Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Methodology
2.2. Synthesis of CdO/ZnO/Yb2O3 NSs
2.3. Photocatalytic and Absorption Experiment
3. Results and Discussion
3.1. Photocatalytic Characteristics
3.1.1. Analysis of Optics and Structures
3.1.2. Analysis of Morphology and Elements
3.1.3. Analysis of XPS
3.2. Photocatalytic Experiments
3.2.1. Photocatalytic Activation and Potential Mechanism
3.2.2. Enhanced Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molinari, C.; Conte, S.; Zanelli, C.; Ardit, M.; Cruciani, G.; Dondi, M. Ceramic pigments and dyes beyond the inkjet revolution: From technological requirements to constraints in colorant design. Ceram. Int. 2020, 46, 21839–21872. [Google Scholar] [CrossRef]
- Wei, F.; Shahid, M.; Alnusairi, G.; Afzal, M.; Khan, A.; El-Esawi, M.; Abbas, Z.; Wei, K.; Zaheer, I.; Rizwan, M.; et al. Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. Sustainability 2020, 12, 5801. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Cong, S.; Geng, F.; Zhao, Z. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Mater. Sci. Eng. R Rep. 2020, 140, 100524. [Google Scholar] [CrossRef]
- Ardakani, M.N.; Gholikandi, G.B. Microbial fuel cells (MFCs) in integration with anaerobic treatment processes (AnTPs) and membrane bioreactors (MBRs) for simultaneous efficient wastewater/sludge treatment and energy recovery—A state-of-the-art review. Biomass Bioenergy 2020, 141, 105726. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Q. Mass transfer characteristic research on electrodialysis for desalination and regeneration of solution: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 134, 110115. [Google Scholar] [CrossRef]
- Rahmat, M.; Rehman, A. Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J. Mater. Res. Technol. 2019, 8, 5149–5159. [Google Scholar] [CrossRef]
- Luo, T.; Wang, H.; Chen, L.; Li, J.; Wu, F.; Zhou, D. Visible light-driven oxidation of arsenite, sulfite and thiazine dyes: A new strategy for using waste to treat waste. J. Clean. Prod. 2021, 280, 124374. [Google Scholar] [CrossRef]
- Negishi, N.; Miyazaki, Y. Effect of HCO3−concentration in groundwater on TiO2 photocatalytic water purifica-tion. Appl. Catal. B-Environ. 2019, 242, 449–459. [Google Scholar] [CrossRef]
- Suthakaran, S.; Dhanapandian, S.; Krishnakumar, N.; Ponpandian, N. Surfactants assisted SnO2 nanoparticles synthesized by a hydrothermal approach and potential applications in water purification and energy conversion. J. Mater. Sci. Mater. Electron. 2019, 30, 13174–13190. [Google Scholar] [CrossRef]
- Youssef, Z.; Colombeau, L.; Yesmurzayeva, N.; Baros, F.; Vanderesse, R.; Hamieh, T.; Toufaily, J.; Frochot, C.; Roques-Carmes, T.; Acherar, S. Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dye. Pigment. 2018, 159, 49–71. [Google Scholar] [CrossRef]
- Chaudharyab, K.; Shaheena, N.; Zulfiqarc, S.; Sarwar, M.I.; Sulemane, M.; Agboola, P.O.; Shakirg, I.; Warsi, M.F. Binary WO3-ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue. Synth. Met. 2020, 269, 116526. [Google Scholar] [CrossRef]
- Trawiński, J.; Skibiński, R. Multivariate comparison of photocatalytic properties of thirteen nanostructured metal oxides for water purification. J. Environ. Sci. Health Part A 2019, 54, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Tayebee, R.; Esmaeili, E.; Maleki, B.; Khoshniat, A.; Chahkandi, M.; Mollania, N. Photodegradation of methylene blue and some emerging pharmaceutical micropollutants with an aqueous suspension of WZnO-NH2@H3PW12O40 nanocomposite. J. Mol. Liq. 2020, 317, 113928. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloy. Compd. 2020, 828, 154281. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Tu, W.; Wu, S.; Liu, Y.; Tan, Y.Z.; Luo, H.; Yuan, X.; Chew, J.W. Petal-like CdS nanostructures coated with exfoliated sulfur-doped carbon nitride via chemically activated chain termination for enhanced visible-light–driven photocatalytic water purification and H2 generation. Appl. Catal. B Environ. 2018, 229, 181–191. [Google Scholar] [CrossRef]
- Sabet, M.; Mohammadi, M.; Googhari, F. Prominent Visible Light Photocatalytic and Water Purification Activity of PbS/CdS/CdO Nanocomposite Synthesized via Simple Co-Precipitation Method. Nanosci. Nanotechnol. Asia 2019, 9, 278–284. [Google Scholar] [CrossRef]
- Wang, X.; Brigante, M.; Dong, W.; Wu, Z.; Mailhot, G. Degradation of Acetaminophen via UVA-induced advanced oxidation processes (AOPs). Involvement of different radical species: HO∙, SO4∙−and HO2∙/O2∙−. Chemosphere 2020, 258, 127268. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, R.K.; Chottanahalli, S.P.K.; Madegowda, N.M.; Rai, V.R.; Ananda, S. Electrochemical synthesis of hierarchal flower-like hierarchical In2O3/ZnO nanocatalyst for textile industry effluent treatment, photo-voltaic, OH scavenging and anti-bacterial studies. Catal. Commun. 2017, 89, 25–28. [Google Scholar] [CrossRef]
- Kumar, M.R.; Murugadoss, G.; Pirogov, A.N.; Thangamuthu, R. A facile one step synthesis of SnO2/CuO and CuO/SnO2 nanocomposites: Photocatalytic application. J. Mater. Sci. Mater. Electron. 2018, 29, 13508–13515. [Google Scholar] [CrossRef]
- Zeleke, M.A.; Kuo, D.-H.; Ahmed, K.E.; Gultom, N.S. Facile synthesis of bimetallic (In,Ga)2(O,S)3 oxy-sulfide nanoflower and its enhanced photocatalytic activity for reduction of Cr(VI). J. Colloid Interface Sci. 2018, 530, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Sudrajat, H.; Hartuti, S.; Babel, S.; Nguyen, T.K.; Tong, H.D. SnO2/ZnO heterostructured nanorods: Structural properties and mechanistic insights into the enhanced photocatalytic activity. J. Phys. Chem. Solids 2021, 149, 109762. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Q.; Ma, J.; Sun, W.; Yin, C.; Li, X.; Guo, J.; Jiang, Q.; Lu, Z. Construction of Strontium Titanate/Binary Metal Sulfide Heterojunction Photocatalysts for Enhanced Visible-Light-Driven Photocatalytic Activity. Nano 2018, 13, 11. [Google Scholar] [CrossRef]
- Sales, H.; Menezes, R.; Neves, G.; Souza, J.; Ferreira, J.; Chantelle, L.; De Oliveira, A.M.; Lira, H. Development of Sustainable Heterogeneous Catalysts for the Photocatalytic Treatment of Effluents. Sustainability 2020, 12, 7393. [Google Scholar] [CrossRef]
- Adnan, M.A.M.; Julkapli, N.M.; Hamid, S.B.A. Review on ZnO hybrid photocatalyst: Impact on photocatalytic activities of water pollutant degradation. Rev. Inorg. Chem. 2016, 36, 77–104. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, M.; Sathe, V.; Shripathi, T.; Phase, D.; Das, B. Study of the structural phase transformation, and optical behavior of the as synthesized ZnO–SnO2–TiO2 nanocomposite. Phase Transit. 2015, 88, 1122–1136. [Google Scholar] [CrossRef]
- Kumar, D.P.; Park, H.; Kim, E.H.; Hong, S.; Gopannagari, M.; Reddy, D.A.; Kim, T.K. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 224, 230–238. [Google Scholar] [CrossRef]
- Vaizoğullar, A.I. Ternary CdS/MoS2/ZnO Photocatalyst: Synthesis, Characterization and Degradation of Ofloxacin under Visible Light Irradiation. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4129–4141. [Google Scholar] [CrossRef]
- Ma, W.; Mack, D.; Malzbender, J.; Vaßen, R.; Stöver, D. Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings. J. Eur. Ceram. Soc. 2008, 28, 3071–3081. [Google Scholar] [CrossRef]
- Liu, T.; Bai, X.; Miao, C.; Dai, Q.; Xu, W.; Yu, Y.; Chen, Q.; Song, H. Yb2O3/Au Upconversion Nanocomposites with Broad-Band Excitation for Solar Cells. J. Phys. Chem. C 2014, 118, 3258–3265. [Google Scholar] [CrossRef]
- Chiappetta, G.; Ndiaye, S.; Igbaria, A.; Kumar, C.; Vinh, J.; Toledano, M.B. Proteome Screens for Cys Residues Oxidation. Methods Enzymol. 2010, 473, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M.; Islam, M.A. Ethanol sensor development based on ternary-doped metal oxides (CdO/ZnO/Yb2O3) nanosheets for environmental safety. RSC Adv. 2017, 7, 22627–22639. [Google Scholar] [CrossRef] [Green Version]
- Sales, H.B.; Bouquet, V.; Députier, S.; Ollivier, S.; Gouttefangeas, F.; Guilloux-Viry, M.; Dorcet, V.; Weber, I.T.; De Souza, A.G.; Dos Santos, I.M.G. Sr1−xBaxSnO3 system applied in the photocatalytic discoloration of an azo-dye. Solid State Sci. 2014, 28, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Q.I.; Ahmad, M.; Misra, S.K.; Lohani, M. Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater. Lett. 2013, 91, 170–174. [Google Scholar] [CrossRef]
- Chantelle, L.; De Oliveira, A.L.M.; Kennedy, B.J.; Maul, J.; Da Silva, M.R.S.; Duarte, T.M.; Albuquerque, A.R.; Sambrano, J.R.; Landers, R.; Siu-Li, M.; et al. Probing the Site-Selective Doping in SrSnO3:Eu Oxides and Its Impact on the Crystal and Electronic Structures Using Synchrotron Radiation and DFT Simulations. Inorg. Chem. 2020, 59, 7666–7680. [Google Scholar] [CrossRef]
- Soylu, M.; Kader, H.S. Photodiode Based on CdO Thin Films as Electron Transport Layer. J. Electron. Mater. 2016, 45, 5756–5763. [Google Scholar] [CrossRef]
- Thema, F.; Beukes, P.; Gurib-Fakim, A.; Maaza, M. Green synthesis of Monteponite CdO nanoparticles by Agathosma betulina natural extract. J. Alloy. Compd. 2015, 646, 1043–1048. [Google Scholar] [CrossRef]
- Gutul, T.; Rusu, E.; Condur, N.; Ursaki, V.; Goncearenco, E.; Vlazan, P. Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein J. Nanotechnol. 2014, 5, 402–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chen, M.; Li, Y.; Du, Q.; Yuan, Y.; Ren, Y.; Liu, B.; Zhao, H.; Yang, H. Enhancing gas sensitivity of CdO octahedrons having {111} facets by hydrogenation and sensing mechanism of 3-coordinated Cd atoms as the reactive centers. Appl. Surf. Sci. 2020, 506, 144868. [Google Scholar] [CrossRef]
- Qian, C.; Zeng, T.; Liu, H. Synthesis and Downconversion Emission Property of Yb2O3:Eu3+Nanosheets and Nanotubes. Adv. Condens. Matter Phys. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Kuznetsov, A.S.; Chibotaru, L.F.; Baranov, A.N.; Van Tendeloo, G.; Moshchalkov, V.V. Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host. Opt. Express 2011, 19, 15955–15964. [Google Scholar] [CrossRef] [PubMed]
- Bagal, V.S.; Patil, G.P.; Deore, A.B.; Suryawanshi, S.R.; Late, D.J.; More, M.A.; Chavan, P.G. Surface modification of aligned CdO nanosheets and their enhanced field emission properties. RSC Adv. 2016, 6, 41261–41267. [Google Scholar] [CrossRef]
- Haeberle, J.; Henkel, K.; Gargouri, H.; Naumann, F.; Gruska, B.; Arens, M.; Tallarida, M.; Schmeißer, D. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films. Beilstein J. Nanotechnol. 2013, 4, 732–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.L.; Mohammed, I.A.; Belmahi, M.; Assouar, M.B.; Rinnert, H.; Alnot, M. Thermal and Optical Properties of CdS Nanoparticles in Thermotropic Liquid Crystal Monomers. Materials 2010, 3, 2069–2086. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Fan, D.; Shen, W. Catalyst-free direct vapor-phase growth of Zn1−xCuxO micro-cross structures and their optical properties. Nanoscale Res. Lett. 2013, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wu, X.; Liang, C.; Li, X.; Wang, Z.; Li, H. Highly active, water-compatible and easily separable magnetic mesoporous Lewis acid catalyst for the Mukaiyama–Aldol reaction in water. Green Chem. 2014, 16, 3768–3777. [Google Scholar] [CrossRef]
- Yin, Q.; Jin, X.; Yang, G.; Jiang, C.; Song, Z.; Sun, G. Biocompatible folate-modified Gd3+/Yb3+-doped ZnO nanoparticles for dualmodal MRI/CT imaging. RSC Adv. 2014, 4, 53561–53569. [Google Scholar] [CrossRef]
- Duarte, A.A.L.S.; Cardoso, S.J.A.; Alçada, A.J. Emerging and Innovative Techniques for Arsenic Removal Applied to a Small Water Supply System. Sustainability 2009, 1, 1288–1304. [Google Scholar] [CrossRef] [Green Version]
- Molinari, R.; Argurio, P.; Poerio, T. Membrane Processes Based on Complexation Reactions of Pollutants as Sustainable Wastewater Treatments. Sustainability 2009, 1, 978–993. [Google Scholar] [CrossRef] [Green Version]
- Honorio, L.M.C.; de Oliveira, A.L.M.; Filho, E.C.D.S.; Osajima, J.A.; Hakki, A.; Macphee, D.E.; dos Santos, I.M.G. Supporting the photocatalysts on ZrO2: An effective way to enhance the photocatalytic activity of SrSnO3. Appl. Surf. Sci. 2020, 528, 146991. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Xiao, C.; Li, J.; Zhang, G. Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance. J. Clean. Prod. 2018, 180, 550–559. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, H.; Jiang, W. Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol. Sustainability 2021, 13, 4670. https://doi.org/10.3390/su13094670
Li Z, Zhang H, Jiang W. Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol. Sustainability. 2021; 13(9):4670. https://doi.org/10.3390/su13094670
Chicago/Turabian StyleLi, Zan, Hongkun Zhang, and Wenrui Jiang. 2021. "Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol" Sustainability 13, no. 9: 4670. https://doi.org/10.3390/su13094670
APA StyleLi, Z., Zhang, H., & Jiang, W. (2021). Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol. Sustainability, 13(9), 4670. https://doi.org/10.3390/su13094670