Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Autonomous and Electric Vehicle Definitions
2.2. Electric and Autonomous Vehicle Characteristics and Expected Impacts at Economic, Environmental and Social Level
2.3. Electric and Autonomous Vehicle Evaluation
2.4. Proposed Methodology and Engaged Methods
2.4.1. Brief Overview of AHP Hierarchy Structure and Pair-Wise Comparisons
2.4.2. Brief Overview of TOPSIS
2.4.3. Brief Overview of VIKOR
- (i)
- Acceptable advantage: Q(A(2)) – Q(A(1)) ≥ DQ (where A(2) the second in rank by Qi alternative and DQ = 1/(m−1), where m the number of alternatives).
- (ii)
- Acceptable stability: the alternative A(1) should also be the first ranked by Si and Ri.
2.4.4. Proposed Methodology
3. Application of the Proposed Methodology for the Optimum Selection of New Vehicle Technologies within the Framework of Sustainable Mobility
3.1. Case Study Description
3.2. Terminology and Assumptions
3.3. Decision Problem Definition
3.4. Selection of Experts
3.5. Hierarchy Structure (Goal, Alternatives, Criteria)
- Conventional vehicles (fossil fuels, automation level 0–1)—C.V.;
- Autonomous vehicles (fossil fuels, automation level 5, connected)—A.V.;
- Electric vehicles (BEV, automation level 0–1)—E.V.;
- Autonomous electric vehicles (BEV, automation level 5, connected)—A.E.V.
- Acquisition, operation and maintenance vehicle cost—V.C.;
- Air pollutants and greenhouse gas emissions (particulate matter, NOx, CO2, etc.)—P.R.;
- Social equity (accessibility improvement, potential to acquire autonomous vehicles, etc.)—S.E.;
- Road safety (e.g., human factor in case of conventional vehicles, hacking in case of autonomous vehicles)—R.S.;
- Time value (due to exploitation of travel time when using an autonomous car as discharged from driving, traffic congestion reduction, etc.)—T.V.;
- Construction, operation and maintenance infrastructure cost—I.C.;
- Sense of comfort and safety (e.g., due to “discharge” from driving or searching a parking place in case of autonomous vehicles or, on the contrary, fear of “conceding” the vehicle control to a “robot”)—C.S.;
- Natural resource consumption (due to vehicle energy efficiency, less transport waste, etc.)—N.R.
3.6. Criteria Weights Extraction
3.7. Alternatives Evaluation (Pair-Wise Comparison), with Regard to Each Criterion
3.8. Formulation of the Decision Matrix for the Application of VIKOR and TOPSIS
3.9. Application of TOPSIS for the Alternatives Ranking
3.10. Application of VIKOR for the Alternatives Ranking
3.11. Reveal of the Optimum Solution
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EEA. Transport: Increasing Oil Consumption and Greenhouse Gas. Emissions Hamper EU Progress towards Environment and Climate Objectives; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- EC Website. Transport Emissions, A European Strategy for Low-Emission Mobility. 2016. Available online: https://ec.europa.eu/clima/policies/transport_en (accessed on 23 March 2021).
- EC Website. Intelligent Transport Systems, Cooperative, Connected and Automated Mobility (CCAM). 2021. Available online: https://ec.europa.eu/transport/themes/its/c-its_en (accessed on 23 March 2021).
- Zak, J.; Kruszynski, M. Application of AHP and ELECTRE III/IV methods to multiple level, multiple criteria evaluation of urban transportation projects. Transp. Res. Procedia 2015, 10, 820–830. [Google Scholar] [CrossRef] [Green Version]
- Browne, D.; Ryan, L. Comparative analysis of evaluation techniques for transport policies. environment. Environ. Impact Assess. Rev. 2011, 31, 226–233. [Google Scholar] [CrossRef]
- Damart, S.; Roy, B. The uses of cost–benefit analysis in public transportation decision-making in France. Transp. Policy 2009, 16, 200–212. [Google Scholar] [CrossRef]
- Van Wee, B. How suitable is CBA for the ex-ante evaluation of transport projects and policies? A discussion from the perspective of ethics. Transp. Policy 2012, 19, 1–7. [Google Scholar] [CrossRef]
- Beria, P.; Maltese, I.; Mariotti, I. Multi-criteria versus Cost Benefit Analysis: A comparative perspective in the assessment of sustainable mobility. Eur. Transp. Res. Rev. 2012, 4, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Anastasiadou, K.; Vougias, S. “Smart” or “sustainably smart” urban road networks? The most important commercial street in Thessaloniki as a case study. Transp. Policy 2019, 82, 18–25. [Google Scholar] [CrossRef]
- Macharis, C.; Bernardini, A. Reviewing the use of Multi-Criteria Decision Analysis for the evaluation of transport projects: Time for a multi-actor approach. Transp. Policy 2015, 37, 177–186. [Google Scholar] [CrossRef]
- Sirisawat, P.; Kiatcharoenpol, T. Fuzzy AHP-TOPSIS approaches to prioritizing solutions for reverse logistics barriers. Comput. Ind. Eng. 2018, 117, 303–318. [Google Scholar] [CrossRef]
- Celik, E.; Akyuz, E. An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: The case of ship loader. Ocean. Eng. 2018, 155, 371–381. [Google Scholar] [CrossRef]
- Karahalios, H. The application of the AHP-TOPSIS for evaluating ballast water treatment systems by ship operators. Transp. Res. Part. D 2017, 52, 172–184. [Google Scholar] [CrossRef]
- Curiel-Esparza, J.; Mazario-Diez, J.L.; Canto-Perello, J.; Martin-Utrillas, M. Prioritization by consensus of enhancements for sustainable mobility in urban areas. Environ. Sci. Policy 2016, 55, 248–257. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems 186; Springer: New York, NY, USA, 1981; ISBN 978-3-642-48318-9. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Roy, B. The outranking approach and the foundations of ELECTRE methods. Theory Decis. 1991, 31, 49–73. [Google Scholar] [CrossRef]
- Brans, J.P.; Mareschal, B.; Vincke, P. PROMETHEE: A new family of outranking methods in multicriteria analysis. Oper. Res. 1984, 84, 477–490. Available online: https://www.researchgate.net/publication/243770678_PROMETHEE_a_new_family_of_outranking_methods_in_multicriteria_analysis (accessed on 5 February 2020).
- SAE International. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, June 2018. Available online: https://www.sae.org/standards/content/%20j3016_201806/preview/ (accessed on 8 March 2020).
- NHTSA (National Highway Traffic Safety Administration) Website. Preliminary Statement of Policy Concerning Automated Vehicles. Available online: https://www.nhtsa.gov/staticfiles/rulemaking/pdf/%20Automated_Vehicles_Policy.pdf (accessed on 8 September 2020).
- Wiktionary Website. 2020. Available online: https://el.wiktionary.org/wiki/%CE%B1%CF%85%CF%84%CF%8C%CE%BD%CE%BF%CE%BC%CE%BF%CF%82 (accessed on 9 August 2020).
- McCall, R.; McGeea, F.; Mirnig, A.; Meschtscherjakov, A.; Louveton, N.; Engel, T.; Tscheligi, M. A taxonomy of autonomous vehicle handover situations. Transp. Res. Part. A 2019, 124, 507–522. [Google Scholar] [CrossRef]
- Li, S.; Sui, P.-C.; Xiao, J.; Chahine, R. Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights. Transp. Res. Part. A 2019, 124, 573–586. [Google Scholar] [CrossRef]
- CAAT Website. Connected and Automated Vehicles. Available online: http://autocaat.org/Technologies/Automated_and_Connected_Vehicles/ (accessed on 8 September 2020).
- Foley and Lardner LLP. Connected Cars and Autonomous Vehicles Survey. 2017. Available online: https://www.foley.com/files/uploads/2017-Connected-Cars-Survey-Report.pdf (accessed on 5 September 2020).
- Bagloee, S.A.; Tavana, M.; Asadi, M.; Oliver, T. Autonomous vehicles: Challenges, opportunities.; future implications for transportation policies. J. Mod. Transp. 2016, 24, 284–303. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and Council. Directive 2014/94/EU of the European Parliament and the Council of 22 October 2014 on the Deployment of Alternative Fuels Infrastructure. Off. J. Eur. Union 2014, 307, 1–20. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0094&from=EN (accessed on 5 September 2020).
- Energysage Website. Costs and Benefits of Electric Cars vs Conventional Vehicles, 15 November 2018. Available online: https://www.energysage.com/electric-vehicles/costs-and-benefits-evs/evs-vs-fossil-fuel-vehicles/ (accessed on 3 September 2020).
- Venugopal, P.; Shekhar, A.; Visser, E.; Scheele, N.; Chandra Mouli, G.R.; Bauer, P.; Silvester, S. Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies. Appl. Energy 2018, 212, 1226–1239. [Google Scholar] [CrossRef]
- EEA. Electric Vehicles in Europe; EEA: Copenhagen, Denmark, 2016; ISBN 978-92-9213-804-2. [Google Scholar] [CrossRef]
- Transport and Environment. From Dirty Oil to Clean Batteries. Available online: https://www.transportenvironment.org/publications/batteries-vs-oil-comparison-raw-material-needs (accessed on 17 April 2021).
- Sharma, M.; Rani, A. Electric Car–The Dream Translating into Reality, Information Age. 2 January 2019. Available online: https://www.information-age.com/electric-cars-123477793/ (accessed on 2 August 2020).
- Vilathgamuwa, D.M.; Sampath, J.P.K. Wireless power transfer (WPT) for electric vehicles (EVs)-present and future trends. In Plug in Electric Vehicles in Smart Grids; Springer: Singapore, 2015; pp. 33–60. [Google Scholar] [CrossRef]
- Yavuz, M.; Oztaysi, B.; Onar, S.C.; Kahraman, C. Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model. Expert Syst. Appl. 2015, 42, 2835–2848. [Google Scholar] [CrossRef]
- Shahan, Ζ. 10 Charts: Top Electric Car Benefits and Top Misconceptions. Cleantechnica Website. Available online: https://cleantechnica.com/2018/12/02/10-charts-top-electric-car-benefits-top-misconceptions/ (accessed on 6 August 2020).
- Viola, F. Electric Vehicles and Psychology. Sustainability 2021, 13, 719. [Google Scholar] [CrossRef]
- Sun, X.; Luo, X.; Zhang, Z.; Meng, F.; Yang, J. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles. J. Clean. Prod. 2020, 273, 123006. [Google Scholar] [CrossRef]
- Beaudet, A.; Larouche, F.; Amouzegar, K.; Bouchard, P.; Zaghib, K. Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials. Sustainability 2020, 12, 5837. [Google Scholar] [CrossRef]
- Tolomeo, R.; De Feo, G.; Adami, R.; Sesti Osséo, L. Application of Life Cycle Assessment to Lithium Ion Batteries in the Automotive Sector. Sustainability 2020, 12, 4628. [Google Scholar] [CrossRef]
- Sivak, M.; Schoettle, B. Relative Costs of Driving Electric and Gasoline Vehicles in the Individual U.S. States, The University of Michigan, Sustainable Worldwide Transportation. January 2018. Available online: http://umich.edu/~umtriswt/PDF/SWT-2018-1.pdf (accessed on 2 August 2020).
- Weiss, M.; Zerfass, A.; Helmers, E. Fully electric and plug-in hybrid cars-An analysis of learning rates, user costs, and costs for mitigating CO2 and air pollutant emissions. J. Clean. Prod. 2019, 212, 1478–1489. [Google Scholar] [CrossRef]
- Stanek, D.; Milam, R.T.; Huang, E.; Wang, Y. Measuring Autonomous Vehicle Impacts on Congested Networks Using Simulation. In Proceedings of the Transportation Research Board 97th Annual Meeting, Washington, DC, USA, 7–11 January 2018; Available online: https://www.researchgate.net/publication/321887508_Measuring_Autonomous_Vehicle_Impacts_on_Congested_Networks_Using_Simulation (accessed on 26 August 2020).
- Vander Laan, Z.; Sadabadi, K.F. Operational performance of a congested corridor with lanes dedicated to autonomous vehicle traffic. Int. J. Transp. Sci. Technol. 2017, 6, 42–52. [Google Scholar] [CrossRef]
- Zhu, W.-X.; Zhang, H.M. Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model. Phys. A 2018, 496, 274–285. [Google Scholar] [CrossRef]
- Masouda, N.; Jayakrishnan, R. Autonomous or driver-less vehicles: Implementation strategies and operational concerns. Transp. Res. Part. E 2017, 108, 179–194. [Google Scholar] [CrossRef]
- Fagnant, D.; Kockelman, K. Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations. Transp. Res. Part. A: Policy Pract. 2015, 77, 167–181. [Google Scholar] [CrossRef]
- Milakis, D.; Snelder, M.; van Arem, B.; van Wee, B.; Correia, G. Development and transport implications of automated vehicles in the Netherlands: Scenarios for 2030 and 2050. Eur. J. Transp. Infrastruct. Res. 2017, 17, 63–85. [Google Scholar]
- Milakis, D.; van Arem, B.; van Wee, B. Policy and society related implications of automated driving: A review of literature and directions for future research. J. Intell. Transp. Syst. 2017, 21, 324–348. [Google Scholar] [CrossRef]
- Malokin, A.; Circella, G.; Mokhtarian, P.L. How Do activities conducted while commuting influence mode choice? Testing public transportation advantage and autonomous vehicle scenarios. In Proceedings of the 94th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 11–15 January 2015; Available online: https://trid.trb.org/view/1336974 (accessed on 8 September 2020).
- De Correia, G.H.A.; van Arem, B. Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility. Transp. Res. Part. B: Methodol. 2016, 87, 64–88. [Google Scholar] [CrossRef]
- Litman, T. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning. Victoria Transport Policy Institute. 2018. Available online: https://www.vtpi.org/avip.pdf (accessed on 18 January 2020).
- Talebpour, A.; Mahmassani, H.S. Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part. C 2016, 71, 143–163. [Google Scholar] [CrossRef]
- Woudsma, C.; Braun, L. Tomorrow has arrived: Cities and autonomous vehicles. Pragma Council Discussion Paper. 2017. Available online: https://uwaterloo.ca/planning/sites/ca.planning/files/%20uploads/files/tomorrow_has_arrived_-_cities_and_autonomous_vehicles_pragma2017_cw%20report1_opt.pdf (accessed on 8 August 2020).
- Maheshwari, T.; Axhausen, K.W. How Will the Technological Shift in Transportation Impact Cities? A Review of Quantitative Studies on the Impacts of New Transportation Technologies. Sustainability 2021, 13, 3013. [Google Scholar] [CrossRef]
- Gouy, M.; Wiedemann, K.; Stevens, A.; Brunett, G.; Reed, N. Driving next to automated vehicle platoons: How do short time headways influence non-platoon drivers’ longitudinal control? Transp. Res. Part. F 2014, 27, 264–273. [Google Scholar] [CrossRef]
- Khondaker, B.; Kattan, L. Variable speed limit: A microscopic analysis in a connected vehicle environment. Transp. Res. Part. C: Emerg. Technol. 2015, 58, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.S.M.; Taeihagh, A. Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities. Sustainability 2019, 11, 5791. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.W.; Boyles, S.D. Effects of autonomous vehicle ownership on trip, mode, and route choice. Transp. Res. Rec. J. Transp. Res. Board 2015, 2493, 29–38. [Google Scholar] [CrossRef]
- Cordera, R.; Nogués, S.; González-González, E.; Moura, J.L. Modeling the Impacts of Autonomous Vehicles on Land Use Using a LUTI Model. Sustainability 2021, 13, 1608. [Google Scholar] [CrossRef]
- Silva, D.; Földes, D.; Csiszár, C. Autonomous Vehicle Use and Urban Space Transformation: A Scenario Building and Analysing Method. Sustainability 2021, 13, 3008. [Google Scholar] [CrossRef]
- Papa, E.; Ferreira, A. Sustainable Accessibility and the Implementation of Automated Vehicles: Identifying Critical Decisions. Urban. Sci. 2018, 2, 5. Available online: https://www.mdpi.com/2413-8851/2/1/5 (accessed on 5 September 2020). [CrossRef] [Green Version]
- Anderson, J.M.; Nidhi, K.; Stanley, K.D.; Sorensen, P.; Samaras, C.; Oluwatola, O.A. Autonomous Vehicle Technology: A Guide for Policymakers; Rand Corporation: Santa Monica, CA, USA, 2016; Available online: https://www.rand.org/content/dam/rand/pubs/researchreports/RR400/RR443-2/RANDRR443-.pdf (accessed on 18 September 2020).
- Chen, Y.; Young, S.; Qi, X.; Gonder, J. A First-Order Estimate of Automated Mobility District Fuel Consumption and GHG Emission Impacts. In Road Vehicle Automation 4, Lecture Notes in Mobility; Meyer, G., Beiker, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Stephens, T.S.; Gonder, J.; Chen, Y.; Lin, Z.; Liu, C.; Gohlke, D. Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles, Technical Report, November 2016, National Renewable Energy Laboratory. Available online: https://www.nrel.gov/docs/fy17osti/67216.pdf (accessed on 18 August 2020).
- Bösch, P.M.; Becker, F.; Becker, H.; Axhausen, K.W. Cost-based analysis of autonomous mobility services. Transp. Policy 2018, 64, 76–91. [Google Scholar] [CrossRef]
- Nordhoff, S.; de Winter, J.; Kyriakidis, M.; van Arem, B.; Happee, R. Acceptance of Driverless Vehicles: Results from a Large Cross-National Questionnaire Study. J. Adv. Transp. 2018, 5382192. [Google Scholar] [CrossRef] [Green Version]
- WEF in Collaboration with BCG. Reshaping Urban Mobility with Autonomous Vehicles Lessons from the City of Boston. 2018. Available online: http://www3.weforum.org/docs/WEF_Reshaping_Urban_Mobility_with_Autonomous_Vehicles_2018.pdf (accessed on 8 September 2020).
- Abraham, H.; Reimer, B.; Seppelt, B.; Fitzgerald, C.; Mehler, B.; Coughlin, J.F. Consumer Interest in Automation: Preliminary Observations Exploring a Year’s Change. White Paper 2017-2. 2017. Available online: https://agelab.mit.edu/sites/default/files/MIT%20-%20NEMPA%20White%20Paper%20FINAL.pdf (accessed on 20 August 2020).
- Saffarian, M.; de Winter, J.C.F.; Happee, R. Automated Driving: Human-Factors Issues and Design Solutions. In Proceedings of the Human Factors and Ergonomics Society, 56th Annual Meeting, Boston, MA, USA, 22–26 October 2012; Available online: https://www.researchgate.net/publication/273346403 (accessed on 6 August 2020).
- Yuen, K.H. Cost-effectiveness analysis of electric vehicles in Singapore. Singap. Econ. Rev. 2018, 63, 313–338. [Google Scholar] [CrossRef]
- Lowell, D.; Jones, B.; Seamonds, D.; Bradley, M.J.; Associates LLC. Electric Vehicle Cost-Benefit Analysis: Plug-in Electric Vehicle Cost-Benefit Analysis: New York, December 2016. Available online: https://mjbradley.com/sites/%20default/files/NY_PEV_CB_Analysis_FINAL.pdf (accessed on 18 September 2020).
- Arshad, J.; Zakaria, J.; Sung, D.; Chi, R.; Cisneros, E.; Bouras, Z. A Cost Benefit Analysis of Electric and Hybrid Electric Vehicles, Energy and Energy Policy, The Franke Institute for the Humanities, The University of Chicago. Available online: http://franke.uchicago.edu/bigproblems/%20BPRO29000-2014/Team13-Final.pdf (accessed on 18 September 2020).
- Holland, S.P.; Mansur, E.T.; Muller, N.Z.; Yates, A.J. Are there environmental benefits from driving electric vehicles? The importance of local factors. Am. Econ. Rev. 2016, 106, 3700–3729. [Google Scholar] [CrossRef] [Green Version]
- Markel, T.; Simpson, A. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology. WEVA J. 2007, 1, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Malmgren, I. Quantifying the Societal Benefits of Electric Vehicles. World Electr. Veh. J. 2016, 8, 996. [Google Scholar] [CrossRef] [Green Version]
- Onat, N.C.; Kucukvar, M.; Tatari, O.; Zheng, Q.P. Combined application of multi-criteria optimization life-cycle sustainability assessment for optimal distribution of alternative passenger cars in. U.S. J. Clean. Prod. 2016, 112, 291e307. [Google Scholar] [CrossRef]
- Marshall, B.M.; Kelly, J.C.; Lee, T.-K.; Keoleian, G.A.; Filipi, Z. Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study. Energy Policy 2013, 58, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Strecker, B.; Hausmann, A.; Depcik, C. Well to wheels energy and emissions analysis of a recycled 1974 VW super beetle converted into a plug-in series hybrid electric vehicle. J. Clean. Prod. 2014, 68, 93–103. [Google Scholar] [CrossRef]
- Hawkins, T.R.; Gausen, O.M.; Stromman, A.H. Environmental impacts of hybrid and electric vehicles—a review. Int. J. Life Cycle Assess. 2012, 17, 997. [Google Scholar] [CrossRef]
- Puthanpura, A.K.; Khalifa, R.; Chan, L. Assessing Emerging Automotive Technologies for the Future, 2015. In Proceedings of the PICMET15: Management of the Technology, Portland, OR, USA, 2–6 August 2015; Available online: https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?referer=https://www.google.%20com/andhttpsredir=1andarticle=1073andcontext=etm_fac (accessed on 18 September 2020).
- Triantafyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; ISBN 978-1-4757-3157-6. [Google Scholar]
- Shih, H.S.; Shyur, H.-J.; Lee, S.E. An extension of TOPSIS for group decision making. Math. Comput. Model. 2007, 45, 801–813. [Google Scholar] [CrossRef]
- Turcksin, L.; Bernardini, A.; Macharis, C. A combined AHP-PROMETHEE approach for selecting the most appropriate policy scenario to stimulate a clean vehicle fleet. Procedia Soc. Behav. Sci. 2011, 20, 954–965. [Google Scholar] [CrossRef] [Green Version]
- Martin-Utrillas, M.; Reyes-Medina, M.; Curiel-Esparza, J.; Canto-Perello, J. Hybrid method for selection of the optimal process of leachate treatment in waste treatment and valorization plants or landfills. Clean Techn. Env. Policy. 2015, 17, 873–885. [Google Scholar] [CrossRef]
- Curiel-Esparza, J.; Cuenca-Ruiz, M.; Martin-Utrillas, M.; Canto-Perello, J. Selecting a Sustainable Disinfection Technique for Wastewater Reuse Projects. Water 2014, 6, 2732–2747. [Google Scholar] [CrossRef] [Green Version]
- De Loë, R.C.; Melnychuk, N.; Murray, D.; Plummer, R. Advancing the State of Policy Delphi Practice: A Systematic Review Evaluating Methodological Evolution, Innovation, and Opportunities. Technol. Forecast. Soc. Chang. 2016, 104, 78–88. [Google Scholar] [CrossRef]
- Esmaeilpoorarabi, N.; Yigitcanlar, T.; Guaralda, M.; Kamruzzaman, M. Evaluating place quality in innovation districts: A Delphic hierarchy process approach. Land Use Policy 2018, 76, 471–486. [Google Scholar] [CrossRef]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the Analytic Hierarchy Process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- Aczel, J.; Saaty, T.L. Procedures for Synthesizing Ratio Judgments. J. Math. Psychol. 1983, 27, 93–102. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments in the Analytic Hierarchy Process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef] [Green Version]
- UN. Report of the World Commission on Environment and Development; United Nations Publication: New York, NY, USA, 1987. [Google Scholar]
- Diamond, I.R.; Grant, R.C.; Feldman, B.M.; Pencharz, P.B.; Ling, S.C.; Moore, A.M.; Wales, P.W. Defining consensus: A systematic review recommends methodologic criteria for reporting of Delphi studies. J. Clin. Epidemiol. 2014, 67, 401–409. [Google Scholar] [CrossRef]
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
The Criterion on the Left Is More Important Than the One on the Right (Select the Intensity of Relative Importance) | Equivalent Importance of the Two Criteria | The Criterion on the Right Is More Important than the One on the Left (Select the Intensity of Relative Importance) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pollutant emissions | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Road safety |
Intensity of Importance | Definition |
---|---|
1 | Equivalent importance of the two criteria |
3 | Moderate importance of the one over the other |
5 | Strong importance of the one over the other |
7 | Very strong importance of the one over the other |
9 | Extreme importance of the one over the other |
2, 4, 6, 8 | Intermediate values between the aforementioned ones |
CRITERIA/EXPERTS | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | EXP11 | EXP12 | G.M. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V.C. OVER P.R. | 1/3 | 1/5 | 1 | 3 | 6 | 2 | 1/7 | 5 | 1/8 | 4 | 1/7 | 1/2 | 0.7923 |
V.C. OVER S.E. | 1/4 | 1/3 | 3 | 4 | 7 | 3 | 3 | 7 | 1/7 | 7 | 1/5 | 2 | 1.5389 |
V.C. OVER R.S. | 1/6 | 1/7 | 1/5 | 1/5 | 1/4 | 1/4 | 1/5 | 1/5 | 1/8 | 1/3 | 1/3 | 1/6 | 0.2050 |
V.C. OVER T.V. | 3 | 1/5 | 1 | 1 | 5 | 1/4 | 1 | 5 | 1/7 | 1/4 | 1/4 | 2 | 0.7983 |
V.C. OVER I.C. | 1/2 | 1 | 1/3 | 3 | 5 | 3 | 6 | 5 | 7 | 6 | 1 | 1 | 2.1443 |
V.C. OVER C.S. | 6 | 1/4 | 1/4 | 1 | 5 | 1/3 | 1/5 | 1/7 | 7 | 4 | 1/3 | 1/3 | 0.7859 |
V.C. OVER N.R. | 1/3 | 1/3 | 1 | 1 | 1 | 1 | 1/2 | 3 | 1 | 1 | 1 | 1/3 | 0.7859 |
P.R. OVER S.E. | 3 | 3 | 3 | 4 | 6 | 5 | 7 | 1/7 | 5 | 1/3 | 3 | 3 | 2.4578 |
P.R. OVER R.S. | 1/3 | 1/3 | 1/3 | 1/5 | 1/5 | 1/3 | 1/7 | 1/8 | 1/8 | 1/3 | 1/3 | 1/4 | 0.2365 |
P.R. OVER T.V. | 1 | 1 | 1 | 1 | 1 | 1/2 | 1 | 1 | 7 | 1/2 | 7 | 3 | 1.3503 |
P.R. OVER I.C. | 1 | 4 | 1 | 3 | 3 | 4 | 5 | 1/3 | 4 | 3 | 8 | 4 | 2.5925 |
P.R. OVER C.S. | 5 | 3 | 1/3 | 5 | 1/2 | 4 | 1/5 | 1/5 | 3 | 1/5 | 4 | 1 | 1.1396 |
P.R. OVER N.R. | 1/2 | 1 | 2 | 4 | 1 | 2 | 5 | 1 | 1 | 1/2 | 1 | 1 | 1.2836 |
S.E. OVER R.S. | 1/5 | 1/3 | 1/5 | 1/5 | 1/8 | 1/5 | 1/7 | 1/8 | 1/7 | 1/4 | 1/5 | 1/7 | 0.1807 |
S.E. OVER T.V. | 3 | 1 | 1/3 | 1/2 | 1/6 | 1/5 | 1/7 | 1/6 | 1/6 | 1/5 | 5 | 1 | 0.4484 |
S.E. OVER I.C. | 3 | 2 | 1/3 | 1 | 1 | 1/3 | 1 | 1 | 1/5 | 1/2 | 6 | 1 | 0.9265 |
S.E. OVER C.S. | 5 | 3 | 1/5 | 1/3 | 1/5 | 1 | 1/4 | 1/8 | 1/4 | 1/3 | 3 | 1/5 | 0.5104 |
S.E. OVER N.R. | 1/2 | 2 | 1 | 2 | 1/4 | 1/3 | 1/5 | 1/6 | 1 | 1/4 | 1 | 1 | 0.5779 |
R.S. OVER T.V. | 7 | 5 | 7 | 3 | 7 | 2 | 6 | 8 | 8 | 3 | 3 | 6 | 4.9442 |
R.S. OVER I.C. | 8 | 7 | 7 | 5 | 8 | 6 | 6 | 8 | 9 | 4 | 6 | 9 | 6.7394 |
R.S. OVER C.S. | 7 | 2 | 5 | 3 | 4 | 3 | 2 | 8 | 7 | 4 | 6 | 5 | 4.2411 |
R.S. OVER N.R. | 2 | 3 | 7 | 5 | 5 | 4 | 5 | 8 | 5 | 3 | 5 | 5 | 4.4663 |
T.V. OVER I.C. | 3 | 1 | 1 | 3 | 6 | 5 | 3 | 7 | 6 | 1/2 | 5 | 1 | 2.5752 |
T.V. OVER Ι C.S. | 3 | 2 | 1/3 | 2 | 1/4 | 3 | 3 | 1/5 | 5 | 4 | 1/4 | 1/4 | 1.0699 |
T.V. OVER N.R. | 1/2 | 1 | 1 | 1/3 | 1 | 5 | 2 | 1 | 1 | 4 | 1 | 1/3 | 1.0688 |
I.C. OVER C.S. | 3 | 1/2 | 1/3 | 1/5 | 1/6 | 3 | 1/5 | 1/7 | 5 | 1/4 | 1/3 | 1/4 | 0.4798 |
I.C. OVER N.R. | 1/3 | 1/2 | 2 | 1/2 | 1 | 1/3 | 1/4 | 1/3 | 1/2 | 4 | 1/4 | 1/3 | 0.5503 |
C.S. OVER N.R. | 1/5 | 2 | 3 | 1/4 | 1 | 1/3 | 4 | 4 | 1 | 1 | 1/2 | 1 | 0.9816 |
V.C. | P.R. | S.E. | R.S. | T.V. | I.C. | C.S. | N.R. | |
---|---|---|---|---|---|---|---|---|
V.C. | 1.0000 | 0.7923 | 1.5389 | 0.2050 | 0.7983 | 2.1443 | 0.7859 | 0.7859 |
P.R. | 1.2621 | 1.0000 | 2.4578 | 0.2365 | 1.3503 | 2.5925 | 1.1396 | 1.2836 |
S.E. | 0.6498 | 0.4069 | 1.0000 | 0.1807 | 0.4484 | 0.9265 | 0.5104 | 0.5779 |
R.S. | 4.8778 | 4.2283 | 5.5330 | 1.0000 | 4.9442 | 6.7394 | 4.2411 | 4.4663 |
T.V. | 1.2527 | 0.7406 | 2.2300 | 0.2023 | 1.0000 | 2.5752 | 1.0699 | 1.0688 |
I.C. | 0.4664 | 0.3857 | 1.0793 | 0.1484 | 0.3883 | 1.0000 | 0.4798 | 0.5503 |
C.S. | 1.2723 | 0.8775 | 1.9593 | 0.2358 | 0.9347 | 2.0842 | 1.0000 | 0.9816 |
N.R. | 1.2723 | 0.7791 | 1.7303 | 0.2239 | 0.9356 | 1.8171 | 1.0188 | 1.0000 |
V.C. | P.R. | S.E. | R.S. | T.V. | I.C. | C.S. | N.R. | PRIORITY VECTOR (W) | |
---|---|---|---|---|---|---|---|---|---|
V.C. | 0.0830 | 0.0860 | 0.0878 | 0.0843 | 0.0739 | 0.1079 | 0.0767 | 0.0734 | 0.0841 |
P.R. | 0.1047 | 0.1086 | 0.1402 | 0.0972 | 0.1250 | 0.1304 | 0.1112 | 0.1198 | 0.1171 |
S.E. | 0.0539 | 0.0442 | 0.0570 | 0.0743 | 0.0415 | 0.0466 | 0.0498 | 0.0539 | 0.0527 |
R.S. | 0.4047 | 0.4591 | 0.3157 | 0.4111 | 0.4578 | 0.3390 | 0.4139 | 0.4168 | 0.4023 |
T.V. | 0.1039 | 0.0804 | 0.1272 | 0.0831 | 0.0926 | 0.1295 | 0.1044 | 0.0998 | 0.1026 |
I.C. | 0.0387 | 0.0419 | 0.0616 | 0.0610 | 0.0360 | 0.0503 | 0.0468 | 0.0514 | 0.0484 |
C.S. | 0.1056 | 0.0953 | 0.1118 | 0.0969 | 0.0865 | 0.1048 | 0.0976 | 0.0916 | 0.0988 |
N.R. | 0.1056 | 0.0846 | 0.0987 | 0.0920 | 0.0866 | 0.0914 | 0.0994 | 0.0933 | 0.0940 |
λmax = 8.0847, CI = 0.0121, CR = 0.0086 < 0.10 |
Intensity of Preference | Definition |
---|---|
1 | Indifference of preference |
3 | Moderate preference relation |
5 | Strong preference relation |
7 | Very strong preference relation |
9 | Absolute preference relation |
2, 4, 6, 8 | Intermediate values between the two adjacent judgments |
With Regard to the Criterion “Acquisition, Operation and Maintenance Vehicle Cost” | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The Alternative on the Left Is Preferable to the One on the Right (Select the Degree of Relative Preference) | Indifference of Preference | The Alternative on the Right Is Preferable to the One on the Left (Select the Degree of Relative Preference) | ||||||||||||||||
Conventional vehicles | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Autonomous vehicles |
Conventional vehicles | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Electric vehicles |
Conventional vehicles | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Autonomous electric vehicles |
Autonomous vehicles | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Electric vehicles |
Autonomous vehicles | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Autonomous electric vehicles |
Electric vehicles | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Autonomous electric vehicles |
V.C.: ALTERNATIVES/ EXPERTS | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | EXP11 | EXP12 | GEOM. MEAN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C.V. OVER A.V. | 5 | 6 | 7 | 5 | 7 | 6 | 6 | 5 | 5 | 6 | 6 | 4 | 5.6007 |
C.V. OVER E.V. | 3 | 3 | 3 | 2 | 2 | 3 | 4 | 2 | 2 | 2 | 3 | 2 | 2.5089 |
C.V. OVER A.E.V. | 7 | 8 | 8 | 6 | 8 | 8 | 6 | 5 | 6 | 5 | 7 | 5 | 6.4738 |
A.V. OVER E.V. | 1/4 | 1/3 | 1/5 | 1/3 | 1/4 | 1/3 | 1/5 | 1/4 | 1/5 | 1/6 | 1/4 | 1/4 | 0.2456 |
A.V. OVER A.E.V. | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1.5874 |
E.V. OVER A.E.V. | 7 | 6 | 5 | 6 | 6 | 5 | 5 | 4 | 6 | 6 | 4 | 5 | 5.3455 |
P.R.: ALTERNATIVES/ EXPERTS | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | EXP11 | EXP12 | GEOM. MEAN |
C.V. OVER A.V. | 1/3 | 1/4 | 1/5 | 1/2 | 1/3 | 1/4 | 1/4 | 1/5 | 1/3 | 1/2 | 1/4 | 1/2 | 0.3078 |
C.V. OVER E.V. | 1/7 | 1/7 | 1/8 | 1/8 | 1/7 | 1/8 | 1/8 | 1/7 | 1/7 | 1/7 | 1/8 | 1/7 | 0.1351 |
C.V. OVER A.E.V. | 1/9 | 1/9 | 1/9 | 1/9 | 1/9 | 1/9 | 1/9 | 1/9 | 1/8 | 1/7 | 1/9 | 1/9 | 0.1146 |
A.V. OVER E.V. | 1/4 | 1/4 | 1/5 | 1/7 | 1/3 | 1/2 | 1/5 | 1/4 | 1/3 | 1/6 | 1/3 | 1/4 | 0.2530 |
A.V. OVER A.E.V. | 1/6 | 1/6 | 1/7 | 1/7 | 1/9 | 1/5 | 1/5 | 1/7 | 1/7 | 1/6 | 1/4 | 1/4 | 0.1688 |
E.V. OVER A.E.V. | 1/3 | 1/3 | 1/4 | 1/4 | 1/3 | 1/2 | 1/3 | 1/3 | 1/2 | 1 | 1/2 | 1/2 | 0.3986 |
S.E.: ALTERNATIVES/ EXPERTS | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | EXP11 | EXP12 | GEOM. MEAN |
C.V. OVER A.V. | 1/3 | 1/5 | 1/6 | 1/2 | 1/5 | 1/8 | 1 | 1/7 | 1/5 | 1 | 1/3 | 1/5 | 0.2831 |
C.V. OVER E.V. | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.0595 |
C.V. OVER A.E.V. | 1/3 | 1/5 | 1/7 | 1/2 | 1/5 | 1/8 | 1 | 1/7 | 1/5 | 1 | 1/3 | 1/5 | 0.2794 |
A.V. OVER E.V. | 3 | 3 | 5 | 3 | 3 | 5 | 1 | 3 | 5 | 1 | 2 | 2 | 2.6529 |
A.V. OVER A.E.V. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.0000 |
E.V. OVER A.E.V. | 1/3 | 1/3 | 1/6 | 1 | 1/4 | 1/8 | 1 | 1/3 | 1/5 | 1 | 1/3 | 1/4 | 0.3486 |
R.S.: ALTERNATIVES/ EXPERTS | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | EXP11 | EXP12 | GEOM. MEAN |
C.V. OVER A.V. | 1/3 | 1/3 | 1/6 | 1/7 | 1/3 | 1/8 | 1/8 | 1/8 | 1/4 | 1 | 1/6 | 1/4 | 0.2262 |
C.V. OVER E.V. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.0000 |
C.V. OVER A.E.V. | 1/3 | 1/3 | 1/6 | 1/7 | 1/3 | 1/8 | 1/8 | 1/8 | 1/4 | 1 | 1/6 | 1/4 | 0.2262 |
A.V. OVER E.V. | 3 | 3 | 6 | 7 | 3 | 8 | 8 | 8 | 4 | 1 | 6 | 4 | 4.4209 |
A.V. OVER A.E.V. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.0000 |
E.V. OVER A.E.V. | 1/3 | 1/3 | 1/6 | 1/7 | 1/3 | 1/8 | 1/3 | 1/8 | 1/4 | 1 | 1/6 | 1/4 | 0.2455 |
T.V.: ALTERNATIVES/ EXPERTS | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | EXP11 | EXP12 | GEOM. MEAN |
C.V. OVER A.V. | 1/3 | 1/3 | 1/5 | 1/4 | 1/4 | 1/8 | 1/8 | 1/8 | 1/6 | 1/3 | 1/5 | 1/3 | 0.2155 |
C.V. OVER E.V. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.0000 |
C.V. OVER A.E.V. | 1/3 | 1/3 | 1/5 | 1/4 | 1/5 | 1/8 | 1/8 | 1/8 | 1/6 | 1/3 | 1/5 | 1/3 | 0.2116 |
A.V. OVER E.V. | 3 | 3 | 5 | 4 | 3 | 8 | 7 | 8 | 5 | 3 | 5 | 3 | 4.4122 |
A.V. OVER A.E.V. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.0000 |
E.V. OVER A.E.V. | 1/3 | 1/3 | 1/5 | 1/4 | 1/4 | 1/8 | 1/6 | 1/8 | 1/5 | 1/3 | 1/3 | 1/3 | 0.2339 |
I.C.: ALTERNATIVES/ EXPERTS | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | EXP11 | EXP12 | GEOM. MEAN |
C.V. OVER A.V. | 5 | 5 | 6 | 1 | 7 | 6 | 4 | 5 | 4 | 3 | 4 | 5 | 4.2013 |
C.V. OVER E.V. | 3 | 2 | 7 | 2 | 5 | 1 | 1 | 5 | 3 | 1 | 3 | 3 | 2.4896 |
C.V. OVER A.E.V. | 7 | 6 | 8 | 2 | 9 | 6 | 4 | 5 | 4 | 3 | 6 | 7 | 5.1713 |
A.V. OVER E.V. | 1 | 1/3 | 1/3 | 1/2 | 1/3 | 1/4 | 1/3 | 1 | 1/2 | 1/3 | 1 | 1/2 | 0.4740 |
A.V. OVER A.E.V. | 3 | 3 | 3 | 2 | 1 | 1 | 1 | 5 | 2 | 1 | 2 | 3 | 1.9613 |
E.V. OVER A.E.V. | 2 | 3 | 3 | 1 | 6 | 6 | 3 | 5 | 3 | 4 | 2 | 2 | 2.9676 |
C.S.: ALTERNATIVES/ EXPERTS | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | EXP11 | EXP12 | GEOM. MEAN |
C.V. OVER A.V. | 1/5 | 1/5 | 1/4 | 1/5 | 1 | 2 | 1/8 | 1/8 | 2 | 1/2 | 1/2 | 1/3 | 0.3844 |
C.V. OVER E.V. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.0000 |
C.V. OVER A.E.V. | 1/5 | 1/5 | 1/6 | 1/5 | 1 | 2 | 1/8 | 1/8 | 2 | 1/2 | 1/2 | 1/3 | 0.3717 |
A.V. OVER E.V. | 3 | 5 | 3 | 4 | 3 | 1 | 6 | 7 | 1/3 | 4 | 3 | 2 | 2.7430 |
A.V. OVER A.E.V. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1.0000 |
E.V. OVER A.E.V. | 1/3 | 1/5 | 1/3 | 1/5 | 1 | 1 | 1/6 | 1/7 | 3 | 1/4 | 1/3 | 1/3 | 0.3791 |
N.R.: ALTERNATIVES/ EXPERTS | EXP1 | EXP2 | EXP3 | EXP4 | EXP5 | EXP6 | EXP7 | EXP8 | EXP9 | EXP10 | EXP11 | EXP12 | GEOM. MEAN |
C.V. OVER A.V. | 1/2 | 1/4 | 1/5 | 1/3 | 1/3 | 1/3 | 1/3 | 1/5 | 1/2 | 1/3 | 1/2 | 1/3 | 0.3308 |
C.V. OVER E.V. | 1/7 | 1/5 | 1/7 | 1/8 | 1/8 | 1/6 | 1/8 | 1/8 | 1/6 | 1/7 | 1/6 | 1/7 | 0.1460 |
C.V. OVER A.E.V. | 1/8 | 1/6 | 1/8 | 1/9 | 1/9 | 1/7 | 1/9 | 1/9 | 1/8 | 1/8 | 1/7 | 1/8 | 0.1259 |
A.V. OVER E.V. | 1/4 | 1/3 | 1/3 | 1/5 | 1/5 | 1/3 | 1/4 | 1/4 | 1/3 | 1/2 | 1/4 | 1/4 | 0.2809 |
A.V. OVER A.E.V. | 1/6 | 1/3 | 1/5 | 1/6 | 1/7 | 1/4 | 1/2 | 1/7 | 1/4 | 1/2 | 1/5 | 1/5 | 0.2314 |
E.V. OVER A.E.V. | 1/2 | 1/3 | 1/4 | 1/3 | 1/3 | 1/2 | 1/3 | 1/3 | 1/2 | 1 | 1/2 | 1/2 | 0.4223 |
V.C. | C.V. | A.V. | E.V. | A.E.V. |
---|---|---|---|---|
C.V. | 1 | 5.6007 | 2.5089 | 6.4738 |
A.V. | 0.1785 | 1 | 0.2456 | 1.5874 |
E.V. | 0.3986 | 4.0712 | 1 | 5.3455 |
A.E.V. | 0.1545 | 0.6300 | 0.1871 | 1 |
P.R. | C.V. | A.V. | E.V. | A.E.V. |
C.V. | 1 | 0.3078 | 0.1351 | 0.1146 |
A.V. | 3.2488 | 1 | 0.2530 | 0.1688 |
E.V. | 7.4005 | 3.9520 | 1 | 0.3986 |
A.E.V. | 8.7274 | 5.9237 | 2.5089 | 1 |
S.E. | C.V. | A.V. | E.V. | A.E.V. |
C.V. | 1 | 0.2831 | 1.0595 | 0.2794 |
A.V. | 3.5328 | 1 | 2.6529 | 1.0000 |
E.V. | 0.9439 | 0.3770 | 1 | 0.3486 |
A.E.V. | 3.5785 | 1.0000 | 2.8690 | 1 |
R.S. | C.V. | A.V. | E.V. | A.E.V. |
C.V. | 1 | 0.2262 | 1.0000 | 0.2262 |
A.V. | 4.4209 | 1 | 4.4209 | 1.0000 |
E.V. | 1.0000 | 0.2262 | 1 | 0.2455 |
A.E.V. | 4.4209 | 1.0000 | 4.0739 | 1 |
T.V. | C.V. | A.V. | E.V. | A.E.V. |
C.V. | 1 | 0.2155 | 1.0000 | 0.2116 |
A.V. | 4.6398 | 1 | 4.4122 | 1.0000 |
E.V. | 1.0000 | 0.2266 | 1 | 0.2339 |
A.E.V. | 4.7269 | 1.0000 | 4.2756 | 1 |
I.C. | C.V. | A.V. | E.V. | A.E.V. |
C.V. | 1 | 4.2013 | 2.4896 | 5.1713 |
A.V. | 0.2380 | 1 | 0.4740 | 1.9613 |
E.V. | 0.4017 | 2.1097 | 1 | 2.9676 |
A.E.V. | 0.1934 | 0.5099 | 0.3370 | 1 |
C.S. | C.V. | A.V. | E.V. | A.E.V. |
C.V. | 1 | 0.3844 | 1.0000 | 0.3717 |
A.V. | 2.6013 | 1 | 2.7430 | 1.0000 |
E.V. | 1.0000 | 0.3646 | 1 | 0.3791 |
A.E.V. | 2.6907 | 1.0000 | 2.6377 | 1 |
N.R. | C.V. | A.V. | E.V. | A.E.V. |
C.V. | 1 | 0.3308 | 0.1460 | 0.1259 |
A.V. | 3.0233 | 1 | 0.2809 | 0.2314 |
E.V. | 6.8472 | 3.5602 | 1 | 0.4223 |
A.E.V. | 7.9445 | 4.3208 | 2.3681 | 1 |
V.C. | C.V. | A.V. | E.V. | A.E.V. | PRIORITY VECTOR (W) |
---|---|---|---|---|---|
C.V. | 0.5397 | 0.5397 | 0.5397 | 0.5397 | 0.5397 |
A.V. | 0.0910 | 0.0910 | 0.0910 | 0.0910 | 0.0910 |
E.V. | 0.3038 | 0.3038 | 0.3038 | 0.3038 | 0.3038 |
A.E.V. | 0.0655 | 0.0655 | 0.0655 | 0.0655 | 0.0655 |
λmax = 4.1037, CI = 0.0346, CR = 0.0392 < 0.10 | |||||
P.R. | C.V. | A.V. | E.V. | A.E.V. | PRIORITY VECTOR (W) |
C.V. | 0.0491 | 0.0275 | 0.0347 | 0.0681 | 0.0448 |
A.V. | 0.1594 | 0.0894 | 0.0649 | 0.1004 | 0.1035 |
E.V. | 0.3632 | 0.3534 | 0.2566 | 0.2370 | 0.3025 |
A.E.V. | 0.4283 | 0.5297 | 0.6438 | 0.5945 | 0.5491 |
λmax = 4.1743, CI = 0.0581, CR = 0.0659 < 0.10 | |||||
S.E. | C.V. | A.V. | E.V. | A.E.V. | PRIORITY VECTOR (W) |
C.V. | 0.1104 | 0.1064 | 0.1397 | 0.1063 | 0.1157 |
A.V. | 0.3901 | 0.3759 | 0.3499 | 0.3805 | 0.3741 |
E.V. | 0.1042 | 0.1417 | 0.1319 | 0.1326 | 0.1276 |
A.E.V. | 0.3952 | 0.3759 | 0.3784 | 0.3805 | 0.3825 |
λmax = 4.0160, CI = 0.0053, CR = 0.0060 < 0.10 | |||||
R.S. | C.V. | A.V. | E.V. | A.E.V. | PRIORITY VECTOR (W) |
C.V. | 0.0922 | 0.0922 | 0.0953 | 0.0915 | 0.0928 |
A.V. | 0.4078 | 0.4078 | 0.4212 | 0.4046 | 0.4103 |
E.V. | 0.0922 | 0.0922 | 0.0953 | 0.0993 | 0.0948 |
A.E.V. | 0.4078 | 0.4078 | 0.3882 | 0.4046 | 0.4021 |
λmax = 4.0010, CI = 0.0003, CR = 0.0004 < 0.10 | |||||
T.V. | C.V. | A.V. | E.V. | A.E.V. | PRIORITY VECTOR (W) |
C.V. | 0.0880 | 0.0883 | 0.0936 | 0.0865 | 0.0891 |
A.V. | 0.4082 | 0.4095 | 0.4128 | 0.4089 | 0.4099 |
E.V. | 0.0880 | 0.0928 | 0.0936 | 0.0956 | 0.0925 |
A.E.V. | 0.4159 | 0.4095 | 0.4000 | 0.4089 | 0.4086 |
λmax = 4.0012, CI = 0.0004, CR = 0.0004 < 0.10 | |||||
I.C. | C.V. | A.V. | E.V. | A.E.V. | PRIORITY VECTOR (W) |
C.V. | 0.5455 | 0.5372 | 0.5789 | 0.4659 | 0.5319 |
A.V. | 0.1298 | 0.1279 | 0.1102 | 0.1767 | 0.1362 |
E.V. | 0.2191 | 0.2698 | 0.2325 | 0.2673 | 0.2472 |
A.E.V. | 0.1055 | 0.0652 | 0.0784 | 0.0901 | 0.0848 |
λmax = 4.0440, CI = 0.0147, CR = 0.0166 < 0.10 | |||||
C.S. | C.V. | A.V. | E.V. | A.E.V. | PRIORITY VECTOR (W) |
C.V. | 0.1371 | 0.1398 | 0.1355 | 0.1351 | 0.1369 |
A.V. | 0.3567 | 0.3638 | 0.3716 | 0.3635 | 0.3639 |
E.V. | 0.1371 | 0.1326 | 0.1355 | 0.1378 | 0.1358 |
A.E.V. | 0.3690 | 0.3638 | 0.3574 | 0.3635 | 0.3634 |
λmax = 4.0004, CI = 0.000, CR = 0.0001 < 0.10 | |||||
N.R. | C.V. | A.V. | E.V. | A.E.V. | PRIORITY VECTOR (W) |
C.V. | 0.0531 | 0.0359 | 0.0385 | 0.0707 | 0.0496 |
A.V. | 0.1607 | 0.1086 | 0.0740 | 0.1301 | 0.1183 |
E.V. | 0.3639 | 0.3865 | 0.2635 | 0.2373 | 0.3128 |
A.E.V. | 0.4222 | 0.4690 | 0.6240 | 0.5619 | 0.5193 |
λmax = 4.1339, CI = 0.0446, CR = 0.0506 < 0.10 |
V.C. | P.R. | S.E. | R.S. | T.V. | I.C. | C.S. | N.R. | |
---|---|---|---|---|---|---|---|---|
C.V. | 0.5397 | 0.0448 | 0.1157 | 0.0928 | 0.0891 | 0.5319 | 0.1369 | 0.0496 |
A.V. | 0.0910 | 0.1035 | 0.3741 | 0.4103 | 0.4099 | 0.1362 | 0.3639 | 0.1183 |
E.V. | 0.3038 | 0.3025 | 0.1276 | 0.0948 | 0.0925 | 0.2472 | 0.1358 | 0.3128 |
A.E.V. | 0.0655 | 0.5491 | 0.3825 | 0.4021 | 0.4086 | 0.0848 | 0.3634 | 0.5193 |
V.C. | P.R. | S.E. | R.S. | T.V. | I.C. | C.S. | N.R. | |
---|---|---|---|---|---|---|---|---|
C.V. | 0.0454 | 0.0053 | 0.0061 | 0.0373 | 0.0091 | 0.0258 | 0.0135 | 0.0047 |
A.V. | 0.0077 | 0.0121 | 0.0197 | 0.1651 | 0.0421 | 0.0066 | 0.0359 | 0.0111 |
E.V. | 0.0256 | 0.0354 | 0.0067 | 0.0381 | 0.0095 | 0.0120 | 0.0134 | 0.0294 |
A.E.V. | 0.0055 | 0.0643 | 0.0201 | 0.1617 | 0.0419 | 0.0041 | 0.0359 | 0.0488 |
Si+ | Si− | ci+ | Ranking | |
---|---|---|---|---|
C.V. | 0.1534 | 0.0454 | 0.2283 | 4 |
A.V. | 0.0770 | 0.1349 | 0.6364 | 2 |
E.V. | 0.1402 | 0.0446 | 0.2413 | 3 |
A.E.V. | 0.0455 | 0.1506 | 0.7680 | 1 |
C.V. | A.V. | E.V. | A.E.V. | |
---|---|---|---|---|
Si | 0.8669 | 0.3078 | 0.8217 | 0.1437 |
Ri | 0.4023 | 0.1035 | 0.3998 | 0.0841 |
Qi | 1.0000 | 0.1440 | 0.9648 | 0.0000 |
RankSi | 4 | 2 | 3 | 1 |
RankRi | 4 | 2 | 3 | 1 |
RankQi | 4 | 2 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiadou, K. Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology. Sustainability 2021, 13, 4760. https://doi.org/10.3390/su13094760
Anastasiadou K. Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology. Sustainability. 2021; 13(9):4760. https://doi.org/10.3390/su13094760
Chicago/Turabian StyleAnastasiadou, Konstantina. 2021. "Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology" Sustainability 13, no. 9: 4760. https://doi.org/10.3390/su13094760
APA StyleAnastasiadou, K. (2021). Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology. Sustainability, 13(9), 4760. https://doi.org/10.3390/su13094760