Resource Endowment, Industrial Structure, and Green Development of the Yellow River Basin
Abstract
:1. Introduction
2. Literature Review and Theoretical Mechanism
2.1. Resource Endowment and Green Development
2.2. Industrial Structure and Green Development
2.3. Resource Endowment, Industrial Structure, and Green Development
3. Methods
3.1. Measurement Model
3.2. Variable Selection and Data Descriptions
3.2.1. Explained Variable
3.2.2. Core Explanatory Variables
3.2.3. Control Variables
3.2.4. Data Source
4. Empirical Results
4.1. Overall Analysis
4.2. Regional Heterogeneity Analysis
4.3. Robustness Test
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mele, M.; Magazzino, C. A Machine Learning analysis of the relationship among iron and steel industries, air pollution, and economic growth in China. J. Clean. Prod. 2020, 277, 123293. [Google Scholar] [CrossRef]
- Udemba, E.N.; Magazzino, C.; Bekun, F.V. Modeling the nexus between pollutant emission, energy consumption, foreign direct investment, and economic growth: New insights from China. Environ. Sci. Pollut. Res. Int. 2020, 27, 17831–17842. [Google Scholar] [CrossRef] [PubMed]
- Speech at the Symposium on ecological protection and high quality development of the Yellow River Basin. Available online: https://baijiahao.baidu.com/s?id=1647443445350748172&wfr=spider&for=pc (accessed on 12 November 2020).
- Zhu, B.; Zhang, M.; Zhou, Y.; Wang, P.; Sheng, J.; He, K.; Wei, Y.; Xie, R. Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach. Energy Policy 2019, 134, 110946. [Google Scholar] [CrossRef]
- Blanco, L.; Grier, R. Natural resource dependence and the accumulation of physical and human capital in Latin America. Resour. Policy 2012, 37, 281–295. [Google Scholar] [CrossRef]
- Idemudia, U. The resource curse and the decentralization of oil revenue: The case of Nigeria. J. Clean. Prod. 2012, 35, 183–193. [Google Scholar] [CrossRef]
- Oskenbayev, Y.; Yilmaz, M.; Abdulla, K. Resource concentration, institutional quality and the natural resource curse. Econ. Syst. 2013, 37, 254–270. [Google Scholar] [CrossRef]
- Menyu, Z.Z.X. The summary of the 1st China Forum for Scholars on Development Economics. Econ. Res. J. 2019, 3, 194–198. [Google Scholar]
- Auty, R.; Warhurst, A. Sustainable development in mineral exporting economies. Resour. Policy 1993, 19, 14–29. [Google Scholar] [CrossRef]
- Xie, X.; Li, K.; Liu, Z.; Ai, H. Curse or blessing: How does natural resource dependence affect city-level economic development in China? Aust. J. Agric. Resour. Econ. 2021. [Google Scholar] [CrossRef]
- Hu, H.; Ran, W.; Wei, Y.; Li, X. Do Energy Resource Curse and Heterogeneous Curse Exist in Provinces? Evidence from China. Energies 2020, 13, 4383. [Google Scholar] [CrossRef]
- Sun, H.; Sun, W.; Geng, Y.; Yang, X.; Edziah, B.K. How does natural resource dependence affect public education spending? Environ. Sci. Pollut. Res. Int. 2018, 26, 3666–3674. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Yang, C.; Jiang, S.; Li, Y. Resource Price Fluctuations, Resource Dependence and Sustainable Growth. Sustainability 2019, 11, 6371. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Lin, S. Natural Resources and Economic Development: New Panel Evidence. Environ. Resour. Econ. 2015, 66, 363–391. [Google Scholar] [CrossRef]
- Orihuela, J.C. Institutions and place: Bringing context back into the study of the resource curse. J. Inst. Econ. 2018, 14, 157–180. [Google Scholar] [CrossRef]
- Badeeb, R.A.; Lean, H.H.; Clark, J. The evolution of the natural resource curse thesis: A critical literature survey. Resour. Policy 2017, 51, 123–134. [Google Scholar] [CrossRef]
- Hilmawan, R.; Clark, J. An investigation of the resource curse in Indonesia. Resour. Policy 2019, 64, 101483. [Google Scholar] [CrossRef] [Green Version]
- Yanıkkaya, H.; Turan, T. Curse or Blessing? An Empirical Re-examination of Natural Resource-Growth Nexus. J. Int. Dev. 2018, 30, 1455–1473. [Google Scholar] [CrossRef]
- Atil, A.; Nawaz, K.; Lahiani, A.; Roubaud, D. Are natural resources a blessing or a curse for financial development in Pakistan? The importance of oil prices, economic growth and economic globalization. Resour. Policy 2020, 67, 101683. [Google Scholar] [CrossRef]
- Jin, B.; Li, G. Green economic growth from a developmental perspective. China Financ. Econ. Rev. 2013, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Chao, L.H.L. Regional Difference and Structural Decomposition of Green Total Factor Productivity in China. Shanghai J. Econ. 2018, 6, 35–47. [Google Scholar]
- Chen, S.; Zhang, Y.; Chen, X. Technology Choice, Upgrading of Industrial Structure and Economic Growth—Research Based on Semi-Parameter Spatial Panel Vector Auto-Regression Model. Econ. Surv. 2017, 34, 87–92. [Google Scholar]
- Sun, Z.; Sun, T. Financial development, Industrial structure optimization, and Eco-efficiency promotion. Fresen. Environ. Bull. 2019, 28, 6231–6238. [Google Scholar]
- Liu, Z.; Zhang, H.; Zhang, Y.; Zhu, T. How does industrial policy affect the eco-efficiency of industrial sector? Evidence from China. Appl. Energy 2020, 272, 115206. [Google Scholar] [CrossRef]
- Xu, L.; Tan, J. Financial development, industrial structure and natural resource utilization efficiency in China. Resour. Policy 2020, 66, 101642. [Google Scholar] [CrossRef]
- Li, F.Y.; Liu, S.J.; Cheng, Y.; Song, Z.Y. Effect of Value-added in China’s Exports on Regional Industrial Structure Advancement. Sci. Geogr. Sin. 2017, 37, 37–45. [Google Scholar]
- Kraftova, I.; Zdrazil, P.; Mateja, Z. Reflection of Industrial Structure in Innovative Capability. Inžinerinė Ekon. 2016, 27, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Dianfan, G.C.Z.R. An Empirical Study on the Effects of Industrial Structure on Economic Growth and Fluctuations in China. Econ. Res. J. 2011, 5, 4–16, 31. [Google Scholar]
- Zhang, H.; Shen, L.; Zhong, S.; Elshkaki, A. Coal resource and industrial structure nexus in energy-rich area: The case of the contiguous area of Shanxi and Shaanxi Provinces, and Inner Mongolia Autonomous Region of China. Resour. Policy 2020, 66, 101646. [Google Scholar] [CrossRef]
- Corden, W.M.; Neary, J.P. Booming Sector and De-Industrialisation in a Small Open Economy. Econ. J. 1982, 92, 825–848. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, K. Agricultural productivity, comparative advantage, and economic growth. J. Econ. Theory 1992, 58, 317–334. [Google Scholar] [CrossRef] [Green Version]
- Tone, K.; Toloo, M.; Izadikhah, M. A modified slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2020, 287, 560–571. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, C.; Wang, S.; Zhang, G. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Indic. 2018, 86, 67–80. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, R.; Chen, X.; Li, P.; Guo, J. Impact of Nanotechnology Patents on Green Development of China’s Building Industry. Recent Pat. Nanotechnol. 2020, 14, 141–152. [Google Scholar] [CrossRef]
- Haojie, S. Reestimating the Capital Stock of China: 1952~2006. J. Quant. Tech. Econ. 2008, 10, 17–31. [Google Scholar]
- Qing, L.H.A.Z. Environmental Regulations, Resource Endowments and Urban Industry Transformation: Comparative Analysis of Resource-based and Non-resource-based Cities. Econ. Res. J. 2018, 53, 182–198. [Google Scholar]
- Yong, J.; HuiXin, Y. Government Intervention, Distortion of Industrial Structure and Improvement of Total Factor Productivity. Financ. Trade Res. 2019, 30, 1–16. [Google Scholar]
- Yu, B. Economic growth effects of industrial Restructuring and productivity improvement. China Ind. Econ. 2015, 12, 83–98. [Google Scholar]
- China City Statistical Yearbook. Available online: https://data.cnki.net/ (accessed on 10 October 2020).
- China Statistical Yearbook. Available online: http://www.stats.gov.cn/ (accessed on 10 October 2020).
- Wangsheng, M.; Yang, Z. Natural resource endowment, path selection of technologicalprogress, and green economic growth: An empirical research based on China’s provincial panel data. Resour. Sci. 2020, 42, 2314–2327. [Google Scholar]
- Huang, M.; Ding, R.; Xin, C. Impact of Technological Innovation and Industrial-Structure Upgrades on Ecological Efficiency in China in Terms of Spatial Spillover and the Threshold Effect. Integr. Environ. Asses 2020. [Google Scholar] [CrossRef]
- Chen, L.; Ye, W.; Huo, C.; James, K. Environmental Regulations, the Industrial Structure, and High-Quality Regional Economic Development: Evidence from China. Land 2020, 9, 517. [Google Scholar] [CrossRef]
- Tang, M.; Li, Z.; Hu, F.; Wu, B. How does land urbanization promote urban eco-efficiency? The mediating effect of industrial structure advancement. J. Clean. Prod. 2020, 272, 122798. [Google Scholar] [CrossRef]
- MA, J.S.Y.C. Chaotic characters of the Yellow River Basin based on the sediment time series: An attempt to integrated research in geography. J. Geogr. Sci. 2010, 20, 219–230. [Google Scholar] [CrossRef]
- Yingshi, L.; Yinhua, T.; Ying, L. Upgrading of Industrial Structure, Energy Efficiency, Green Total Factor Productivity. Theory Pract. Financ. Econ. 2018, 39, 118–126. [Google Scholar]
- Calderon, C.; Chong, A.; Leon, G. Institutional enforcement, labor-market rigidities, and economic performance. Emerg. Mark. Rev. 2007, 8, 38–49. [Google Scholar] [CrossRef] [Green Version]
Variable Name | Symbol | Average Value | Standard Deviation | Maximum | Minimum | |
---|---|---|---|---|---|---|
Explained variable | Green Total Factor Productivity | GTFP | 1.1893 | 0.2604 | 2.4029 | 0.5492 |
Green technological progress | GTECH | 1.0316 | 0.1868 | 2.1055 | 0.4608 | |
Green technology efficiency | GEFFCH | 1.0096 | 0.1124 | 1.7739 | 0.5570 | |
Core explanatory variables | Resource endowment | RE | 0.0557 | 0.1984 | 0.0885 | 0.0001 |
Industrial structure advancement | TS | 0.8312 | 0.5698 | 9.4822 | 0.1486 | |
Industrial structure rationalization | TR | 0.1962 | 1.0362 | 21.6420 | 0.0058 | |
Control variables | Technological progress | Tech | 0.0101 | 0.0092 | 0.1656 | 0.0007 |
The level of economic development | Pgdp | 3.9259 | 3.2819 | 25.6877 | 0.2396 | |
Environmental regulation | Envi | 0.6175 | 0.2015 | 1.0323 | 0.0871 | |
Urbanization rate | Urba | 0.5992 | 0.2568 | 0.9985 | 0.1310 |
SYS-GMM | DIF-GMM | SYS-GMM | DIF-GMM | SYS-GMM | DIF-GMM | |
---|---|---|---|---|---|---|
VARIABLES | (1) | (2) | (3) | (4) | (5) | (6) |
GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | |
L.GTFP | 0.361 *** | 0.232 *** | 0.387 *** | 0.214 *** | 0.336 *** | 0.173 *** |
(101.94) | (80.27) | (10.11) | (17.98) | (24.06) | (8.38) | |
RE | −0.012 *** | −0.009 *** | −0.008 *** | −0.004 ** | −0.023 *** | −0.019 *** |
(−14.49) | (−9.76) | (−6.42) | (−2.42) | (−12.00) | (−8.94) | |
TS | 0.032 *** | 0.042 *** | 0.098 *** | 0.079 *** | 0.032 * | 0.023 |
(5.65) | (17.29) | (10.57) | (4.32) | (1.91) | (1.35) | |
TR | −0.012 *** | −0.009 *** | −0.019 *** | −0.012 ** | −0.014 ** | −0.009 |
(−4.46) | (−5.36) | (−3.42) | (−2.57) | (−2.50) | (−1.39) | |
RE × TS | 0.046 *** | 0.050 *** | ||||
(11.02) | (11.69) | |||||
RE × TR | 0.003 * | 0.001 | ||||
(1.82) | (0.95) | |||||
Tech | 0.036 *** | 0.038 *** | 0.038 *** | 0.039 *** | ||
(11.66) | (19.55) | (10.49) | (17.41) | |||
Pgdp | 0.036 ** | 0.021 | 0.041 *** | 0.023 | ||
(2.10) | (1.18) | (2.76) | (1.27) | |||
Envi | 0.009 | −0.029 | −0.001 | 0.073 | ||
(0.17) | (−0.49) | (−0.03) | (1.50) | |||
Urba | −0.234 *** | −0.097 * | −0.224 *** | −0.160 *** | ||
(−6.99) | (−1.92) | (−5.46) | (−3.62) | |||
Constant | 0.080 *** | 0.108 *** | 0.782 *** | 0.495 *** | 0.655 *** | 0.592 *** |
(10.67) | (26.59) | (9.75) | (3.70) | (6.01) | (4.98) | |
Sargan | 51.384 | 49.694 | 37.732 | 33.576 | 38.363 | 35.327 |
(0.8906) | (0.6411) | (0.9973) | (0.9868) | (0.9966) | (0.9769) | |
AR(1) | −4.041 | −3.901 | −3.736 | −3.485 | −3.634 | −3.3695 |
(0.0001) | (0.0001) | (0.0002) | (0.0005) | (0.0003) | (0.0008) | |
AR(2) | 0.1321 | −0.180 | −0.437 | −0.830 | −0.598 | −1.006 |
(0.8949) | (0.8574) | (0.6620) | (0.4066) | (0.5499) | (0.3144) | |
Observations | 623 | 564 | 509 | 461 | 509 | 461 |
Number of ID | 55 | 53 | 45 | 43 | 45 | 43 |
Green Technological Progress (1) | Green Technology Efficiency (2) | Green Technological Progress (3) | Green Technology Efficiency (4) | |
---|---|---|---|---|
VARIABLES | GTECH | GEFFCH | GTECH | GEFFCH |
L.GTECH | 0.326 *** | 0.318 *** | ||
(18.85) | (16.77) | |||
L.GEFFCH | 0.389 *** | 0.393 *** | ||
(80.02) | (47.57) | |||
RE | −0.016 *** | 0.004 *** | −0.032 *** | 0.002 ** |
(−8.04) | (7.12) | (−13.66) | (2.34) | |
TS | 0.073 *** | 0.071 *** | 0.017 | 0.067 *** |
(4.05) | (44.56) | (1.13) | (24.71) | |
TR | −0.040 *** | 0.025 *** | −0.048 *** | 0.027 *** |
(−7.89) | (20.97) | (−10.02) | (28.19) | |
RE × TS | 0.051 *** | 0.001 | ||
(12.71) | (0.49) | |||
RE × TR | 0.007 *** | −0.001 | ||
(5.03) | (−0.33) | |||
Tech | 0.045 *** | 0.003 *** | 0.039 *** | 0.001 |
(16.85) | (2.68) | (6.10) | (1.24) | |
Pgdp | −0.072 *** | −0.013 *** | −0.057 *** | −0.010 ** |
(−6.63) | (−5.02) | (−3.24) | (−2.10) | |
Envi | 0.059 | −0.070 *** | 0.041 | −0.067 *** |
(1.11) | (−8.07) | (0.58) | (−7.06) | |
Urba | −0.068 ** | −0.015 *** | −0.080 *** | −0.023 *** |
(−2.29) | (−2.94) | (−3.87) | (−3.57) | |
Constant | 1.236 *** | 0.351 *** | 1.004 *** | 0.348 *** |
(14.63) | (21.08) | (5.71) | (6.79) | |
Sargan | 38.553 | 38.599 | 36.394 | 40.078 |
(0.9963) | (0.9962) | (0.9984) | (0.9936) | |
AR(1) | −4.577 | −2.925 | −4.318 | −2.929 |
(0.0000) | (0.0034) | (0.0000) | (0.0034) | |
AR(2) | −1.956 | 1.137 | −2.071 | 1.137 |
(0.0505) | (0.2554) | (0.0383) | (0.2554) | |
Observations | 509 | 509 | 509 | 509 |
Number of ID | 45 | 45 | 45 | 45 |
(Key Environmental Protection Cities) (1) | (Non-Key Environmental Protection Cities) (2) | (Upper and Middle Reaches) (3) | (Lower Reaches) (4) | |
---|---|---|---|---|
VARIABLES | GTFP | GTFP | GTFP | GTFP |
L. GTFP | 0.297 ** | 0.147 | 0.315 *** | 0.091 |
(2.38) | (1.00) | (5.26) | (0.17) | |
RE | −0.011 *** | 0.008 | −0.001 | −0.004 |
(−3.67) | (1.45) | (−0.14) | (−1.27) | |
TR | 0.155 *** | 0.022 | 0.105 ** | 0.061 |
(4.22) | (0.37) | (2.20) | (0.71) | |
TS | −0.023 *** | 0.000 | −0.026 ** | −0.011 |
(−3.00) | (0.01) | (−2.51) | (−0.28) | |
Tech | 0.017 | 0.066 *** | 0.054 *** | 0.028 * |
(1.59) | (3.47) | (10.91) | (1.78) | |
Pgdp | 0.006 | 0.050 | 0.138 *** | 0.071 |
(0.13) | (0.46) | (3.36) | (0.53) | |
Envi | 0.192 | −1.242 ** | −0.526 ** | −0.284 |
(1.05) | (−2.53) | (−2.30) | (−1.11) | |
Urba | −0.079 | 0.146 | 0.037 | −0.122 |
(−0.78) | (1.24) | (0.27) | (−0.49) | |
Constant | 0.393 | 0.031 | −0.967 ** | 0.175 |
(0.76) | (0.03) | (−2.24) | (0.33) | |
Sargan | 15.168 | 11.789 | 17.567 | 9.019 |
(1.0000) | (1.0000) | (1.0000) | (1.0000) | |
AR(1) | −2.498 | −2.184 | −3.336 | −0.619 |
(0.0125) | (0.0290) | (0.0008) | (0.5359) | |
AR(2) | −2.177 | 0.274 | −0.227 | −1.201 |
(0.0295) | (0.7844) | (0.8205) | (0.2297) | |
Observations | 289 | 220 | 328 | 157 |
Number of ID | 25 | 20 | 28 | 15 |
SYS-GMM | DIF-GMM | Mixed Effect | Fixed Effect | Random Effect | |
---|---|---|---|---|---|
VARIABLES | (1) | (2) | (3) | (4) | (5) |
GTFP | GTFP | GTFP | GTFP | GTFP | |
L.GTFP | 0.374 *** | 0.196 *** | |||
(9.28) | (9.86) | ||||
RE | −0.007 *** | −0.005 *** | −0.012 ** | 0.013 | 0.005 |
(−6.93) | (−3.17) | (−2.42) | (1.62) | (0.67) | |
TS * | 0.945 *** | 0.736 *** | 0.037 | 0.028 | 0.036 |
(21.55) | (5.12) | (1.59) | (1.00) | (1.40) | |
TR * | −0.014 *** | −0.009 ** | −0.004 | −0.005 | −0.004 |
(−3.58) | (−2.33) | (−0.37) | (−0.37) | (−0.40) | |
Tech | 0.040 *** | 0.041 *** | 0.065 *** | 0.059 *** | 0.061 *** |
(16.29) | (18.69) | (4.85) | (5.30) | (5.45) | |
Pgdp | 0.011 | 0.008 | 0.021 | 0.147 *** | 0.112 *** |
(0.62) | (0.59) | (1.00) | (5.05) | (4.29) | |
Envi | −0.012 | −0.014 | 0.110 | −0.084 | −0.015 |
(−0.19) | (−0.31) | (1.08) | (−0.76) | (−0.15) | |
Urba | −0.238 *** | −0.129 *** | −0.008 | −0.152 *** | −0.108 ** |
(−7.61) | (−3.77) | (−0.25) | (−2.78) | (−2.49) | |
Constant | 0.255 *** | 0.117 | 0.244 | −0.426 | −0.270 |
(3.02) | (0.98) | (1.00) | (−1.44) | (−1.03) | |
Sargan | 38.10 | 34.90 | |||
(0.9969) | (0.9798) | ||||
AR(1) | −3.8275 | −3.5104 | |||
(0.0001) | (0.0004) | ||||
AR(2) | −0.4913 | −0.9033 | |||
(0.6232) | (0.3664) | ||||
Observations | 509 | 461 | 551 | 551 | 551 |
Number of ID | 45 | 43 | 45 | 45 | 45 |
F | 12.17 | 26.09 | |||
(0.0000) | (0.0000) | ||||
R-squared | 0.136 | 0.268 | 0.264 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Zhang, R.; Liu, H.; Wang, G.; Sun, X. Resource Endowment, Industrial Structure, and Green Development of the Yellow River Basin. Sustainability 2021, 13, 4530. https://doi.org/10.3390/su13084530
Zhao K, Zhang R, Liu H, Wang G, Sun X. Resource Endowment, Industrial Structure, and Green Development of the Yellow River Basin. Sustainability. 2021; 13(8):4530. https://doi.org/10.3390/su13084530
Chicago/Turabian StyleZhao, Kang, Rui Zhang, Hong Liu, Geyi Wang, and Xialing Sun. 2021. "Resource Endowment, Industrial Structure, and Green Development of the Yellow River Basin" Sustainability 13, no. 8: 4530. https://doi.org/10.3390/su13084530
APA StyleZhao, K., Zhang, R., Liu, H., Wang, G., & Sun, X. (2021). Resource Endowment, Industrial Structure, and Green Development of the Yellow River Basin. Sustainability, 13(8), 4530. https://doi.org/10.3390/su13084530