Analysis of Changes in Suitable Habitat Areas of Paridae through Rooftop Greening Simulation—Case Study of Suwon-si, Gyeonggi-do, Republic of Korea
Abstract
:1. Introduction
2. Literature Review for Rooftop Greening Simulation
3. Methods
3.1. Scope of the Study
3.2. Species Occurrence Data
3.3. Environmental Variable Data
3.4. Species Distribution Model
3.5. Developing Rooftop Greening Scenarios
4. Results
4.1. Analysis Result of a Suitable Area for Paridae Habitat
4.2. Rooftop Greening Scenarios
4.3. Change of Habitat Suitability according to Rooftop Greening Scenarios
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vlahov, D.; Galea, S. Urbanization, urbanicity, and health. J. Urban Health 2002, 79, S1–S12. [Google Scholar] [CrossRef] [Green Version]
- Egoh, B.N.; Ntshotsho, P.; Maoela, M.A.; Blanchard, R.; Ayompe, L.M.; Rahlao, S. Setting the scene for achievable post-2020 convention on biological diversity targets: A review of the impacts of invasive alien species on ecosystem services in Africa. J. Environ. Manag. 2020, 261, 110171. [Google Scholar] [CrossRef]
- Myung-Rae, C. Trend and prospect of urbanization in Korea: Reflections on Korean cities. Econ. Soc. 2003, 12, 10–39. [Google Scholar]
- Kim, H.G.; Song, Y.K.; Kang, W.M. Analyzing Vulnerable Areas of Bird Habitat. Korean Cadastre Inf. Assoc. 2020, 2, 53–67. [Google Scholar] [CrossRef]
- Kowarik, I.; Hiller, A.; Planchuelo, G.; Seitz, B.; von der Lippe, M.; Buchholz, S. Emerging urban forests: Opportunities for promoting the wild side of the urban green infrastructure. Sustainability 2019, 11, 6318. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.J. Analysis of Budget Trends related to Creation of Urban Park in Seoul—Focusing on Budgetary Document. J. Korean Inst. Landsc. Archit. 2020, 48, 1–11. [Google Scholar] [CrossRef]
- Lv, Z.; Yang, J.; Wielstra, B.; Wei, J.; Xu, F.; Si, Y. Prioritizing green spaces for biodiversity conservation in Beijing based on habitat network connectivity. Sustainability 2019, 11, 2042. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Kim, Y.-H. Selecting suitable flora for extensive green roof system. In Proceedings of the Korean Society of Environment and Ecology Conference; 2010; pp. 89–92. Available online: https://www.koreascience.or.kr/article/CFKO201023552842343.page (accessed on 6 March 2021).
- Lee, Y.-M. Influence of Load Limitation on the Roofspace PLanning of Existing Buildings. J. Korean Landsc. Archit. 1998, 26, 166–180. [Google Scholar]
- Dong, J.; Zuo, J.; Luo, J. Development of a management framework for applying green roof policy in urban China: A preliminary study. Sustainability 2020, 12, 364. [Google Scholar] [CrossRef]
- Kanechi, M.; Fujiwara, S.; Shintani, N.; Suzuki, T.; Uno, Y. Performance of herbaceous Evolvulus pilosus on urban green roof in relation to substrate and irrigation. Urban For. Urban Green. 2014, 13, 184–191. [Google Scholar] [CrossRef]
- Mayrand, F.; Clergeau, P. Green roofs and greenwalls for biodiversity conservation: A contribution to urban connectivity? Sustainability 2018, 10, 985. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Yang, B.-E. Selection of Green-Roofs’ Location to Improve Green-Network in Junggu, Seoul—Using a Bird as Target Species. J. Korean Soc. Ecol. Environ. Archit. 2010, 10, 3–10. [Google Scholar]
- Savard, J.L. Are urban bird communities influenced by the bird diversity of adjacent landscapes? J. Appl. Ecol. 2001, 38, 1122–1134. [Google Scholar]
- Mo, U. Red-listed forest bird species in an urban environment Ð assessment of green space corridors. Landsc. Urban Plan. 2000, 50, 215–226. [Google Scholar]
- Song, W.-K. Home Range Analysis of Great Tit (Parus major) before and after Fledging in an Urban Park. J. Korean Soc. Environ. Restor. Technol. 2020, 23, 97–106. [Google Scholar]
- Hee, M. The Planning of Micro-climate Control by Complex Types. KIEAE 2017, 17, 49–54. [Google Scholar]
- Jin, C.; Bohyeon, Y.; Information, C. A Study on the Eco-friendly Housing in the Near Future based on the Ecological Design. Arch. Des. Res. 2005, 11, 105–118. [Google Scholar]
- Heo, H.; Lee, D.K.; Mo, Y. The Selection of Suitable Site for Park and Green Spaces to Increase Accessibility and Biodiversity—In Case of Seongnam City. J. Korea Soc. Environ. Restor. Technol. 2015, 18, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y. Roof green through comparison and analysis of municipal ordinances related to landscaping A Study on the Promotion of Fire Protection: Focusing on the Support Plan for Rooftop Greening in Seoul Metropolitan Government. Seoul Stn. 2003, 10.37, 279–291. [Google Scholar]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Rowe, D.B.; Getter, K.L. The role of extensive green roofs in sustainable development. HortScience 2006, 41, 1276–1285. [Google Scholar]
- Oh, Y.-G.; Choi, J.-Y.; Yoo, S.-H.; Lee, S.-H. Prediction of Land-cover Change Based on Climate Change Scenarios and Regional Characteristics using Cluster Analysis. J. Korean Soc. Agric. Eng. 2011, 53, 31–41. [Google Scholar] [CrossRef] [Green Version]
- LEE, Y.-G. Prediction of Land-Use Change based on Urban Growth Scenario in South Korea using CLUE-s Model. J. Korean Assoc. Geogr. Inf. Stud. 2016, 19, 75–88. [Google Scholar] [CrossRef]
- KIM, H.-Y. Simulation of Land Use Change by Storylines of Shared Socio-Economic Reference Pathways. J. Korean Assoc. Geogr. Inf. Stud. 2016, 19, 1–13. [Google Scholar] [CrossRef]
- Brotons, L.; Thuiller, W.; Araújo, M.B.; Hirzel, A.H. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 2004, 27, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Seoane, J.; Carrascal, L.M.; Alonso, C.L.; Palomino, D. Species-specific traits associated to prediction errors in bird habitat suitability modelling. Ecol. Model. 2005, 185, 299–308. [Google Scholar] [CrossRef]
- Oja, T.; Alamets, K.; Pärnamets, H. Modelling bird habitat suitability based on landscape parameters at different scales. Ecol. Indic. 2005, 5, 314–321. [Google Scholar] [CrossRef]
- Yang, D.; Song, K.; Oh, J.; National, K.; Services, P.; Conservation, P.; National, K.; Services, P. Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach. Korean J. Ecol. Environ. 2016, 49, 197–207. [Google Scholar]
- KIM, A.-R.; LEE, J.-M.; JANG, G.-S. Modeling the Spatial Distribution of Roe Deer (Capreolus pygargus) in Jeju Island. J. Korean Assoc. Geogr. Inf. Stud. 2017, 20, 139–151. [Google Scholar] [CrossRef]
- Seo, S.; Lee, M.; Kim, J.; Chun, S.-H.; Lee, S. Prediction on Habitat Distribution in Mt. Inwang and Mt. An Using Maxent. J. Environ. Impact Assess. 2016, 25, 432–441. [Google Scholar] [CrossRef]
- Kim, A.; Lee, Y.K.D. A Management Plan According to the Estimation of Nutria (Myocastor coypus) Distribution Density and Potential Suitable Habitat. J. Environ. Impact Assess. 2018, 27, 203–214. [Google Scholar] [CrossRef]
- Gormley, A.M.; Forsyth, D.M.; Griffioen, P.; Lindeman, M.; Ramsey, D.S.L.; Scroggie, M.P.; Woodford, L. Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. J. Appl. Ecol. 2011, 48, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning, Banff, AB, Canada, 4–8 July 2004; pp. 655–662. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.B.; Aneja, V.P.; Kang, D.; Arya, S.P. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int. J. Glob. Environ. Issues 2006, 6, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Kim, D.; Shin, M.; Kang, T.; Lee, M. Predicting the Goshawk’s habitat area using Species Distribution Modeling: Case Study area Chungcheongbuk-do, South Korea. Korean J. Environ. Ecol. 2015, 29, 333–343. [Google Scholar] [CrossRef]
- JUNG, D.-H. Analysis of Hibernating Habitat of Asiatic Black Bear (Ursus thibetanus ussuricus) based on the Presence-Only Model using MaxEnt and Geographic Information System: A Comparative Study of Habitat for Non-Hibernating Period. J. Korean Assoc. Geogr. Inf. Stud. 2016, 19, 102–113. [Google Scholar] [CrossRef]
- Song, W.-K.; Kim, E.-Y. A Comparison of Machine Learning Species Distribution Methods for Habitat Analysis of the Korea Water Deer (Hydropotes inermis argyropus). Korean J. Remote Sens. 2012, 28, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Seoul Metropolitan Government Plan to Promote Rooftop Greening. 2019. Available online: http://opengov.seoul.go.kr/sanction/19486628 (accessed on 6 March 2021).
- Hong, S.H.; Kwak, J.I. Characteristics of Appearance by Vegetation Type of Paridae in Urban Forest of Korea. Korean J. Environ. Ecol. 2011, 25, 760–766. [Google Scholar]
- Mas, J.F.; Filho, B.S.; Pontius, R.G.; Gutiérrez, M.F.; Rodrigues, H. A suite of tools for ROC analysis of spatial models. ISPRS Int. J. Geo Inf. 2013, 2, 869–887. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Carter, J.V.; Pan, J.; Rai, S.N.; Galandiuk, S. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery 2016, 159, 1638–1645. [Google Scholar] [CrossRef] [PubMed]
- The Potential of the Green Roofs as an Ecological Space—Focusing on the Results of Monitoring Research. J. Urban Des. Inst. Korea Urban Des. 2015, 6, 119–132.
Family | Species | Population |
---|---|---|
Paridae | Parus minor | 93 |
Periparus ater | 4 | |
Poecile palustris | 81 | |
Parus varius | 23 | |
Total | 201 |
No | Variable | Type | Content |
---|---|---|---|
1 | lc_type | Categorical | Land Cover (7 types) (1) Urbanization area, (2) Agricultural area, (3) Forest, (4) Grassland, (5) Wetland, (6) Bare land, (7) River |
2 | dist_resi | Continuous | Distance from residential area/Reflect recovery technology |
3 | dist_indus | Continuous | Distance from industrial facility area/Reflect recovery technology |
4 | dist_public | Continuous | Distance from public facilities area/Reflect recovery technology |
5 | dist_comm | Continuous | Distance from commercial area/Reflect recovery technology |
6 | dist_road | Continuous | Distance from road |
7 | dist_green | Continuous | Distance from greenery |
8 | dist_river | Continuous | Distance from river |
Variables | Contribution |
---|---|
Distance from a residential area | 0.398 |
Distance from an industrial facility area | 0.194 |
Distance from the road | 0.148 |
Distance from the greenery | 0.073 |
Distance from the river | 0.068 |
Land cover (7 types) | 0.053 |
Distance from the public facilities area | 0.052 |
Distance from the commercial area | 0.014 |
Scenario | 1% | 3% | 5% | ||
---|---|---|---|---|---|
The Target Area of the Green Roof | |||||
Residential area | Rooftop greening area (km2) | 0.51 | 1.18 | 1.70 | |
Habitat increase area (km2) | 0.53 | 1.88 | 3.99 | ||
Efficiency compared to the area of technology reflected (%) | 103.9 | 159.3 | 234.7 | ||
Industrial area | Rooftop greening area (km2) | 0.20 | 0.36 | 0.46 | |
Habitat increase area (km2) | 0.10 | 0.29 | 0.44 | ||
Efficiency compared to the area of technology reflected (%) | 50.0 | 80.6 | 95.7 | ||
Commercial area | Rooftop greening area (km2) | 0.75 | 1.41 | 1.86 | |
Habitat increase area (km2) | 0.51 | 0.61 | 0.91 | ||
Efficiency compared to the area of technology reflected (%) | 68.0 | 43.3 | 49.0 | ||
Public area | Rooftop greening area (km2) | 0.17 | 0.38 | 0.54 | |
Habitat increase area (km2) | 0.20 | 0.54 | 0.80 | ||
Efficiency compared to the area of technology reflected (%) | 117.6 | 142.1 | 148.1 | ||
Total area | Rooftop greening area (km2) | 1.65 | 3.34 | 4.58 | |
Habitat increase area (km2) | 1.39 | 3.64 | 6.52 | ||
Efficiency compared to the area of technology reflected (%) | 86.87 | 110.3 | 144.88 |
Species | Scenario | Before Technology Reflection | Area of Technology Reflection 1% (1.6 km2) | Area of Technology Reflection 3% (3.3 km2) | Area of Technology Reflection 5% (4.5 km2) |
---|---|---|---|---|---|
Paridae | Habitat increase area (km2) | 27.87 | 29.26 (1.39 increased) | 31.51 (3.64 increased) | 34.39 (6.52 increased) |
Efficiency compared to the area of technology reflected (%) | - | 86.87 | 110.3 | 144.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, K.Y.; Kim, H.G.; Kil, S.-H. Analysis of Changes in Suitable Habitat Areas of Paridae through Rooftop Greening Simulation—Case Study of Suwon-si, Gyeonggi-do, Republic of Korea. Sustainability 2021, 13, 4514. https://doi.org/10.3390/su13084514
Baek KY, Kim HG, Kil S-H. Analysis of Changes in Suitable Habitat Areas of Paridae through Rooftop Greening Simulation—Case Study of Suwon-si, Gyeonggi-do, Republic of Korea. Sustainability. 2021; 13(8):4514. https://doi.org/10.3390/su13084514
Chicago/Turabian StyleBaek, Kyung Youl, Ho Gul Kim, and Sung-Ho Kil. 2021. "Analysis of Changes in Suitable Habitat Areas of Paridae through Rooftop Greening Simulation—Case Study of Suwon-si, Gyeonggi-do, Republic of Korea" Sustainability 13, no. 8: 4514. https://doi.org/10.3390/su13084514
APA StyleBaek, K. Y., Kim, H. G., & Kil, S. -H. (2021). Analysis of Changes in Suitable Habitat Areas of Paridae through Rooftop Greening Simulation—Case Study of Suwon-si, Gyeonggi-do, Republic of Korea. Sustainability, 13(8), 4514. https://doi.org/10.3390/su13084514