Lagrangian Relaxation Based on Improved Proximal Bundle Method for Short-Term Hydrothermal Scheduling
Abstract
:1. Introduction
2. Problem Formulation
2.1. Study Area
2.2. Optimization Model
2.2.1. Objective Function
2.2.2. Constraints
3. Method Overview and Assumptions
3.1. Lagrangian Relaxation Framework
3.2. Standard Proximal Bundle Method
3.3. Improved Proximal Bundle Method
3.3.1. Knowledge Base
3.3.2. Inference Engine
3.4. Procedures of the Proposed IPBM
- Step 1:
- Build the knowledge base. First, represent historical generation scenarios by eigenvectors. Then, implement cluster analysis with k-means clustering and silhouette coefficient to obtain representative scenarios. Finally, extract knowledge expressions from PBM iterations of representative scenarios and save them in the database.
- Step 2:
- Relax linking constraints to form the Lagrangian dual by Equation (26).
- Step 3:
- Solve the dual problem.
- (a)
- Set the iteration index .
- (b)
- If is equal to one, determine the initial values of multipliers by Equation (39). Otherwise, update the multipliers by PBM.
- (c)
- Solve hydro and thermal subproblems by MILP with the given multipliers. Then, set . If is equal to two, go to Step 4.
- (d)
- If the ascent condition (Equation (32)) holds, a serious step is declared and go to Step 4. Otherwise, a null step is declared and update the multipliers by inference engine.
- (e)
- Solve the hydro and thermal subproblems by MILP. Then, according to the results, arrange the dual values in ascending order, and update the bundle and stability center sequences.
- Step 4:
- Primary recovery. Generate a feasible solution by the heuristic used.
- Step 5:
- Convergence test. If the stopping rule is met (Equations (27) and (28)), terminate the iteration. Otherwise, go to Step 3(b).
4. Case Study and Results
4.1. Parameter Settings and Performance Metrics of IPBM
4.2. Performance Testing of IPBM
4.2.1. Effects of Inferring the Initial Values of Lagrange Multipliers
- (1)
- Zero value (ZV), where multipliers are set to zero directly;
- (2)
- A simplified version of economic dispatch (SED), which relaxes the integer constraints and is described in [15];
- (3)
- The proposed method by expert system (ES1).
4.2.2. Effects of Inferring New Updates of Multipliers When Null Steps Occur
4.3. Comparison with Standard PBM in Different Generation Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Plant No. | Unit No. | Minimum Output (MW) | Maximum Output (MW) | a1 (t/MW2h) | b1 (t/MWh) | c1 (t/h) |
---|---|---|---|---|---|---|
T1 | #1 | 150 | 300 | 11.4 | 2.42 | 9.94 |
#2 | 150 | 300 | 5.4 | 2.80 | 10.61 | |
#3 | 150 | 300 | 18.6 | 2.14 | 15.78 | |
#4 | 150 | 300 | 4.2 | 2.72 | 9.06 | |
T2 | #1–#4 | 50 | 135 | 12.3 | 2.63 | 13.62 |
T3 | #1, #2 | 330 | 660 | 11.5 | 2.45 | 12.70 |
T4 | #1, #2 | 150 | 300 | 3.2 | 2.86 | 8.99 |
#3, #4 | 150 | 300 | 8.0 | 2.33 | 15.21 | |
T5 | #1, #2 | 300 | 600 | 14.1 | 1.35 | 63.65 |
T6 | #1, #2 | 330 | 660 | 2.5 | 2.94 | 8.94 |
T7 | #1–#3 | 300 | 600 | 2.9 | 3.70 | 10.52 |
#4 | 300 | 630 | 10.5 | 1.63 | 56.07 | |
T8 | #1 | 100 | 200 | 197.2 | −2.96 | 53.98 |
#2 | 100 | 200 | 37.0 | 2.19 | 9.93 | |
#3 | 100 | 200 | 42.8 | 1.55 | 19.42 | |
T9 | #1 | 150 | 300 | 2.3 | 2.98 | 4.81 |
#2 | 150 | 300 | 1.1 | 2.92 | 6.46 | |
#3 | 150 | 300 | 0.6 | 3.06 | 0.96 | |
#4 | 150 | 300 | 0.1 | 3.12 | 2.32 | |
T10 | #1, #2 | 300 | 600 | 1.4 | 1.70 | 53.61 |
T11 | #1, #2 | 300 | 600 | 37.4 | −0.56 | 74.85 |
T12 | #1 | 150 | 300 | 2.9 | 2.94 | 5.74 |
#2 | 150 | 300 | 2.8 | 2.88 | 7.66 | |
T13 | #1 | 50 | 150 | 0.7 | 4.01 | −10.16 |
#2 | 50 | 150 | 147.6 | −1.19 | 33.36 | |
T14 | #1–#4 | 300 | 600 | 6.4 | 2.06 | 28.68 |
T15 | #1, #2 | 330 | 660 | 13.2 | 2.34 | 12.88 |
T16 | #1, #2 | 300 | 600 | 1.5 | 2.73 | 10.33 |
T17 | #1, #2 | 150 | 300 | 0.4 | 3.08 | 4.85 |
T18 | #1, #2 | 330 | 660 | 8.2 | 1.92 | 43.21 |
T19 | #1 | 150 | 300 | 76.2 | −0.26 | 33.80 |
#2 | 150 | 300 | 7.2 | 2.28 | 22.30 | |
#3 | 150 | 300 | 105.6 | −2.32 | 71.72 | |
#4 | 150 | 300 | 12.5 | 2.27 | 16.08 | |
T20 | #1 | 150 | 300 | 0.8 | 3.03 | 3.06 |
#2 | 150 | 300 | 24.4 | 2.00 | 14.09 | |
#3 | 150 | 300 | 30.8 | 1.61 | 19.70 | |
#4 | 150 | 300 | 3.1 | 3.02 | 3.03 | |
T21 | #1, #2 | 150 | 300 | 0.8 | 3.16 | 3.79 |
#3 | 150 | 300 | 1.3 | 2.95 | 7.37 | |
#4 | 150 | 300 | 2.2 | 3.07 | 3.65 | |
T22 | #1 | 150 | 300 | 2.9 | 3.34 | −4.85 |
#2 | 150 | 300 | 0.4 | 2.50 | 10.43 | |
#3 | 150 | 300 | 49.6 | 0.73 | 25.43 | |
#4 | 150 | 300 | 9.9 | 2.55 | 7.35 |
Plant No. | Unit Configuration 1 | Adjustment Ability | Minimum Storage (106 m3) | Maximum Storage (106 m3) | Maximum Outflow (m3/s) |
---|---|---|---|---|---|
H1 | 3 × 200 | Multiyearly | 1137 | 4497 | 500 |
H2 | 3 × 190 + 1 × 125 | Seasonally | 374 | 864 | 700 |
H3 | 3 × 200 | Daily | 101 | 169 | 700 |
H4 | 5 × 250 | Seasonally | 781 | 2142 | 700 |
H5 | 5 × 600 | Yearly | 2662 | 5564 | 1000 |
H6 | 3 × 90 | Daily | 35 | 78 | 400 |
H7 | 4 × 260 | Yearly | 1098 | 3135 | 600 |
H8 | 4 × 180 | Daily | 106 | 137 | 700 |
H9 | 4 × 220 | Daily | 739 | 882 | 800 |
H10 | 3 × 28 | Seasonally | 101 | 348 | 200 |
H11 | 3 × 120 | Seasonally | 133 | 455 | 400 |
H12 | 2 × 100 | Seasonally | 115 | 251 | 200 |
H13 | 2 × 75 | Daily | 51 | 69 | 200 |
References
- Global Energy Review. 2019. Available online: https://www.iea.org/reports/global-energy-review-2019 (accessed on 16 April 2021).
- Tian, H.; Yuan, X.; Ji, B.; Chen, Z. Multi-objective optimization of short-term hydrothermal scheduling using non-dominated sorting gravitational search algorithm with chaotic mutation. Energy Conv. Manag. 2014, 81, 504–519. [Google Scholar] [CrossRef]
- Takigawa, F.Y.K.; da Silva, E.L.; Finardi, E.C.; Rodrigues, R.N. Solving the hydrothermal scheduling problem considering network constraints. Electr. Power Syst. Res. 2012, 88, 89–97. [Google Scholar] [CrossRef]
- Marchand, A.; Gendreau, M.; Blais, M.; Emiel, G. Fast near-optimal heuristic for the short-term hydro-generation planning problem. IEEE Trans. Power Syst. 2018, 33, 227–235. [Google Scholar] [CrossRef]
- Birhanu, K.; Alamirew, T.; Dinka, M.O.; Ayalew, S.; Aklog, D. Optimizing reservoir operation policy using chance constraint nonlinear programming for Koga Irrigation Dam, Ethiopia. Water Resour. Manag. 2014, 28, 4957–4970. [Google Scholar] [CrossRef]
- Feng, Z.; Niu, W.; Cheng, C.; Wu, X. Optimization of large-scale hydropower system peak operation with hybrid dynamic programming and domain knowledge. J. Clean Prod. 2018, 171, 390–402. [Google Scholar] [CrossRef]
- Azizipour, M.; Afshar, M.H. Adaptive hybrid genetic algorithm and cellular automata method for reliability-based reservoir operation. J. Water Resour. Plan. Manag. 2017, 143, 04017046. [Google Scholar] [CrossRef]
- Finardi, E.C.; daSilva, E.L. Solving the Hydro Unit Commitment Problem via Dual Decomposition and Sequential Quadratic Programming. IEEE Trans. Power Syst. 2006, 21, 835–844. [Google Scholar] [CrossRef]
- Helseth, A.; Fodstad, M.; Mo, B. Optimal hydropower maintenance scheduling in liberalized markets. IEEE Trans. Power Syst. 2018, 33, 6989–6998. [Google Scholar] [CrossRef]
- Pereira, M.V.F. Optimal stochastic operations scheduling of large hydroelectric systems. Int. J. Electr. Power Energy Syst. 1989, 11, 161–169. [Google Scholar] [CrossRef]
- Pereira, M.V.F.; Pinto, L. Stochastic optimization of a multireservoir hydroelectric system—A decomposition approach. Water Resour. Res. 1985, 21, 779–792. [Google Scholar] [CrossRef]
- Labadie, J.W. Optimal operation of multireservoir systems: State-of-the-art review. J. Water Resour. Plan. Manag. 2004, 130, 93–111. [Google Scholar] [CrossRef]
- Li, T.; Shahidehpour, M. Price-based unit commitment: A case of Lagrangian relaxation versus mixed integer programming. IEEE Trans. Power Syst. 2005, 20, 2015–2025. [Google Scholar] [CrossRef] [Green Version]
- Redondo, N.J.; Conejo, A.J. Short-term hydro-thermal coordination by Lagrangian Relaxation: Solution of the dual problem. IEEE Trans. Power Syst. 1999, 14, 89–95. [Google Scholar] [CrossRef]
- Borghetti, A.; Frangioni, A.; Lacalandra, F.; Nucci, C.A. Lagrangian heuristics based on disaggregated bundle methods for hydrothermal unit commitment. IEEE Trans. Power Syst. 2003, 18, 313–323. [Google Scholar] [CrossRef]
- Hare, W.; Sagastizábal, C.; Solodov, M. A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 2015, 63, 1–28. [Google Scholar] [CrossRef]
- Lv, J.; Pang, L.; Xu, N.; Xiao, Z. An infeasible bundle method for nonconvex constrained optimization with application to semi-infinite programming problems. Numer. Algorithms 2018, 80, 397–427. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Luh, P.B.; Zhang, Y.H. A bundle method for hydrothermal scheduling. IEEE Trans. Power Syst. 1999, 14, 1355–1360. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Pang, L.; Meng, F. A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information. J. Glob. Optim. 2017, 70, 517–549. [Google Scholar] [CrossRef]
- Fuduli, A.; Gaudioso, M.; Nurminski, E.A. A splitting bundle approach for non-smooth non-convex minimization. Optimization 2013, 64, 1131–1151. [Google Scholar] [CrossRef]
- Burke, J.V.; Lewis, A.S.; Overton, M.L. A robust gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 2005, 15, 751–779. [Google Scholar] [CrossRef] [Green Version]
- Hare, W.; Sagastizábal, C. A redistributed proximal bundle method for nonconvex pptimization. SIAM J. Optim. 2010, 20, 2442–2473. [Google Scholar] [CrossRef]
- Chen, P.H. Two-level hierarchical approach to unit commitment using expert system and elite PSO. IEEE Trans. Power Syst. 2012, 27, 780–789. [Google Scholar] [CrossRef]
- Sahin, S.; Tolun, M.R.; Hassanpour, R. Hybrid expert systems: A survey of current approaches and applications. Expert Syst. Appl. 2012, 39, 4609–4617. [Google Scholar] [CrossRef]
- Giarratano, J. Expert Systems: Principles and Programming, 4th ed.; Course Technology: Boston, MA, USA, 2004; pp. 112–152. [Google Scholar]
- Leung, Y.W.; Wang, Y.P. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 2001, 5, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Niu, W.; Cheng, C.; Lund, J.R. Optimizing hydropower reservoirs operation via an orthogonal progressive optimality algorithm. J. Water Resour. Plan. Manag. 2018, 144, 04018001. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Nonlinear Programming, 3rd ed.; Athena Scientific: Belmont, MA, USA, 2016; pp. 591–642. [Google Scholar]
- Seki, T.; Yamashita, N.; Kawamoto, K. New local search methods for improving the Lagrangian-Relaxation-based unit commitment solution. IEEE Trans. Power Syst. 2010, 25, 272–283. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, J.; Wu, X. Hydro unit commitment with a head-sensitive reservoir and multiple vibration zones Using MILP. IEEE Trans. Power Syst. 2016, 31, 4842–4852. [Google Scholar] [CrossRef]
- Guan, X.; Luh, P.B.; Yan, H.; Amalfi, J.A. An optimization-based method for unit commitment. Int. J. Electr. Power Energy Syst. 1992, 14, 9–17. [Google Scholar] [CrossRef]
- Liu, S. A simple version of bundle method with linear programming. Comput. Optim. Appl. 2018, 72, 391–412. [Google Scholar] [CrossRef]
- Tang, C.; Liu, S.; Jian, J.; Ou, X. A multi-step doubly stabilized bundle method for nonsmooth convex optimization. Appl. Math. Comput. 2020, 376, 125154. [Google Scholar] [CrossRef]
- Guedes, L.S.M.; Maia, P.D.M.; Lisboa, A.C.; Gomes Vieira, D.A.; Saldanha, R.R. A unit commitment algorithm and a compact MILP model for short-term hydro-power generation scheduling. IEEE Trans. Power Syst. 2017, 32, 3381–3390. [Google Scholar] [CrossRef]
- Layton, R.; Watters, P.; Dazeley, R. Evaluating authorship distance methods using the positive Silhouette coefficient. Nat. Lang. Eng. 2012, 19, 517–535. [Google Scholar] [CrossRef]
- Zhan, Z.; Zhang, J.; Li, Y.; Shi, Y. Orthogonal learning particle swarm optimization. IEEE Trans. Evol. Comput. 2011, 15, 832–847. [Google Scholar] [CrossRef] [Green Version]
- Fadıl, S.; Yazici, A.; Urazel, B. A solution to security constrained non-convex economic dispatch problem by modified subgradient algorithm based on feasible values. Int. J. Electr. Power Energy Syst. 2012, 43, 849–858. [Google Scholar] [CrossRef]
- Bertsimas, D.; Dunning, I.; Lubin, M. Reformulation versus cutting-planes for robust optimization. Comput. Manag. Sci. 2015, 13, 195–217. [Google Scholar] [CrossRef] [Green Version]
Constraint | Associated Factor |
---|---|
(2), (3) | Load demand curve |
(4)–(11) | Thermal unit type |
(12) | Natural inflows |
(13)–(20) | Reservoir features |
(21), (22) | Initial and terminal water levels |
(23)–(25) | Hydro unit type |
Stage | Item | ZV | SED | ES1 |
---|---|---|---|---|
Initial multiplier generation | Dual value (t) | 30,470 | 94,337 | 103,000 |
Iterative calculations | Dual value (t) | 111,300 | 111,301 | 111,303 |
Primal value (t) | 113,796 | 113,780 | 113,761 | |
Time (s) | 782 | 423 | 359 |
Item | SG | CP | PBM | ES2 |
---|---|---|---|---|
Dual value (t) | 105,260 | 109,540 | 111,303 | 111,835 |
Primal value (t) | 122,461 | 116,137 | 113,761 | 112,472 |
Time (s) | 833 | 646 | 359 | 318 |
Item | PBM | ES2 |
---|---|---|
Serious steps | [1–10, 26] | [1–10] |
Null steps | [11–25, 27–44] | [11, 32, 41] |
Orthogonal design | / | → [12–31] → [33–40] |
Generation Scenario | Load Demand Condition | Water Inflow Condition | |||
---|---|---|---|---|---|
Energy Demand (105 MWh) | Peak Load (104 MW) | Peak–Valley Difference 1 (%) | Natural Inflows 2 (m3/s) | Storage Energy 3 (106 MWh) | |
1_LLD_DS | 3.17 | 1.61 | 43.22 | 203.7 | 3.62 |
2_LLD_DS | 2.82 | 1.47 | 49.04 | 233.9 | 3.27 |
3_LLD_DS | 3.22 | 1.67 | 46.56 | 200.2 | 2.74 |
4_LLD_DS | 2.98 | 1.49 | 42.31 | 189.5 | 1.99 |
5_LLD_DS | 2.95 | 1.51 | 44.69 | 449.9 | 1.62 |
6_MLD_WS | 3.32 | 1.72 | 45.33 | 3007.8 | 2.06 |
7_LLD_WS | 2.75 | 1.45 | 50.61 | 2262.2 | 8.04 |
8_MLD_WS | 3.61 | 1.83 | 42.88 | 1454.5 | 7.14 |
9_MLD_WS | 3.72 | 1.89 | 40.45 | 1072.5 | 8.28 |
10_LLD_WS | 3.26 | 1.72 | 46.56 | 955.5 | 7.42 |
11_HLD_DS | 3.83 | 1.92 | 37.37 | 382.7 | 7.54 |
12_HLD_DS | 4.61 | 2.33 | 40.37 | 247.6 | 6.65 |
Generation Scenario | Dual Value (t) | Primal Value (t) | Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|
PBM | IPBM | Rel. Diff. 1 | PBM | IPBM | Rel. Diff. 1 | PBM | IPBM | Rel. Diff. 1 | |
1_LLD_DS | 106,552 | 106,599 | 0.04% | 108,430 | 107,409 | −0.94% | 491 | 400 | −18.58% |
2_LLD_DS | 65,519 | 65,698 | 0.27% | 66,816 | 66,418 | −0.60% | 541 | 448 | −17.18% |
3_LLD_DS | 92,059 | 92,242 | 0.20% | 94,027 | 93,359 | −0.71% | 465 | 377 | −18.97% |
4_LLD_DS | 93,195 | 93,200 | 0.01% | 94,708 | 94,183 | −0.55% | 499 | 342 | −31.44% |
5_LLD_DS | 77,932 | 78,428 | 0.64% | 79,516 | 78,961 | −0.70% | 392 | 330 | −15.88% |
6_MLD_WS | 65,110 | 65,449 | 0.52% | 66,687 | 65,780 | −1.36% | 553 | 382 | −30.95% |
7_LLD_WS | 71,019 | 71,065 | 0.06% | 72,631 | 71,879 | −1.04% | 361 | 326 | −9.68% |
8_MLD_WS | 59,663 | 60,006 | 0.58% | 61,109 | 60,497 | −1.00% | 527 | 421 | −20.20% |
9_MLD_WS | 68,236 | 68,369 | 0.19% | 69,897 | 69,276 | −0.89% | 548 | 379 | −30.85% |
10_LLD_WS | 85,241 | 85,365 | 0.15% | 86,673 | 85,862 | −0.94% | 442 | 301 | −31.90% |
11_HLD_DS | 93,683 | 93,740 | 0.06% | 95,179 | 94,329 | −0.89% | 568 | 448 | −21.13% |
12_HLD_DS | 114,868 | 115,278 | 0.36% | 117,465 | 116,203 | −1.07% | 550 | 375 | −31.81% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Liao, S.; Cheng, C.; Medellín-Azuara, J.; Liu, B. Lagrangian Relaxation Based on Improved Proximal Bundle Method for Short-Term Hydrothermal Scheduling. Sustainability 2021, 13, 4706. https://doi.org/10.3390/su13094706
Yan Z, Liao S, Cheng C, Medellín-Azuara J, Liu B. Lagrangian Relaxation Based on Improved Proximal Bundle Method for Short-Term Hydrothermal Scheduling. Sustainability. 2021; 13(9):4706. https://doi.org/10.3390/su13094706
Chicago/Turabian StyleYan, Zhiyu, Shengli Liao, Chuntian Cheng, Josué Medellín-Azuara, and Benxi Liu. 2021. "Lagrangian Relaxation Based on Improved Proximal Bundle Method for Short-Term Hydrothermal Scheduling" Sustainability 13, no. 9: 4706. https://doi.org/10.3390/su13094706
APA StyleYan, Z., Liao, S., Cheng, C., Medellín-Azuara, J., & Liu, B. (2021). Lagrangian Relaxation Based on Improved Proximal Bundle Method for Short-Term Hydrothermal Scheduling. Sustainability, 13(9), 4706. https://doi.org/10.3390/su13094706