Resource-Efficient Characterisation of Pit Latrine Sludge for Use in Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Pit Latrine Sludge Sampling
2.3. Pit Latrine Sludge Laboratory Analyses
2.4. Model Building, Selection and Evaluation
2.5. Model Building
2.6. Model Selection
2.7. Model Evaluation
3. Results
3.1. Laboratory Characterisation
3.2. Correlations of Predictor Variables
3.3. Total Ammoniacal Nitrogen Model
3.4. Total Phosphorus Model
3.5. E. coli Model
3.6. Helminth Eggs Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNICEF; WHO. State of the World’s Sanitation: An Urgent Call to Transform Sanitation for Better Health, Environments, Economies and Societies; WHO: New York, NY, USA, 2020. [Google Scholar]
- Gold, M.; Niwagaba, C.; Studer, F.; Getkate, W.; Babu, M.; Strande, L. Production of Pellets and Electricity from Faecal Sludge; Sandec Water and Sanitation in Developing Countries; Eawag: Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2015. [Google Scholar]
- Murray, A.; Ray, I. Commentary: Back-end users: The unrecognized stakeholders in demand-driven sanitation. JPER 2010, 30, 94–102. [Google Scholar] [CrossRef]
- Muspratt, A.M.; Nakato, T.; Niwagaba, C.; Dione, H.; Kang, J.; Stupin, L.; Regulinski, J.; Mbéguéré, M.; Strande, L. Fuel potential of faecal sludge: Calorific value results from Uganda, Ghana and Senegal. WASHDEV 2014, 4, 223–230. [Google Scholar] [CrossRef]
- Hegazy, B.E.; Fouad, H.A.; Hassanain, A.M. Incorporation of water sludge, silica fume, and rice husk ash in brick making. AER 2012, 1, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Seck, A.; Gold, M.; Niang, S.; Mbéguéré, M.; Diop, C.; Strande, L. Faecal sludge drying beds: Increasing drying rates for fuel resource recovery in Sub-Saharan Africa. WASHDEV 2015, 5, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Koottatep, T.; Fakkaew, K.; Tajai, N.; Pradeep, S.V.; Polprasert, C. Sludge stabilization and energy recovery by hydrothermal carbonization process. Renew. Energy 2016, 99, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Diener, S.; Semiyaga, S.; Niwagaba, C.B.; Muspratt, A.M.; Gning, J.B.; Mbéguéré, M.; Ennin, J.E.; Zurbrugg, C.; Strande, L. A value proposition: Resource recovery from faecal sludge-Can it be the driver for improved sanitation? Resour. Conserv. Recycl. 2014, 88, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yan, S.H.; Ye, Z.L.; Meng, H.J.; Zhu, Y.G. Utilization of urban sewage sludge: Chinese perspectives. ESPR 2012, 19, 1454–1463. [Google Scholar] [CrossRef] [PubMed]
- Fuhrimann, S.; Winkler, M.S.; Schneeberger, P.H.; Niwagaba, C.B.; Buwule, J.; Babu, M.; Medlicott, K.; Utzinger, J.; Cissé, G. Health risk assessment along the wastewater and faecal sludge management and reuse chain of Kampala, Uganda: A visualization. Geospatial Health 2014, 9, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Nordin, A.C.; Olsson, J.; Vinnerås, B. Urea for sanitization of anaerobically digested dewatered sewage sludge. Environ. Eng. Sci. 2015, 32, 86–94. [Google Scholar] [CrossRef]
- Strande, L.; Brdjanovic, D. (Eds.) Faecal Sludge Management: Systems Approach for Implementation and Operation; IWA Publishing: London, UK, 2014. [Google Scholar]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
- Kennedy-Walker, R.; Holderness, T.; Alderson, D.; Evans, B.; Barr, S. Network modelling for road-based Fecal Sludge Management. Munic. Eng. 2014, 167, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Chirwa, C.; Hall, R.; Krometis, L.A.; Vance, E.; Edwards, A.; Guan, T.; Holm, R. Pit latrine fecal sludge resistance using a dynamic cone penetrometer in low income areas in Mzuzu City, Malawi. Int. J. Environ. Res. Public Health 2017, 14, 87. [Google Scholar] [CrossRef] [Green Version]
- Strande, L.; Schoebitz, L.; Bischoff, F.; Ddiba, D.; Okello, F.; Englund, M.; Ward, B.J.; Niwagaba, C.B. Methods to reliably estimate faecal sludge quantities and qualities for the design of treatment technologies and management solutions. J. Environ. Manag. 2018, 223, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Nevers, M.B.; Whitman, R.L. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Water Res. 2005, 39, 5250–5260. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.S.; Moustafa, M.A.; Seif, H.A.; El Kobrosy, G. Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT. Alex. Eng. J. 2012, 51, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Aguado, D.; Ferrer, A.; Seco, A.; Ferrer, J. Comparison of different predictive models for nutrient estimation in a sequencing batch reactor for wastewater treatment. Chemom. Intell. Lab. Syst. 2006, 84, 75–81. [Google Scholar] [CrossRef]
- Khataee, A.R.; Kasiri, M.B. Modeling of biological water and wastewater treatment processes using artificial neural networks. CLEAN–Soil Air Water 2011, 39, 742–749. [Google Scholar] [CrossRef]
- Dellana, S.A.; West, D. Predictive modeling for wastewater applications: Linear and nonlinear approaches. Environ. Model. Softw. 2009, 24, 96–106. [Google Scholar] [CrossRef]
- Szeląg, B.; Barbusiński, K.; Studziński, J.; Bartkiewicz, L. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods. In Proceedings of the E3S Web of Conferences, Szczyrk, Poland, 25–27 October 2017; Volume 22. [Google Scholar]
- Junglen, K.; Rhodes-Dicker, L.; Ward, B.J.; Gitau, E.; Mwalugongo, W.; Stradley, L.; Thomas, E. Characterization and Prediction of Fecal Sludge Parameters and Settling Behavior in Informal Settlements in Nairobi, Kenya. Sustainability 2020, 12, 9040. [Google Scholar] [CrossRef]
- Bourgault, C. Characterization and Quantification of Faecal Sludge from Pit Latrines. Ph.D. Thesis, Laval University, Québec, QC, Canada, 2019. [Google Scholar]
- Lugali, Y.; Zziwa, A.; Banadda, N.; Wanyama, J.; Kabenge, I.; Kambugu, R.; Tumutegyereize, P. Modeling sludge accumulation rates in lined pit latrines in slum areas of Kampala City, Uganda. AJEST 2016, 10, 253–262. [Google Scholar]
- Kalulu, K.; Thole, B.; Mkandawire, T.; Kululanga, G. Predictive Modelling for Characterisation of Organics in Pit Latrine Sludge from Unplanned Settlements in Cities of Malawi. J. Ecol. Eng. 2018, 19, 141–145. [Google Scholar] [CrossRef]
- Englund, M.; Carbajal, J.P.; Ferré, A.; Bassan, M.; Vu, A.T.H.; Nguyen, V.A.; Strande, L. Modelling quantities and qualities (Q&Q) of faecal sludge in Hanoi, Vietnam and Kampala, Uganda for improved management solutions. J. Environ. Manag. 2020, 261, 110202. [Google Scholar]
- Ward, B.J.; Traber, J.; Gueye, A.; Diop, B.; Morgenroth, E.; Strande, L. Evaluation of conceptual model and predictors of faecal sludge dewatering performance in Senegal and Tanzania. Water Res. 2019, 167, 115101. [Google Scholar]
- Water Res. Commission. WRC 2173: Protocol for LaDePa Sludge Characterisation; WRC: Pretoria, South Africa, 2013. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Roussel, S.; Simonart, T.; Gireaudot, M.F. Draft Method for the Detection and Enumeration of Viable Helminth Eggs in Bio-Wastes (Untreated or Treated Sewage Sludge, Compost, Soil); Institut Pasteur de Lille: Lille, France, 2003. [Google Scholar]
- Bakare, B.F.; Foxon, K.M.; Brouckaert, C.J.; Buckley, C.A. Variation in VIP latrine sludge contents. Water SA 2012, 38, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Chilev, C.; Pentchev, I.; Weinberger, B.; Lamari, F.D. A comparison between the different methods for the measurement of an excess adsorption of pure gases on porous adsorbents at high pressure. J. Univ. Chem. Technol. Metall. 2007, 42, 77–84. [Google Scholar]
- O’Connor, S.; O’Connor, P.F.; Feng, H.A.; Ashley, K. Gravimetric analysis of particulate matter using air samplers housing internal filtration capsules. Gefahrstoffe Reinhaltung der Luft= Air quality control/Herausgeber BIA und KRdL im VDI und DIN 2014, 74, 403. [Google Scholar]
- Tayler, K. Faecal Sludge and Septage Treatment: A Guide for Low and Middle Income Countries; Practical Action Publishing: Rugby, UK, 2018. [Google Scholar]
- Mjalli, F.S.; Al-Asheh, S.; Alfadala, H.E. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. J. Environ. Manag. 2007, 83, 329–338. [Google Scholar] [CrossRef]
- Heddam, S.; Lamda, H.; Filali, S. Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: A comparative study. Environ. Process. 2016, 3, 153–165. [Google Scholar] [CrossRef]
- Spiess, A.N.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. MMJ 2012, 24, 69–71. [Google Scholar]
- Vatcheva, K.P.; Lee, M.; McCormick, J.B.; Rahbar, M.H. Multicollinearity in regression analyses conducted in epidemiologic studies. Epidemiology 2016, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bozdogan, H. Akaike’s information criterion and recent developments in information complexity. J. Math. Psychol. 2000, 44, 62–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalulu, K.; Thole, B.; Thengolose, A.; Chikhwenda, E. Comparison of Characteristics of Pit Latrine Sludge from Informal Settlements in Cities of Malawi. In Proceedings of the 4th International Faecal Sludge Management Conference, Chennai, India, 19–23 February 2017. [Google Scholar]
- Pedhazur, E.J.; Schmelkin, L.P. Measurement, Design, and Analysis: An Integrated Approach; Psychology Press: London, UK, 2013. [Google Scholar]
- Moustris, K.P.; Nastos, P.T.; Larissi, I.K.; Paliatsos, A.G. Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece. Adv. Meteorol. 2012. [Google Scholar] [CrossRef]
- Barker, L.E.; Shaw, K.M. Best (but oft-forgotten) practices: Checking assumptions concerning regression residuals. AJCN 2015, 102, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Frost, J. Multiple Regression Analysis: Use Adjusted R-Squared and Predicted R-Squared to Include the Correct Number of Variables. Available online: https://blog.minitab.com/blog/adventures-in-statistics-2/multiple-regession-analysis-use-adjusted-r-squared-and-predicted-r-squared-to-include-the-correct-number-of-variables (accessed on 15 December 2020).
- Hair, F.J., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, G.V. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Bellego, C.; Pape, L.D. Dealing with the log of zero in regression models. Série Doc. Travail 2019, 13, 1–20. [Google Scholar]
- Zavala, M.A.L.; Funamizu, N.; Takakuwa, T. Temperature effect on aerobic biodegradation of feces using sawdust as a matrix. Water Res. 2004, 38, 2406–2416. [Google Scholar] [CrossRef] [PubMed]
- Bassan, M.; Tchonda, T.; Yiougo, L.; Zoellig, H.; Mahamane, I.; Mbéguéré, M.; Strande, L. Characterization of faecal sludge during dry and rainy seasons in Ouagadougou, Burkina Faso. In Proceedings of the 36th WEDC International Conference, Nakuru, Kenya, 30 July 2013. [Google Scholar]
- Greya, W.; Thole, B.; Anderson, C.; Kamwani, F.; Spit, J.; Mamani, G. Off-Site Lime Stabilisation as an Option to Treat Pit Latrine Faecal Sludge for Emergency and Existing On-Site Sanitation Systems. J. Waste Manag. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mensah, P.Y.; Kuffour, R.A.; Baidoo, P.K.; Awuah, E. The effect of different percentages of bulking agent (sawdust) on microbial quality of faecal sludge. Water Sci. Technol. 2013, 67, 1728–1733. [Google Scholar] [CrossRef] [PubMed]
- Doku, I.A. Anaerobic Treatment of Nightsoil and Toilet Sludge from on-Site Sanitation Systems in Ghana. Ph.D. Thesis, The University of Leeds, Leeds, UK, 2020. [Google Scholar]
- Jimenez, B.; Austin, A.; Cloete, E.; Phasha, C. Using Ecosan sludge for crop production. Water Sci. Technol. 2006, 54, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Koné, D.; Cofie, O.; Zurbrügg, C.; Gallizzi, K.; Moser, D.; Drescher, S.; Strauss, M. Helminth eggs inactivation efficiency by faecal sludge dewatering and co-composting in tropical climates. Water Res. 2007, 41, 4397–4402. [Google Scholar] [CrossRef]
- Bowie, C.; Purcell, B.; Shaba, B.; Makaula, P.; Perez, M. A national survey of the prevalence of schistosomiasis and soil transmitted helminths in Malaŵi. BMC Infect. Dis. 2004, 4, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adu-Gyasi, D.; Asante, K.P.; Frempong, M.T.; Gyasi, D.K.; Iddrisu, L.F.; Ankrah, L.; Dosoo, D.; Adeniji, E.; Agyei, O.; Gyaase, S.; et al. Epidemiology of soil transmitted Helminth infections in the middle-belt of Ghana, Africa. Parasite Epidemiol. Control 2018, 3, e00071. [Google Scholar] [CrossRef] [PubMed]
- Gudda, F.O.; Moturi, W.N.; Omondi, S.O.; Muchiri, E.W. Analysis of physiochemical characteristics influencing disposal of pit latrine sludge in Nakuru Municipality, Kenya. AJEST 2017, 11, 139–145. [Google Scholar]
- Fanyin-Martin, A.; Tamakloe, W.; Antwi, E.; Ami, J.; Awarikabey, E.; Apatti, J.; Mensah, M.; Chandran, K. Chemical characterization of faecal sludge in the Kumasi metropolis, Ghana. Gates Open Res. 2017, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Changara, M.C.; Bangira, C.; Sanyika, W.T.; Misi, S.N. Characterisation of pit latrine sludge from shackleton, a peri-urban residential area of Zimbabwe. WASHDEV 2018, 8, 568–577. [Google Scholar] [CrossRef]
- Parkinson, J.; Lüthi, C.; Walther, D. Sanitation 21: A Planning Framework for Improving: City-Wide Sanitation Services; IWA: Lodon, UK, 2014. [Google Scholar]
- Kerstens, S.M.; Spiller, M.; Leusbrock, I.; Zeeman, G. A new approach to nationwide sanitation planning for developing countries: Case study of Indonesia. Sci. Total Environ. 2016, 550, 676–689. [Google Scholar] [CrossRef]
- Lalljee, B.; Facknath, S. Effect of lime on nutrient content of soils, yield and nutrient content of potato and infestation by leafminers. In Proceedings of the Fifth Annual Meeting of Agricultural Scientists, Moka, Mauritius, 3–4 May 2001. [Google Scholar]
Parameter | Sample Size | Min | Max | Median | Mean | SEM |
---|---|---|---|---|---|---|
TAN (mg/g dry solids) | 320 | 0.03 | 352.7 | 1.6 | 6.5 | 1.36 |
TP (mg/g dry solids) | 320 | 0.02 | 98.3 | 1.6 | 6.7 | 0.79 |
MC (%) | 320 | 37.9 | 99.7 | 81.2 | 80.1 | 0.74 |
TS (%) | 320 | 0.3 | 62.1 | 18.9 | 19.9 | 0.74 |
TVS (mg/g dry solids) | 320 | 32 | 807 | 478.5 | 460.1 | 8.24 |
FS (mg/g dry solids) | 320 | 193 | 968 | 521.5 | 539.6 | 8.24 |
E. coli (cfu/g dry solids) | 320 | 292.9 | 798,000 | 14,888 | 48,798 | 6150 |
Helminth eggs (eggs/g dry solids) | 240 | 0 | 2090 | 1 | 67 | 13 |
Term | Coef. | SE Coef. | p-Value |
---|---|---|---|
Constant | 2.65 | 0.18 | <0.001 |
ln TS | −1.16 | 0.05 | <0.001 |
Location | |||
Lilongwe | 1.18 | 0.12 | <0.001 |
Mzuzu | 0.59 | 0.15 | <0.001 |
Zomba | 1.54 | 0.12 | <0.001 |
Number of observations = 320 | R2 = 76.1% | ||
F (4, 315) = 251.1 | R2adj = 75.8% | ||
p-value < 0.001 | R2pred = 75.4% |
Term | Coef. | SE Coef. | p-Value |
---|---|---|---|
Constant | 3.47 | 0.14 | <0.001 |
ln TS | −0.97 | 0.04 | <0.001 |
Location | |||
Lilongwe | −0.43 | 0.09 | <0.001 |
Mzuzu | −0.08 | 0.11 | 0.5 |
Zomba | 0.43 | 0.09 | <0.001 |
Number of observations =320 | R2 = 78.9% | ||
F (4, 315) = 294.8 | R2adj = 78.7% | ||
p-value < 0.001 | R2pred = 78.2% |
Term | Coef. | SE Coef. | p-Value |
---|---|---|---|
Constant | 11.69 | 0.18 | <0.001 |
ln TS | −0.99 | 0.05 | <0.001 |
Location | |||
Lilongwe | 0.97 | 0.12 | <0.001 |
Mzuzu | 0.36 | 0.15 | 0.02 |
Zomba | 1.17 | 0.12 | <0.001 |
Number of observations = 320 | R2 = 70.1% | ||
F (4, 315) = 184.3 | R2adj = 69.7% | ||
p-value < 0.001 | R2pred = 69.1% |
Term | Coef. | SE Coef. | p-Value |
---|---|---|---|
Constant | 4.09 | 0.32 | <0.001 |
ln TS | −1.13 | 0.99 | <0.001 |
Location | |||
Mzuzu | 0.99 | 0.25 | <0.001 |
Zomba | −0.09 | 0.20 | 0.7 |
Number of observations = 154 | R2 = 74.7% | ||
F (3, 150) = 147.8 | R2adj = 74.2% | ||
p-value < 0.001 | R2pred = 73.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalulu, K.; Thole, B.; Mkandawire, T.; Kululanga, G. Resource-Efficient Characterisation of Pit Latrine Sludge for Use in Agriculture. Sustainability 2021, 13, 4702. https://doi.org/10.3390/su13094702
Kalulu K, Thole B, Mkandawire T, Kululanga G. Resource-Efficient Characterisation of Pit Latrine Sludge for Use in Agriculture. Sustainability. 2021; 13(9):4702. https://doi.org/10.3390/su13094702
Chicago/Turabian StyleKalulu, Khumbo, Bernard Thole, Theresa Mkandawire, and Grant Kululanga. 2021. "Resource-Efficient Characterisation of Pit Latrine Sludge for Use in Agriculture" Sustainability 13, no. 9: 4702. https://doi.org/10.3390/su13094702
APA StyleKalulu, K., Thole, B., Mkandawire, T., & Kululanga, G. (2021). Resource-Efficient Characterisation of Pit Latrine Sludge for Use in Agriculture. Sustainability, 13(9), 4702. https://doi.org/10.3390/su13094702