.; Fröhling, M.; Schultmann, F. Sustainable supplier management–a review of models supporting sustainable supplier selection, monitoring and development. Int. J. Prod. Res. 2016, 54, 1412–1442. [Google Scholar] [CrossRef]
- Roszkowska, E. Multi-criteria decision making models by applying the TOPSIS method to crisp and interval data. Mult. Criteria Decis. Mak. Univ. Econ. Katow. 2011, 6, 200–230. [Google Scholar]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.B.; Gróf, G.; Ho, H.L.; et al. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Podvezko, V.; Podviezko, A. Kriterijų reikšmingumo nustatymo metodai. Liet. Mat. Rink. 2014. [Google Scholar] [CrossRef]
- Fernández-Sánchez, G.; Rodríguez-López, F. A methodology to identify sustainability indicators in construction project management—Application to infrastructure projects in Spain. Ecol. Indic. 2010, 10, 1193–1201. [Google Scholar] [CrossRef]
- Saaty, T.L. Applications of analytical hierarchies. Math. Comput. Simul. 1979, 21, 1–20. [Google Scholar] [CrossRef]
- Podvezko, V. Sudėtingų Dydžių Kompleksinis Vertinimas; Verslas Teorija ir praktika: Vilnius, Lithuania, 2008; pp. 160–168. [Google Scholar]
- Ginevičius, R.; Podvezko, V. Daugiakriterinio vertinimo bu˛du˛ suderinamumas. Verslas Teor. Prakt. 2008, 9, 73–80. (In Lithuanian) [Google Scholar] [CrossRef]
- Zhou, L.; Tokos, H.; Krajnc, D.; Yang, Y. Sustainability performance evaluation in industry by composite sustainability index. Clean Technol. Environ. Policy 2012, 14, 789–803. [Google Scholar] [CrossRef]
- Podvezko, V. Comprehensive evaluation of complex quantities. Bus Theory Pract. 2008, 9, 160–168. [Google Scholar] [CrossRef]
- Chen, Y.; Okudan, G.E.; Riley, D.R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 2010, 19, 235–244. [Google Scholar] [CrossRef]
- Ding, G.K.C. Sustainable construction—The role of environmental assessment tools. J. Environ. Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Presley, A.; Meade, L. Benchmarking for sustainability: An application to the sustainable construction industry. Benchmark. Int. J. 2010, 17, 435–451. [Google Scholar] [CrossRef]
- Siew, R.Y.J. A review of sustainability reporting tools (SRT’s) for Communities. Int. J. Sustain. Constr. Eng. Technol. 2014, 5, 2180–3242. [Google Scholar]
- Siew, R.Y.J.; Balatbat, M.C.A.; Carmichael, D.G. A review of buildings/infrastructure Sustainability Reporting Tools (SRT’s). Smart Sustain. Built Environ. 2013, 2, 106–139. [Google Scholar]
- Akhanova, G.; Nadeem, A.; Kim, J.R.; Azhar, S. A multi-criteria decision-making framework for building sustainability assessment in Kazakhstan. Sustain. Cities Soc. 2020, 52, 101842. [Google Scholar] [CrossRef]
- Sánchez Cordero, A.; Gómez Melgar, S.; Andújar Márquez, J.M. Green Building Rating Systems and the New Framework Level (s): A Critical Review of Sustainability Certification within Europe. Energies 2020, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Kwatra, S.; Kumar, A.; Sharma, P. A critical review of studies related to construction and computation of Sustainable Development Indices. Ecol. Indic. 2020, 112, 106061. [Google Scholar] [CrossRef]
- Chan, J.H.; Chan, T.Y. Current Trends of Developing Energy Efficiency Projects in the Building Sector of China. In Sustainable Energy and Green Finance for a Low-carbon Economy; Springer: Cham, Switzerland, 2020; pp. 227–244. [Google Scholar]
- Xu, X.; Wang, Y.; Tao, L. Comprehensive evaluation of sustainable development of regional construction industry in China. J. Clean Prod. 2019, 211, 1078–1087. [Google Scholar] [CrossRef]
Author(s), Year | Definition | Dimensions |
---|---|---|
Elkington, 1997 [4] | In order to achieve a sustainable society, it needs to meet three conditions: “…its rates of use of renewable resources should not exceed their rates of regeneration; its rates of use of non-renewable resources should not exceed the rate at which sustainable renewable substitutes are developed; and its rates of pollution of emission should not exceed the assimilative capacity of the environment.” | Environmental, social, economic |
Dobrovolskienė, 2018 [18] | Sustainability is a harmony of economic, social and environmental aspects. | Environmental, social, economic |
Vogt and Weber, 2019 [6] | In order to understand the concept of sustainability, there is a need to include more dimensions in the notion. That is, the sustainability concept will be defined more accurately and enable better understanding by including ecological, political, ethical, socio-economic, democratic, cultural and theological dimensions. Moreover, the use of limited resources depends on relevant technological innovations; thus, the objectives of sustainability should be integrated into technological development. These dimensions are vital for understanding sustainability. | Environmental, social, economic, ecological, political, ethical, socio-economic, democratic, cultural, theological, technological |
Purvis, Mao, and Robinson, 2019 [7] | The concept of sustainability is far more complex than described in the literature and still requires integration of additional pillars (such as institutional, cultural and technological) into the concept, thus requiring explicit description of how it is understood by various authors. Importantly, technological assistance should be integrated into the concept of sustainability. | Environmental, social, economic, institutional, cultural, technological |
Danish and Senjyu, 2020 [19] | Sustainability goes beyond basic statistics and has to cover multi-dimensional aspects. These dimensions include energy production, distribution, delivery and consumption and also consider technological efficiencies; the pillars of sustainability are economic, social, institutional, technological and environmental. | Environmental, social, economic, institutional, technological |
Venturini et al., 2020 [8] | Sustainability is a shared ethical belief. Since the world has gained a deeper understanding of sustainability issues and upcoming challenges, the notion of sustainability should be expanded to complement the main three (environmental, social and economic) pillars with institutional, cultural and technological ones. | Environmental, social, economic, institutional, cultural, technological |
Fatimah et al., 2020 [20] García-Pérez et al., 2020 [21] Dušková, 2021 [22] | Sustainability includes governance, social, economy, technological and environmental dimensions. Each dimension has several components. When we talk about sustainability, financial, environmental, social and governance dimensions and the balance among them have to be considered. The sustainability concept is extended by an additional technological dimension. | Governance, economy, social, environment, technology Financial, environmental, social, governance Environmental, social, economic, technological |
Dimension | Criterion | Units of Measurement | Total Points |
---|---|---|---|
Environmental | Emission of CO2 | CO2 t/Net income | 152 |
Social | Health and well-being of workers | Cost of safety equipment provided/Total cost of materials | 151 |
Technological | Employment of innovative technologies | Number of experienced employees able to design, build and use the technology/Total number of employees | 132 |
Technological | Overall project quality | Costs of repairs after construction/Net income | 112 |
Environmental | Use of renewable energy | Renewable energy/All energy | 110 |
Economic | Quality control | Prevention costs/All costs | 103 |
Environmental | Waste management | Tons of waste managed/Tons of waste capacity | 98 |
Technological | Technical risks throughout the project life-cycle and feasibility | Cost of technology repairs/Total cost of technology | 96 |
Technological | Degree of intellectual property protection (patents, trademarks, copyrights) | Cost of intellectual property protection/Total cost of technology | 92 |
Social | Improvement of the life quality | m2 of green zones created/Net income | 71 |
Economic | Time of construction | Number of months/Net income | 66 |
Environmental | Post-construction energy consumption | GJ/Net income | 65 |
Economic | Reduction of direct costs | Direct costs/All costs | 64 |
Economic | Reduction of non-direct costs | Non-direct costs/All costs | 62 |
Economic | Economic benefit for the region | Net income from the project/Income generated by the region, excl. the project | 50 |
Technological | Cost of technology | Cost of technology/All costs | 43 |
Social | Safety of infrastructure | Whether the zone is fenced and secured by cameras (yes—1; no—0);Whether the zone is secured by cameras (yes—0.5; no—0);Whether the zone is fenced (yes—0.5; no—0) | 40 |
Environmental | Dust reduction | Tons of dust/Net income | 32 |
Criterion | Min Evaluation | Max Evaluation | Mean | Median | Mode | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|---|---|
Emission of CO2 | 12 | 18 | 16.89 | 17 | 17 | 5.28 | 0.31 |
Health and well-being of workers | 10 | 18 | 16.78 | 18 | 18 | 4.10 | 0.24 |
Employment of innovative technologies | 5 | 17 | 14.67 | 16 | 16 | 5.94 | 0.40 |
Overall project quality | 4 | 17 | 12.44 | 13 | 13 | 8.92 | 0.72 |
Use of renewable energy | 3 | 15 | 12.22 | 14 | 14 | 10.74 | 0.88 |
Quality control | 1 | 16 | 11.44 | 12 | 12 | 10.94 | 0.96 |
Waste management | 6 | 15 | 10.89 | 10 | 15 | 10.06 | 0.92 |
Technical risks throughout the project life-cycle and feasibility | 8 | 15 | 10.67 | 11 | 11 | 4.12 | 0.39 |
Degree of intellectual property protection (patents, trademarks, copyrights) | 2 | 16 | 10.22 | 15 | 15 | 16.99 | 1.66 |
Improvement of the life quality | 5 | 12 | 7.89 | 8 | 5 | 6.88 | 0.87 |
Time of construction | 4 | 9 | 7.33 | 8 | 8 | 4.46 | 0.61 |
Post-construction energy consumption | 1 | 14 | 7.22 | 6 | 6 | 11.87 | 1.64 |
Reduction of direct costs | 3 | 11 | 7.11 | 8 | 8 | 7.83 | 1.10 |
Reduction of non-direct costs | 4 | 10 | 6.89 | 7 | 5 | 6.32 | 0.92 |
Economic benefit for the region | 2 | 15 | 5.56 | 4 | 4 | 11.42 | 2.06 |
Cost of technology | 1 | 10 | 4.78 | 5 | 1 | 10.49 | 2.20 |
Safety of infrastructure | 1 | 13 | 4.44 | 2 | 2 | 12.09 | 2.72 |
Dust reduction | 1 | 7 | 3.56 | 3 | 3 | 5.13 | 1.44 |
Dimension and Criterion | Code | Weight Coefficient in a Group | Total Weight Coefficient | Type |
---|---|---|---|---|
Environmental | 0.297 | |||
Emission of CO2 | C1 | 0.333 | 0.099 | Min |
Use of renewable energy | C5 | 0.241 | 0.071 | Max |
Waste management | C7 | 0.214 | 0.064 | Max |
Post construction energy consumption | C12 | 0.142 | 0.042 | Min |
Dust reduction | C18 | 0.070 | 0.021 | Min |
Social | 0.170 | |||
Safety and well-being of workers | C2 | 0.576 | 0.098 | Max |
Improvement of the life quality | C10 | 0.271 | 0.046 | Max |
Safety of infrastructure | C17 | 0.153 | 0.026 | Max |
Economic | 0.224 | |||
Quality control | C6 | 0.299 | 0.067 | Max |
Time of construction | C11 | 0.191 | 0.043 | Min |
Reduction of direct costs | C13 | 0.186 | 0.042 | Min |
Reduction of non-direct costs | C14 | 0.180 | 0.040 | Min |
Economic benefit for the region | C15 | 0.145 | 0.032 | Max |
Technological | 0.309 | |||
Employment of innovative technologies | C3 | 0.278 | 0.086 | Max |
Overall project quality | C4 | 0.236 | 0.073 | Max |
Technical risks throughout the project life-cycle and feasibility | C8 | 0.202 | 0.062 | Min |
Degree of intellectual property protection (patents, trademarks, copyrights) | C9 | 0.194 | 0.060 | Max |
Cost of technology | C16 | 0.091 | 0.028 | Max |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrovolskienė, N.; Pozniak, A.; Tvaronavičienė, M. Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making. Sustainability 2021, 13, 4352. https://doi.org/10.3390/su13084352
Dobrovolskienė N, Pozniak A, Tvaronavičienė M. Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making. Sustainability. 2021; 13(8):4352. https://doi.org/10.3390/su13084352
Chicago/Turabian StyleDobrovolskienė, Nomeda, Anastasija Pozniak, and Manuela Tvaronavičienė. 2021. "Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making" Sustainability 13, no. 8: 4352. https://doi.org/10.3390/su13084352
APA StyleDobrovolskienė, N., Pozniak, A., & Tvaronavičienė, M. (2021). Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making. Sustainability, 13(8), 4352. https://doi.org/10.3390/su13084352