Diversity Bears Fruit: Evaluating the Economic Potential of Undervalued Fruits for an Agroecological Restoration Approach in the Peruvian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Research Framework
2.2.1. Data Collection
2.2.2. Identifying High-Potential NUS Fruit
2.2.3. Estimating the Profitability of NUS Production
2.2.3.1. Projecting Single Species Revenue over Time
2.2.3.2. Projecting Profit over Time for a Mixed NUS Agroforestry System
- The total size of the system is 4 ha. This is less than the 7.4 ha in average that the farmers we interviewed indicated they dedicate to agroforestry on their land. However, we chose for a slightly smaller design in our projections because 4 ha is considered the maximum manageable size for a single farmer to implement over one year (Camino Verde, pers. comm. July 2018) and we considered farmers to be able to sell all their produce at the local market, without the intervention of a broker.
- Trees are planted in rows, with a distance of 5 m between individual trees resulting in a 5 × 5 m surface per tree (which corresponds to the crop density observed on farmer’s fields during interviews), except for cocona, which was planted with 2 plants per 5 × 5 m surface due to its small size and as per recommendation of one of the interviewees.
- Half of the rows within the agroforestry system are composed of light demanding species, i.e., camu-camu (Myrciaria dubia) and guanabana (Annona muricata) and the short-term producer cocona. The other half of rows is composed of shade givers, i.e., all palms and guaba (Inga edulis) and shade-tolerant species, i.e., arazá and copoazu (Theobroma grandiflorum). The division of species based on their ecological characteristics was also recommended by one of the interviewees.
3. Results
3.1. High-Potential NUS
3.2. Potential Revenue of Individual High-Potential NUS
3.3. Potential Profit of a NUS-Based Agroforestry System in Madre de Dios
3.4. Reasons Mentioned by Local Farmers for Planting High-Potential NUS or Not
4. Discussion
4.1. Identification of High-Potential NUS
4.2. How Much Revenue Can One NUS Fruit Provide?
4.3. Projected Profitability of NUS-Based Agroforestry Systems in Madre de Dios
4.4. Why Are Farmers Not Already Adopting NUS-Based Agroforestry Systems and What Would Enable Them to Do So?
4.5. Implications and Directions for Further Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree Restoration Potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Mansourian, S.; Stanturf, J.A.; Derkyi, M.A.A.; Engel, V.L. Forest Landscape Restoration: Increasing the Positive Impacts of Forest Restoration or Simply the Area under Tree Cover? Quality or Quantity in Forest Landscape Restoration? Restor. Ecol. 2017, 25, 178–183. [Google Scholar] [CrossRef]
- Béliveau, A.; Lucotte, M.; Davidson, R.; Paquet, S.; Mertens, F.; Passos, C.J.; Romana, C.A. Reduction of Soil Erosion and Mercury Losses in Agroforestry Systems Compared to Forests and Cultivated Fields in the Brazilian Amazon. J. Environ. Manag. 2017, 203, 522–532. [Google Scholar] [CrossRef]
- Perry, J.; Lojka, B.; Quinones Ruiz, L.G.; Van Damme, P.; Houška, J.; Fernandez Cusimamani, E. How Natural Forest Conversion Affects Insect Biodiversity in the Peruvian Amazon: Can Agroforestry Help? Forests 2016, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Schroth, G.; Izac, A.-M.N.; Vasconcelos, H.L.; Gascon, C.; da Fonseca, G.A.B.; Harvey, C.A. Agroforestry and Biodiversity Conservation in Tropical Landscapes; Island Press: Washington, DC, USA, 2004; ISBN 978-1-55963-357-4. [Google Scholar]
- Shimizu, M.K.; Kato, O.R.; Figueiredo, R.D.O.; Silva, S. Agriculture without Burning: Restoration of Altered Areas with Chop-and-Mulch Sequential Agroforestry Systems in the Amazon Region. Glob. Adv. Res. J. Agric. Sci. 2014, 3, 8. [Google Scholar]
- Torquebiau, E.; Rapidel, B.; Jagoret, P.; Harmand, J.-M.; Vaast, P. Addressing Climate Change Concerns in Tropical Agroforestry; EURAF: Nuoro, Italy, 2016. [Google Scholar]
- Van Dexter, K.; Visseren-Hamakers, I. Linking forest conservation and food security through agroecology: Insights for forest landscape restoration. In Forest Landscape Restoration; Routledge: London, UK, 2018; pp. 119–136. [Google Scholar]
- IUCN; WRI. A Guide to the Restoration Opportunities Assessment Methodology (ROAM): Assessing Forest Landscape Restoration Opportunities at the National or Sub-National Level; IUCN: Gland, Switzerland; WRI: Washington, DC, USA, 2014. [Google Scholar]
- Jansen, M.; Guariguata, M.R.; Raneri, J.E.; Ickowitz, A.; Chiriboga-Arroyo, F.; Quaedvlieg, J.; Kettle, C.J. Food for Thought: The Underutilized Potential of Tropical Tree-Sourced Foods for 21st Century Sustainable Food Systems. People Nat. 2020, 2. [Google Scholar] [CrossRef]
- Padulosi, S.; Bala Ravi, S.; Rojas, W.; Valdivia, R.; Jager, M.; Polar, V.; Gotor, E.; Mal, B. Experiences and Lessons Learned in the Framework of a Global UN Effort in Support of Neglected and Underutilized Species. Acta Hortic. 2013, 517–532. [Google Scholar] [CrossRef]
- Peters, C.M.; Gentry, A.H.; Mendelsohn, R.O. Valuation of an Amazonian Rainforest. Nature 1989, 339, 655–656. [Google Scholar] [CrossRef]
- Bioversity New World Fruits Database. Available online: https://www.bioversityinternational.org/e-library/databases/new-world-fruits/ (accessed on 9 November 2020).
- Van Loon, R.; Lagneaux, E.; Wiederkehr Guerra, G.; Chiriboga-Arroyo, F.; Thomas, E.; Gamarra, B.; van Zonneveld, M.; Kettle, C. Barriers to adopting a diversity of NUS fruit trees in Latin American food systems. In Orphan Crops for Sustainable Food and Nutrition Security: Promoting Neglected and Underutilized Species; Routledge: London, UK, 2021. [Google Scholar]
- Hunter, D.; Borelli, T.; Beltrame, D.M.O.; Oliveira, C.N.S.; Coradin, L.; Wasike, V.W.; Wasilwa, L.; Mwai, J.; Manjella, A.; Samarasinghe, G.W.L.; et al. The Potential of Neglected and Underutilized Species for Improving Diets and Nutrition. Planta 2019, 250, 709–729. [Google Scholar] [CrossRef]
- Hergoualc’h, K.; Blanchart, E.; Skiba, U.; Hénault, C.; Harmand, J.-M. Changes in Carbon Stock and Greenhouse Gas Balance in a Coffee (Coffea Arabica) Monoculture versus an Agroforestry System with Inga Densiflora, in Costa Rica. Agric. Ecosyst. Environ. 2012, 148, 102–110. [Google Scholar] [CrossRef]
- Somarriba, E.; Beer, J. Productivity of Theobroma Cacao Agroforestry Systems with Timber or Legume Service Shade Trees. Agrofor. Syst. 2011, 81, 109–121. [Google Scholar] [CrossRef]
- Mansourian, S.; Vallauri, D. Restoring Forest Landscapes: Important Lessons Learnt. Environ. Manag. 2014, 53, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Leakey, R.R. Converting ‘Trade-Offs’ to ‘Trade-Ons’ for Greatly Enhanced Food Security in Africa: Multiple Environmental, Economic and Social Benefits from ‘Socially Modified Crops’. Food Secur. 2018, 10, 505–524. [Google Scholar] [CrossRef]
- Lojka, B.; Preininger, D.; Van Damme, P.; Rollo, A.; Banout, J. Use of the Amazonian Tree Species INGA Edulis for Soil Regeneration and Weed Control. J. Trop. For. Sci. 2012, 24, 89–101. [Google Scholar]
- Montúfar, R.; Laffargue, A.; Pintaud, J.-C.; Hamon, S.; Avallone, S.; Dussert, S. Oenocarpus Bataua Mart. (Arecaceae): Rediscovering a Source of High Oleic Vegetable Oil from Amazonia. J. Am. Oil Chem. Soc. 2010, 87, 167–172. [Google Scholar] [CrossRef]
- Martinelli, G.D.C.; Schlindwein, M.M.; Padovan, M.P.; Gimenes, R.M.T. Decreasing Uncertainties and Reversing Paradigms on the Economic Performance of Agroforestry Systems in Brazil. Land Use Policy 2019, 80, 274–286. [Google Scholar] [CrossRef]
- Salazar-Díaz, R.; Tixier, P. Effect of Plant Diversity on Income Generated by Agroforestry Systems in Talamanca, Costa Rica. Agrof. Syst. 2019, 93, 571–580. [Google Scholar] [CrossRef]
- Global Forest Watch Dashboard by Country and Region. Available online: https://www.globalforestwatch.org/dashboards/country/PER (accessed on 29 March 2021).
- Finer, M.; Novoa, S.; Garcia, R. MAAP #75: Pope to Visit Madre de Dios, Region with Deforestation Crisis (Peru). MAAP 2017. Available online: https://maaproject.org/2017/mdd_pope/ (accessed on 16 April 2021).
- Moore, T. Deforestation in Madre de Dios, its implications for first peoples. In Peru: Deforestation in Times of Climate Change; International Work Group for Indigenous Affairs (IWGIA): Copenhagen, Denmark, 2019; p. 201. [Google Scholar]
- Nicolau, A.P.; Herndon, K.; Flores-Anderson, A.; Griffin, R. A Spatial Pattern Analysis of Forest Loss in the Madre de Dios Region, Peru. Environ. Res. Lett. 2019, 14, 124045. [Google Scholar] [CrossRef]
- Robiglio, V.; Reyes, M.; Castro, E. Diagnóstico de los Productores Familiares en la Amazonía Peruana; ICRAF Oficina Regional para América Latina: Lima, Peru, 2015; p. 208. [Google Scholar]
- Huertas Castillo, B.; García Altamirano, A. (Eds.) Los Pueblos Indígenas de Madre de Dios: Historia, Etnografía y Coyuntura; CRI: Peru, 2003; ISBN 978-87-90730-80-2. [Google Scholar]
- Osorio Arrascue, B.E. Impacto de Los Sistemas Agroforestales en El Desarrollo Sostenible Del Ámbito de Influencia de La Vía Interoceánica Sur en El Distrito de Tambopata, Madre de Dios, Perú; Universidad Nacional Agraria La Molina, Escuela de Postgrado: Lima, Peru, 2011. [Google Scholar]
- Minagri Madre de Dios: Minagri Invierte S/10 Millones en Proyectos de Reconversión Productiva. Available online: https://www.gob.pe/institucion/minagri/noticias/29160-madre-de-dios-minagri-invierte-s-10-millones-en-proyectos-de-reconversion-productiva (accessed on 20 October 2020).
- INEI. INEI Madre de Dios: Compendio Estadístico 2018; INEI: Lima, Peru, 2018. [Google Scholar]
- Caballero Espejo, J.; Messinger, M.; Román-Dañobeytia, F.; Ascorra, C.; Fernandez, L.E.; Silman, M. Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sens. 2018, 10, 1903. [Google Scholar] [CrossRef] [Green Version]
- Garrish, V.; Perales, E.; Duchelle, A.E.; Cronkleton, P. The REDD Project in Brazil Nut Concessions in Madre de Dios, Peru. Available online: https://www.cifor.org/knowledge/publication/5268/ (accessed on 4 August 2020).
- Cardozo, E.G.; Muchavisoy, H.M.; Silva, H.R.; Zelarayán, M.L.C.; Leite, M.F.A.; Rousseau, G.X.; Gehring, C. Species Richness Increases Income in Agroforestry Systems of Eastern Amazonia. Agrof. Syst. 2015, 89, 901–916. [Google Scholar] [CrossRef]
- Torres, A.B.; Marchant, R.; Lovett, J.C.; Smart, J.C.; Tipper, R. Analysis of the Carbon Sequestration Costs of Afforestation and Reforestation Agroforestry Practices and the Use of Cost Curves to Evaluate Their Potential for Implementation of Climate Change Mitigation. Ecol. Econ. 2010, 69, 469–477. [Google Scholar] [CrossRef]
- Padulosi, S.; Thompson, J.; Rudebjer, P. Fighting Poverty, Hunger, and Malnutrition with Neglected and Underutilized Species: Needs, Challenges, and the Way Forward; Bioversity International: Rome, Italy, 2013. [Google Scholar]
- Goodman, L.A. Snowball Sampling. Ann. Math. Stat. 1961, 32, 148–170. [Google Scholar] [CrossRef]
- Peña, J. Sistematización de Experiencias Del Proyecto “Fortaleciendo Medios de Vida Ante El Cambio Climático En Madre de Dios, Amazonia Peruana, 2016–2018; 2018. [Google Scholar]
- R Studio Team. RStudio: Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2020. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Canty, A.J. Resampling Methods in R: The Boot Package. Newsl. R Proj. Vol. 2002, 2, 3. [Google Scholar]
- Williams, J.T. Global Research on Underutilized Crops: An Assessment of Current Activities and Proposals for Enhanced Cooperation; Bioversity International: Rome, Italy, 2002. [Google Scholar]
- Leakey, R.R.B. From Ethnobotany to Mainstream Agriculture: Socially Modified Cinderella Species Capturing ‘Trade-Ons’ for ‘Land Maxing’. Planta 2019, 250, 949–970. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.; Vasquez, R.; Wust, W. Cinderella Fruits and Cultural Forests in Pacaya-Samiria, Peruvian Amazon. Amaz. Rev. Antropol. 2010, 2, 328–350. [Google Scholar]
- Van Looy, T.; Carrero, G.O.; Mathijs, E.; Tollens, E. Underutilized Agroforestry Food Products in Amazonas (Venezuela): A Market Chain Analysis. Agrofor. Syst. 2008, 74, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Denevan, W.M.; Padoch, C.; Prance, G.T.; Treacy, J.M.; Unruh, J.; Alcorn, J.B.; Paitán, S.F.; Inuma, J.C.; de Jong, W. Swidden-Fallow Agroforestry in the Peruvian Amazon; New York Botanical Garden Press: New York, NY, USA, 1988; Volume 5. [Google Scholar]
- Chavez, A.B.; Perz, S.G. Adoption of Policy Incentives and Land Use: Lessons from Frontier Agriculture in Southeastern Peru. Hum. Ecol. 2012, 40, 525–539. [Google Scholar] [CrossRef]
- Nygren, P.; Leblanc, H.A.; Lu, M.; Luciano, C.A.G. Distribution of Coarse and Fine Roots of Theobroma Cacao and Shade Tree Inga Edulis in a Cocoa Plantation. Ann. For. Sci. 2013, 70, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Akter, M.S.; Oh, S.; Eun, J.-B.; Ahmed, M. Nutritional Compositions and Health Promoting Phytochemicals of Camu-Camu (Myrciaria Dubia) Fruit: A Review. Food Res. Int. 2011, 5, 1728–1732. [Google Scholar] [CrossRef]
- Degnon, R.G.; Adjou, E.S.; Noudogbessi, J.-P.; Metome, G.; Boko, F.; Dahouenon-Ahoussi, E.; Soumanou, M.; Sohounhloue, D.C. Investigation on Nutritional Potential of Soursop (Annona Muricata L.) from Benin for its Use as Food Supplement against Protein-Energy Deficiency. Int. J. Biosci. 2013, 3, 1–10. [Google Scholar]
- Brouwer, R.; Chiriboga-Arroyo, F.; Jansen, M.; Ehrenberg, F.; Vargas, R.; Guariguata, M.R.; Kettle, C.; Bardales, R.; Corvera, R.; Garcia Roca, M.; et al. Establishment Success of Brazil Nut Trees in Smallholder Amazon Forest Restoration Depends on Site Conditions and Management. Under review.
- Salman, D.; Summase, I.; Fudjaja, L.; Tiring, D.N. Productivity and income analysis of certified cacao farmers (UTZ certified) and non-certified cacao farmers. In Proceedings of the IOP Conference Series: Earth and Environmental Science, South Sulawesi, Indonesia, 30 March 2020; IOP Publishing: Bristol, UK, 2021; Volume 681, p. 012049. [Google Scholar]
- Mukul, A.Z.A.; Rahman, M.A. Production and Profitability of Banana in Bangladesh-an Economic Analysis. Int. J. Econ. Financ. Manag. Sci. 2013, 1, 159–165. [Google Scholar]
- Bongers, G.; Jassogne, L.; Ibrahim, W.; Nibasumba, A.; Mukasa, D.; Van Asten, P.J.A. Understanding and exploring the evolution of coffee-banana farming systems in Uganda. In Proceedings of the Tenth European IFSA Symposiums, Aarhus, Denmark, 1–4 July 2012. [Google Scholar]
- Bosshard, E.; Jansen, M.; Löfqvist, S.; Kettle, C.J. Rooting Forest Landscape Restoration in Consumer Markets—A Review of Existing Marketing-Based Funding Initiatives. Front. For. Glob. Chang. 2021, 3, 148. [Google Scholar] [CrossRef]
- Recanati, F.; Guariso, G. An Optimization Model for the Planning of Agroecosystems: Trading off Socio-Economic Feasibility and Biodiversity. Ecol. Eng. 2018, 117, 194–204. [Google Scholar] [CrossRef]
- Kirkby, C.A.; Giudice-Granados, R.; Day, B.; Turner, K.; Velarde-Andrade, L.M.; Dueñas-Dueñas, A.; Lara-Rivas, J.C.; Yu, D.W. The Market Triumph of Ecotourism: An Economic Investigation of the Private and Social Benefits of Competing Land Uses in the Peruvian Amazon. PLoS ONE 2010, 5, e13015. [Google Scholar] [CrossRef]
- Rahman, S.A.; De Groot, W.T.; Snelder, D.J. Exploring the agroforestry adoption gap: Financial and socioeconomics of litchi-based agroforestry by smallholders in Rajshahi (Bangladesh). In Smallholder Tree Growing for Rural Development and Environmental Services; Springer: Berlin, Germany, 2008; pp. 227–243. [Google Scholar]
- Wainaina, P.; Minang, P.A.; Gituku, E.; Duguma, L. Cost-Benefit Analysis of Landscape Restoration: A Stocktake. Land 2020, 9, 465. [Google Scholar] [CrossRef]
- DRAMDD. Información Agrícola—DRAMDD; DRAMDD: Puerto Maldonado, Peru, 2021. [Google Scholar]
- Jack, B.K. Market Inefficiencies and the Adoption of Agricultural Technologies in Developing Countries; Center for Effective Global Action (CEGA): Berkley, CA, USA, 2013. [Google Scholar]
- Wossen, T.; Berger, T.; Di Falco, S. Social Capital, Risk Preference and Adoption of Improved Farm Land Management Practices in Ethiopia. Agric. Econ. 2015, 46, 81–97. [Google Scholar] [CrossRef]
- Chitakira, M.; Torquebiau, E. Barriers and Coping Mechanisms Relating to Agroforestry Adoption by Smallholder Farmers in Zimbabwe. J. Agric. Educ. Ext. 2010, 16, 147–160. [Google Scholar] [CrossRef]
- De Sousa, K.; van Zonneveld, M.; Holmgren, M.; Kindt, R.; Ordoñez, J.C. The Future of Coffee and Cocoa Agroforestry in a Warmer Mesoamerica. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Caceres, D.M. Agrobiodiversity and Technology in Resource-Poor Farms. Interciencia 2006, 31, 403–410. [Google Scholar]
- De Urzedo, D.I.; Piña-Rodrigues, F.C.M.; Feltran-Barbieri, R.; Junqueira, R.G.P.; Fisher, R. Seed Networks for Upscaling Forest Landscape Restoration: Is it Possible to Expand Native Plant Sources in Brazil? Forests 2020, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Gholz, H.L. An Evaluation of Agroforestry Systems as a Rural Development Option for the Brazilian Amazon. Agrofor. Syst. 2002, 55, 81–87. [Google Scholar] [CrossRef]
- Lagneaux, E.; Andreotti, F.; Neher, C. Cacao, Copoazu and Macambo: Exploring Theobroma Diversity in Smallholder Agroforestry Systems of the Peruvian Amazon. Agrofor. Syst. 2021, 1–10. [Google Scholar] [CrossRef]
- Froese, R.; Pinzón, C.; Schönenberg, R.; Schilling, J. Local actions against global dynamics COVID-19 as a catalyst of social transformation in the South-Western Amazon? In Peace and the Pandemic International Perspectives on Social Polarization and Cohesion in Times of COVID-19; Universität Koblenz-Landau: Landau, Germany, 2021. [Google Scholar]
- Duguma, L.A.; van Noordwijk, M.; Minang, P.A.; Muthee, K. COVID-19 Pandemic and Agroecosystem Resilience: Early Insights for Building Better Futures. Sustainability 2021, 13, 1278. [Google Scholar] [CrossRef]
ROAM Guidelines | This Study’s Associated Method | |
---|---|---|
1 | “Agree on the main restoration interventions being considered, where and under what conditions.” | Restoration intervention based on the implementation of diverse, fruit and NUS-based agroforestry systems, with smallholder farmers in Madre de Dios. We identified 10 high-potential native NUS fruit based on interviews with agroforestry specialists (n = 11) (objective 1). |
2 | “Make a relatively reliable estimate of the different technical specifications involved in [the] intervention (…) and the incremental benefits (or changes) that should be produced” | First, we identified the types of costs associated with the implementation of agroforestry systems based on literature [35,36]. Then, we collected this cost data, and productivity and price data by interviewing farmers (n = 23) and commercial specialists (n = 7). Next, we projected each high-potential species’ revenue over 30 years (objective 2). |
3 | “Calculate and model the (…) goods and services for restoration interventions and their associated costs and benefits.” | We projected the potential profit over 30 years of an agroforestry system based on the high-potential NUS and designed according to farmers preference (objective 3). |
4 | “Conduct a sensitivity and uncertainty analysis” | We consider both the numerical and social uncertainties of our analysis by:
|
Agroforestry (Current) | Agroforestry (Modeled) | Brazil Nut Extraction | Ecotourism | Cattle Ranching | Rice Specialists | Excessive Timber Extraction | |
---|---|---|---|---|---|---|---|
PEN/year | 6000 to 30,000 (=15,000 in average) | 18,000 | 45,084 | ||||
Hectares | 30 | 1 | 2917 | 2651 | 66 | 40.8 | 5674 |
PEN/year/4 ha | 800 to 4000 | 72,000 | 3.86 | 9258 | 1008 | 406 | 4269 |
Source | Peña 2018 | Recanati and Guariso, 2018 | Garrish et al., 2014 | Kirkby et al., 2010 [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagneaux, E.; Jansen, M.; Quaedvlieg, J.; Zuidema, P.A.; Anten, N.P.R.; García Roca, M.R.; Corvera-Gomringer, R.; Kettle, C.J. Diversity Bears Fruit: Evaluating the Economic Potential of Undervalued Fruits for an Agroecological Restoration Approach in the Peruvian Amazon. Sustainability 2021, 13, 4582. https://doi.org/10.3390/su13084582
Lagneaux E, Jansen M, Quaedvlieg J, Zuidema PA, Anten NPR, García Roca MR, Corvera-Gomringer R, Kettle CJ. Diversity Bears Fruit: Evaluating the Economic Potential of Undervalued Fruits for an Agroecological Restoration Approach in the Peruvian Amazon. Sustainability. 2021; 13(8):4582. https://doi.org/10.3390/su13084582
Chicago/Turabian StyleLagneaux, Elisabeth, Merel Jansen, Julia Quaedvlieg, Pieter A. Zuidema, Niels P. R. Anten, Mishari Rolando García Roca, Ronald Corvera-Gomringer, and Chris J. Kettle. 2021. "Diversity Bears Fruit: Evaluating the Economic Potential of Undervalued Fruits for an Agroecological Restoration Approach in the Peruvian Amazon" Sustainability 13, no. 8: 4582. https://doi.org/10.3390/su13084582