Ectomycorrhizal Fungi Associated with Pinus densiflora Seedlings under Flooding Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seedling Collection
2.2. Morphotype Observation
2.3. Molecular Identification of Ectomycorrhizae
3. Results
3.1. Morphological and Molecular Identification of EMF
3.2. EMF Species of Red Pine Seedlings
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: New York, NY, USA, 2010; ISBN 978-0-12-370526-6. [Google Scholar]
- Parke, J.L.; Linderman, R.G.; Black, C.H. The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol. 1983, 95, 83–95. [Google Scholar] [CrossRef]
- Denny, H.J.; Wilkins, D.A. Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol. 1987, 106, 545–553. [Google Scholar]
- Tam, P.C.F. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 1995, 5, 181–187. [Google Scholar] [CrossRef]
- Meharg, A.A.; Cairney, J.W. Ectomycorrhizas—Extending the capabilities of rhizosphere remediation? Soil Biol. Biochem. 2000, 32, 1475–1484. [Google Scholar] [CrossRef]
- Sumorok, B.; Kosiński, K.; Michalska-Hejduk, D.; Kiedrzyńska, E. Distribution of ectomycorrhizal fungi in periodically inundated plant communities on the Pilica river floodplain. Ecohydrol. Hydrobiol. 2008, 8, 401–410. [Google Scholar] [CrossRef]
- Guerrero-Galán, C.; Calvo-Polanco, M.; Zimmermann, S.D. Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. Mycorrhiza 2019, 29, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Kilpeläinen, J.; Barbero-López, A.; Vestberg, M.; Heiskanen, J.; Lehto, T. Does severe soil drought have after-effects on arbuscular and ectomycorrhizal root colonisation and plant nutrition? Plant Soil 2017, 418, 377–386. [Google Scholar] [CrossRef]
- Sebastiana, M.; Duarte, B.; Monteiro, F.; Malhó, R.; Caçador, I.; Matos, A.R. The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature. Plant Physiol. Biochem. 2019, 144, 157–165. [Google Scholar] [CrossRef]
- Gehring, C.; Sevanto, S.; Patterson, A.; Ulrich, D.E.M.; Kuske, C. Ectomycorrhizal and dark septate fungal associations of pinyon pine are differentially affected by experimental drought and warming. Front. Plant Sci. 2020, 11, 1570. [Google Scholar] [CrossRef]
- Theodorou, C. Soil moisture and the mycorrhizal association of Pinus radiata D. don. Soil Biol. Biochem. 1978, 10, 33–37. [Google Scholar] [CrossRef]
- Lodge, D.J. The influence of soil moisture and flooding on formation of VA-endo-and ectomycorrhizae in Populus and Salix. Plant Soil 1989, 117, 243–253. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Higuchi, R. Ectomycorrhizal and arbuscular mycorrhizal colonization of two species of floodplain willows. Mycoscience 2003, 44, 339–343. [Google Scholar] [CrossRef]
- Stenström, E. The effects of flooding on the formation of ectomycorrhizae in Pinus sylvestris seedlings. Plant Soil 1991, 131, 247–250. [Google Scholar] [CrossRef]
- Nakaji, T.; Fukami, M.; Dokiya, Y.; Izuta, T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 2001, 15, 453–461. [Google Scholar] [CrossRef]
- Norisada, M.; Motoshige, T.; Kojima, K.; Tange, T. Effects of phosphate supply and elevated CO2 on root acid phosphatase activity in Pinus densiflora seedlings. J. Soil Sci. Plant Nutr. 2006, 169, 274–279. [Google Scholar] [CrossRef]
- Sim, M.Y.; Eom, A.H. Diversity of ectomycorrhizal fungi of Pinus densiflora Siebold et Zucc. Seedlings in a disturbed forest on Mt. Songni. J. Ecol. Environ. 2009, 32, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.H.; Eom, A.H. Ectomycorrhizal fungal communities of red pine (Pinus densiflora) seedlings in disturbed sites and undisturbed old forest sites. Mycobiology 2013, 41, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Agerer, R. Characterization of ectomycorrhiza. Methods Microbiol. 1991, 23, 25–73. [Google Scholar]
- Martin, K.J.; Rygiewicz, P.T. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 2005, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. ISBN 978-012-372-181-5. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satomura, T.; Nakatsubo, T.; Horikoshi, T. Estimation of the biomass of fine roots and mycorrhizal fungi: A case study in a Japanese red pine (Pinus densiflora) stand. J. For. Res. 2003, 8, 221–225. [Google Scholar] [CrossRef]
- Obase, K.; Cha, J.Y.; Lee, S.Y.; Lee, J.K.; Chun, K.W. Ectomycorrhizal fungal community associated with naturally regenerating Pinus densiflora Sieb. et Zucc. seedlings on exposed granite slopes along woodland paths. J. For. Res. 2012, 17, 388–392. [Google Scholar] [CrossRef]
- Obase, K. Extending the hyphal area of the ectomycorrhizal fungus Laccaria parva co-cultured with ectomycorrhizosphere bacteria on nutrient agar plate. Mycoscience 2019, 60, 95–101. [Google Scholar] [CrossRef]
- Hunt, F.M. Effects of flooded soil on growth of pine seedlings. Plant Physiol. 1951, 26, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Ponnamperuma, F.N. Effects of flooding on soils. In Flooding and Plant Growth; Kozlowski, T.T., Ed.; Academic Press: Cambridge, MA, USA, 1984; pp. 9–45. ISBN 978-0-12-424120-6. [Google Scholar]
- Unger, I.M.; Kennedy, A.C.; Muzika, R.M. Flooding effects on soil microbial communities. Appl. Soil Ecol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, L.D. Ectomycorrhizal community composition of Pinus tabulaeformis assessed by ITS-RFLP and ITS sequences. Botany 2010, 88, 590–595. [Google Scholar] [CrossRef]
- Martin-Sanchez, P.M.; Sáiz-Jiménez, C. Contribution of culture-independent methods to cave aerobiology: The case of Lascaux cave. In The Conservation of Subterranean Cultural Heritage; Saiz-Jimenez, C., Ed.; Taylor & Francis Group: London, UK, 2014; pp. 215–222. ISBN 978-1-315-73997-7. [Google Scholar]
- Wen, Z.; Murata, M.; Xu, Z.; Chen, Y.; Nara, K. Ectomycorrhizal fungal communities on the endangered Chinese Douglas-fir (Pseudotsuga sinensis) indicating regional fungal sharing overrides host conservatism across geographical regions. Plant Soil 2015, 387, 189–199. [Google Scholar] [CrossRef]
- Phillips, L.A.; Ward, V.; Jones, M.D. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J. 2014, 8, 699–713. [Google Scholar] [CrossRef] [Green Version]
- Menkis, A.; Bakys, R.; Lygis, V.; Vasaitis, R. Mycorrhization, establishment and growth of outplanted Picea abies seedlings produced under different cultivation systems. Silva Fenn. 2011, 45, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Dickie, I.A.; Richardson, S.J.; Wiser, S.K. Ectomycorrhizal fungal communities and soil chemistry in harvested and unharvested temperate Nothofagus rainforests. Can. J. For. Res. 2009, 39, 1069–1079. [Google Scholar] [CrossRef]
- Ma, D.; Yang, G.; Mu, L. Morphological and molecular analyses of ectomycorrhizal diversity in Pinus densiflora seedlings. Symbiosis 2010, 51, 233–238. [Google Scholar] [CrossRef]
- Unestam, T. Water repellency, mat formation, and leaf-stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1991, 1, 13–20. [Google Scholar] [CrossRef]
- Zhang, S.; Vaario, L.M.; Xia, Y.; Matsushita, N.; Geng, Q.; Tsuruta, M.; Kurokochi, H.; Lian, C. The effects of co-colonising ectomycorrhizal fungi on mycorrhizal colonisation and sporocarp formation in Laccaria japonica colonising seedlings of Pinus densiflora. Mycorrhiza 2019, 29, 207–218. [Google Scholar] [CrossRef]
- Agerer, R. Exploration types of ectomycorrhizae. Mycorrhiza 2001, 11, 107–114. [Google Scholar] [CrossRef]
- Fernandez, C.W.; Nguyen, N.H.; Stefanski, A.; Han, Y.; Hobbie, S.E.; Montgomery, R.A.; Reich, P.B.; Kennedy, P.G. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Chang. Biol. 2017, 23, 1598–1609. [Google Scholar] [CrossRef]
EMF Species | ITS Acc No. | Collection Site | Closest BLAST Match | |||
---|---|---|---|---|---|---|
Forest | Str1 | Str2 | Species (ITS Acc No.) | Similarity (%) | ||
Amphinema sp. 2 | MW546513 | ✓ | Uncultured ectomycorrhizal fungus (AB571491) | 100 | ||
Amphinema sp. 3 | MW546528 | ✓ | ✓ | ✓ | Uncultured Amphinema (LC013707) | 99.3 |
Amphinema sp. 4 | MW546524 | ✓ | Uncultured Atheliaceae (HM015485) | 99.5 | ||
Amphinema sp. 5 | MW546525 | ✓ | ✓ | Amphinema sp. (MT678864) | 99.8 | |
Astraeus hygrometricus | MW546516 | ✓ | Astraeus hygrometricus (LC001788) | 99.3 | ||
Atheliales sp. 1 | MW546511 | ✓ | Uncultured fungus (JQ975952) | 99.4 | ||
Cenococcum geophilum | MW546514 | ✓ | Cenococcum geophilum (LC523842) | 99.5 | ||
Coltriciella subglobosa | MW546517 | ✓ | Coltriciella sp. (KX159769) | 98.5 | ||
Helotiales sp. 1 | MW546512 | ✓ | Uncultured Ascomycota (FJ553907) | 99.6 | ||
Helotiales sp. 2 | MW546532 | ✓ | Ectomycorrhizal root tip (AF476977) | 97.9 | ||
Laccaria japonica | MW546523 | ✓ | ✓ | Laccaria japonica (NR_158485) | 98.4 | |
Laccaria parva | MW546529 | ✓ | ✓ | Laccaria parva (MG519529) | 99.8 | |
Rhizopogon luteolus | MW546531 | ✓ | ✓ | ✓ | Rhizopogon luteolus (AB972831) | 99.5 |
Sebacina sp. 1 | MW546520 | ✓ | Uncultured Sebacinaceae (FJ803936) | 98.2 | ||
Suillus bovinus | MW546527 | ✓ | Suillus bovinus (KJ415102) | 100 | ||
Suillus luteus | MW546526 | ✓ | ✓ | ✓ | Suillus luteus (KU059580) | 100 |
Thelephora terrestris | MW546530 | ✓ | ✓ | ✓ | Thelephora terrestris (AB634267) | 100 |
Tomentella ellisii | MW546510 | ✓ | Tomentella sp. (MK211713) | 97.7 | ||
Tomentella subtestacea | MW546519 | ✓ | Tomentella subtestacea (JQ711878) | 97.2 | ||
Tomentella sp. 1 | MW546518 | ✓ | Uncultured fungus (LC364196) | 98.6 | ||
Tomentella sp. 2 | MW546521 | ✓ | Tomentella subtestacea (JQ711878) | 96.1 | ||
Tomentella sp. 3 | MW546522 | ✓ | Tomentella sp. (KY686245) | 99.8 | ||
Tomentella sp. 4 | MW546515 | ✓ | Tomentella badia (JQ711856) | 95.7 |
EMF Species | Forest Seedlings | Sum | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
Amphinema sp. 2 | ○ | 1 | ||||||||||||||
Amphinema sp. 3 | ● | 1 | ||||||||||||||
Astraeus hygrometricus | ○ | 1 | ||||||||||||||
Atheliales sp. 1 | ● | ○ | ○ | 3 | ||||||||||||
Cenococcum geophilum | ○ | ○ | ○ | ○ | 4 | |||||||||||
Coltriciella subglobosa | ○ | 1 | ||||||||||||||
Helotiales sp. 1 | ● | ● | 2 | |||||||||||||
Rhizopogon luteolus | ○ | ○ | ● | ● | 4 | |||||||||||
Sebacina sp. 1 | ● | 1 | ||||||||||||||
Suillus luteus | ○ | ○ | ○ | ○ | ○ | ○ | ○ | 7 | ||||||||
Thelephora terrestris | ● | ○ | ● | 3 | ||||||||||||
Tomentella ellisii | ● | ● | ● | ● | ○ | 5 | ||||||||||
Tomentella subtestacea | ● | 1 | ||||||||||||||
Tomentella sp. 1 | ○ | 1 | ||||||||||||||
Tomentella sp. 2 | ● | 1 | ||||||||||||||
Tomentella sp. 3 | ○ | 1 | ||||||||||||||
Tomentella sp. 4 | ○ | 1 | ||||||||||||||
Sum | 4 | 2 | 5 | 3 | 2 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 1 | 1 | 2 |
EMF Species | Str1 Seedlings | Sum | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | ||
Amphinema sp. 3 | ○ | ○ | ● | 3 | ||||||||||||||||||||||||
Amphinema sp. 4 | ● | ○ | ○ | ○ | ○ | ● | ○ | ● | ○ | ○ | ○ | ○ | ● | 13 | ||||||||||||||
Amphinema sp. 5 | ● | ○ | ○ | ● | ● | 5 | ||||||||||||||||||||||
Laccaria japonica | ● | ● | ● | ● | 4 | |||||||||||||||||||||||
Laccaria parva | ● | ○ | ● | ● | ● | ○ | ● | ● | ○ | ○ | 10 | |||||||||||||||||
Rhizopogon luteolus | ○ | ○ | 2 | |||||||||||||||||||||||||
Suillus bovinus | ○ | ○ | 2 | |||||||||||||||||||||||||
Suillus luteus | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ● | ● | ● | ○ | ○ | ○ | ○ | 15 | ||||||||||||
Thelephora terrestris | ● | ● | ○ | ○ | ● | ● | ● | 7 | ||||||||||||||||||||
Sum | 1 | 2 | 2 | 3 | 2 | 2 | 3 | 2 | 2 | 3 | 4 | 4 | 1 | 4 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 3 | 1 | 3 | 1 | 1 | 2 |
EMF Species | Str2 Seedlings | Sum | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
Amphinema sp. 3 | ● | 1 | |||||||||||||||||||
Amphinema sp. 5 | ● | 1 | |||||||||||||||||||
Laccaria japonica | ● | ○ | 2 | ||||||||||||||||||
Laccaria parva | ● | 1 | |||||||||||||||||||
Helotiales sp. 2 | ○ | ● | ○ | ○ | 4 | ||||||||||||||||
Rhizopogon luteolus | ○ | ○ | ● | ● | ○ | ○ | ● | ● | ○ | 9 | |||||||||||
Suillus luteus | ● | ○ | ○ | ○ | ● | 5 | |||||||||||||||
Thelephora terrestris | ● | ○ | ● | ● | ● | ● | ○ | ○ | ● | ● | ○ | ● | ● | 13 | |||||||
Sum | 2 | 2 | 3 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.; Yoo, S.; Park, M.S.; Kim, J.S.; Kim, C.S.; Lim, Y.W. Ectomycorrhizal Fungi Associated with Pinus densiflora Seedlings under Flooding Stress. Sustainability 2021, 13, 4367. https://doi.org/10.3390/su13084367
Cho Y, Yoo S, Park MS, Kim JS, Kim CS, Lim YW. Ectomycorrhizal Fungi Associated with Pinus densiflora Seedlings under Flooding Stress. Sustainability. 2021; 13(8):4367. https://doi.org/10.3390/su13084367
Chicago/Turabian StyleCho, Yoonhee, Shinnam Yoo, Myung Soo Park, Ji Seon Kim, Chang Sun Kim, and Young Woon Lim. 2021. "Ectomycorrhizal Fungi Associated with Pinus densiflora Seedlings under Flooding Stress" Sustainability 13, no. 8: 4367. https://doi.org/10.3390/su13084367
APA StyleCho, Y., Yoo, S., Park, M. S., Kim, J. S., Kim, C. S., & Lim, Y. W. (2021). Ectomycorrhizal Fungi Associated with Pinus densiflora Seedlings under Flooding Stress. Sustainability, 13(8), 4367. https://doi.org/10.3390/su13084367