Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site Description and Growth Conditions
2.2. Flower Heads Collection
2.3. Drying Methods
2.4. Essential Oil Production and GC-MS Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mostafa, N.M.; Singab, A.N. Prospective of Herbal Medicine in Egypt. Med. Chem. 2018, 8, 116–117. [Google Scholar] [CrossRef]
- Muller, J.; Heindl, A. Drying of medicinal plants. In Medicinal and Aromatic Plants; Bogers, R.J., Craker, L.E., Lange, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 237–252. [Google Scholar]
- Samani, B.H.; Lorigooini, Z.; Zareiforoush, H.; Jafari, S. Effect of ultrasound and infrared drying methods on quantitative and qualitative characteristics of Satureja bachtiarica essential oil. J. Essent. Oil-Bear. Plants 2017, 20, 1196–1208. [Google Scholar] [CrossRef]
- Hamrouni-Sellami, I.; Wannes, W.A.; Bettaieb, I.; Berrima, S.; Chahed, T.; Marzouk, B. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chem. 2011, 126, 691–697. [Google Scholar] [CrossRef]
- Ozdemir, N.; Ozgen, Y.; Kiralan, M.; Bayrak, A.; Arslan, N.; Ramadan, M.F. Effect of different drying methods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L. J. Food Meas. Charact. 2017, 12, 820. [Google Scholar] [CrossRef]
- Venskutonis, P. Affect of drying on the volatile constituents of thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). Food Chem. 1997, 59, 219–227. [Google Scholar] [CrossRef]
- Harbourne, N.; Jacquier, J.C.; O’Riordan, D. Optimization of the extraction and processing conditions of chamomile (Matricaria chamomilla L.) for incorporation into a beverage. Food Chem. 2009, 115, 15–19. [Google Scholar] [CrossRef]
- Omidbaigi, R.; Sefidkon, F.; Kazemi, F. Influence of drying methods on the essential oil content and composition of Roman chamomile. Flavour Frag. 2004, 19, 196–198. [Google Scholar] [CrossRef]
- Borsato, A.V.; Doni-Filho, L.; Ahrens, D.C. Drying of chamomile [Chamomilla recutita (L.) Raeuchert] under five air temperatures. Rev. Bras. Plantas. Med. 2005, 7, 77–85. [Google Scholar]
- Sefidkon, F.; Abbasi, K.; Khaniki, G.B. Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem. 2006, 99, 19–23. [Google Scholar] [CrossRef]
- Ennajar, M.; Bouajila, J.; Lebrihi, A.; Mathieu, F.; Savagnac, A.; Abderraba, M.; Raiesf, A.; Romdhane, M. The influence of organ, season and drying method on chemical composition and antioxidant and antimicrobial activities of Juniperus phoenicea L. essential oils. J. Sci. Food Agric. 2010, 90, 462–470. [Google Scholar] [CrossRef]
- Figiel, A.; Szumny, A.; Gutiérrez-Ortíz, A.; Carbonell-Barrachina, A.A. Composition of oregano essential oil (Origanum vulgare) as affected by drying method. J. Food Eng. 2010, 98, 240–247. [Google Scholar] [CrossRef]
- Szumny, A.; Figiel, A.; Gutiérrez-Ortíz, A.; Carbonell-Barrachina, A.A. Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. J. Food Eng. 2010, 97, 253–260. [Google Scholar] [CrossRef]
- Banout, J.; Havlik, J.; Kulik, M.; Kloucek, P.; Lojka, B.; Valterova, I. Effect of solar drying on the composition of essential oil of sacha culantro (Eryngium foetidum L.) grown in the peruvian amazon. J. Food Process Eng. 2010, 33, 83–103. [Google Scholar] [CrossRef]
- Calýn-Sanchez, A.; Szumny, A.; Figiel, A.; Jaloszynski, K.; Adamski, M.; Carbonell Barrachina, A.A. Effects of vacuum level and microwave power on rosemary volatile composition during vacuum-microwave drying. J. Food Eng. 2011, 103, 219–227. [Google Scholar] [CrossRef]
- Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared. Radiation. LWT Food Sci. Technol. 2015, 64, 759–766. [Google Scholar] [CrossRef]
- Khangholil, S.; Rezaeinodehi, A. Effect of drying temperature on essential oil content and composition of sweet wormwood (Artemisia annua) growing wild in Iran. Pak. J. Biol. Sci. 2008, 11, 934–937. [Google Scholar] [CrossRef] [Green Version]
- Baydar, H.; Erba, S. Effects of harvest time and drying on essential oil properties in lavandin (lavandula × intermedia emeric ex loisel.). Acta Hortic. 2009, 826, 377–382. [Google Scholar] [CrossRef]
- Shalaby, A.S.; Hendawy, S.F.; Khalil, M.Y. Evaluation of some chamomile cultivars introduced and adapted in Egypt. J. Essent. Oil-Bear. Plants 2010, 13, 655–669. [Google Scholar] [CrossRef]
- Presibella, M.M.; Villas-Bôas, L.D.B.; Belletti, K.M.D.S.; Santos, C.A.D.M.; Weffort-Santos, A.M. Comparison of chemical constituents of Chamomilla recutita (L.) Rauschert essential oil and its anti-chemotactic activity. Braz. Arch. Biol. Technol. 2006, 49, 717–724. [Google Scholar] [CrossRef]
- Salamon, L.; Abou-Zeid, E.N. The qualitative-quantitative characteristics of chamomile essential oil in Egypt. In Proceedings of the 1st International Symposium on Chamomile Research, Development and Production, Presov, Slovakia, 7–10 June 2006. [Google Scholar]
- Srivastava, J.K.; Shankar, E.; Gupta, S. Chamomile: A herbal medicine of the past with bright future. Mol. Med. Rep. 2010, 3, 895–901. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res. 2006, 20, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Guenther, G. The Essential Oils VIII; Nastr and Company Inc.: Toronto, ON, Canada; New York, NY, USA; London, UK, 1961. [Google Scholar]
- Hendawy, S.F.; Omer, E.A.; El-Gohary, A.E.; El-Gendy, A.G.; Hussein, M.S.; Salaheldin, S.; Soliman, W.S. Effect of Soil and Irrigation Water Salinity in the Productivity and Essential Oil Constituents of Chamomile (Chamomilla recutita L.). J. Essent. Oil-Bear. Plants 2019, 22, 962–971. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured: Carol Stream, IL, USA, 2001. [Google Scholar]
- König, W.A.; Julain, D.; Hochmuth, D.H. Terpenoids and Related Constituents of Essential Oils; University of Hamburg available from MassFinder 3.5; Hochmuth Scientific Software: Hamburg, Germany, 2006. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods Applied to Experiments in Agriculture and Biology, 5th ed.; Iowa State University Press: Ames, IA, USA, 1956. [Google Scholar]
- Rocha, R.P.; Melo, E.C.; Radünz, L.L. Influence of drying process on the quality of medicinal plants: A review. J. Med. Plants Res. 2011, 5, 7076–7084. [Google Scholar] [CrossRef]
- Oztekin, S.; Martinov, M. Medicinal and Aromatic Crops: Harvesting, Drying, and Processing; Haworth Press, Inc.: Binghamton, NY, USA, 2007. [Google Scholar]
- European Pharmacopoeia. Directorate for the Quality of Medicines; European Treaty Series no. 50; Council of Europe: Strasbourg, France, 2004. [Google Scholar]
- Mulinacci, N.; Romani, A.; Pinelli, P.; Vincieri, F.F.; Prucher, D. Characterization of Matricaria recutita L. flower extracts by HPLC-MS and HPLC-DAD analysis. Chromatographia 2000, 51, 301–307. [Google Scholar] [CrossRef]
- Kubeczka, K.H. Essential Oil Analysis; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Medić-Šarić, M.; Stanić, G.; Maleš, Z.; Šarić, S. Application of numerical methods to thin-layer chromatographic investigation of the main components of chamomile (Chamomilla recutita (L.) Rauschert) essential oil. J. Chromatogr. A 1997, 776, 355–360. [Google Scholar] [CrossRef]
- Blumenthal, M.; Goldberg, A.; Brinckmann, J. Herbal Medicine: Expanded Commission E Monographs; Integrative Medicine Communications: Boston, MA, USA, 2000. [Google Scholar]
- Mashkani, M.R.D.; Larijanib, K.; Mehrafarinc, A.; Badic, H.N. Changes in the essential oil content and composition of Thymus daenensis Celak. under different drying methods. Ind. Crops Prod. 2018, 112, 389–395. [Google Scholar] [CrossRef]
- Rahimmaleka, M.; Golib, S.A.H. Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymys daenensis subsp. daenensis. Celak leaves. Ind. Crops Prod. 2013, 42, 613–619. [Google Scholar] [CrossRef]
- Martinazzo, A.P.; Melo, E.C.; Barbosa, L.C.A.; Soares, N.F.F.; Rocha, R.R.; Radünz, L.L.; Berbert, P.A. Quality parameters of Cymbopogon citratus leaves during ambient storage. Appl. Eng. Agric. 2009, 25, 543–547. [Google Scholar] [CrossRef] [Green Version]
- Mirhosseini, F.; Rahimmalek, M.; Pirbalouti, A.G.; Taghipoor, M. Effect of different drying treatments on essential oil yield, composition and color characteristics of Kelussia odoratissima Mozaff. J. Essent. Oil Res. 2015, 27, 204–211. [Google Scholar] [CrossRef]
pH | 7.8 |
---|---|
Conductivity (EC) | 880 µS/cm |
Total hardness as (CaCO3) | 283 mg/kg |
Calcium (Ca) | 64 mg/kg |
Magnesium (Mg) | 30 mg/kg |
Bicarbonate (HCO3−) | 266 mg/kg |
Total alkalinity as(CaCO3) | 218 mg/kg |
Bicarbonate alkalinity as (CaCO3) | 218 mg/kg |
Carbonate alkalinity as (CaCO3) | 0.0 mg/kg |
Hydroxide alkalinity as (CaCO3) | 0.0 mg/kg |
Sodium (Na+) | 64 mg/kg |
Potassium (K+) | 8.4 mg/kg |
Chloride (Cl−) | 82 mg/kg |
Sulfate (SO4−) | 90 mg/kg |
Total dissolved solids (TDS) | 540 mg/kg |
Ammonium (NH4−) | 0.60 mg/kg |
Nitrate (NO3−) | 79.4 mg/kg |
Nitrite (NO2) | 1.26 mg/kg |
Phosphate (PO4) | 2.38 mg/kg |
pH | 7.7 |
---|---|
Conductivity (EC) | 2.88 dS/mL 1843 ppm |
Carbonate (CO3−) | -- |
Bicarbonate (HCO3−) | 3.87 meq/L |
Chloride (Cl−) | 13.05 meq/L |
Sulfate (SO4−) | 6.24 meq/L |
Calcium (Ca+2) | 1.41 meq/L |
Magnesium (Mg+2) | 1.19 meq/L |
Sodium (Na+) | 20.43 meq/L |
Potassium (K+) | 0.13 meq/L |
Sodium Carbonate | -- |
Adsorbed Sodium | 17.93% |
Treatments | Essential Oil % | ||
---|---|---|---|
1st Cut | 2nd Cut | 3rd Cut | |
Direct sun | 0.39 ± 0.019 b | 0.35 ± 0.016 b | 0.31 ± 0.012 ab |
Shade | 0.37 ± 0.055 b | 0.34 ± 0.008 b | 0.29 ± 0.009 b |
Solar energy | 0.50 ± 0.016 a | 0.43 ± 0.029 a | 0.34 ± 0.024 a |
Oven | 0.33 ± 0.024 b | 0.32 ± 0.023 bc | 0.29 ± 0.021 b |
Microwave | 0.33 ± 0.016 b | 0.28 ± 0.006 c | 0.24 ± 0.015 c |
F value | 22.03 | 31.57 | 20.79 |
Probability | <0.0001 | <0.0001 | <0.0001 |
RT | Compound Name | Molecular Formula | FW | Shade | Sun | Oven | Solar | Microwave | |
---|---|---|---|---|---|---|---|---|---|
1 | 5.11 | Yomogi alcohol | C10H18O | -- | 0.23 | -- | -- | 0.31 | -- |
2 | 5.66 | o-Cymene | C10H14 | -- | -- | -- | -- | 0.09 | -- |
3 | 6.03 | à-Pinene | C10H16 | 0.16 | -- | -- | -- | -- | -- |
4 | 6.29 | β-Ocimene | C10H16 | 1.21 | -- | -- | -- | -- | -- |
5 | 6.62 | Artemisia ketone | C10H16O | 1.28 | 0.41 | 0.50 | -- | 0.53 | -- |
6 | 9.65 | Borneol | C10H18O | -- | 0.31 | 0.37 | -- | 0.21 | -- |
7 | 18.85 | β-Farnesene | C15H24 | 2.36 | 2.06 | 3.08 | 7.30 | 2.80 | 4.90 |
8 | 19.19 | Caryophyllene oxide | C15H24O | -- | -- | -- | -- | 0.11 | -- |
9 | 19.47 | Germacrene D | C15H24 | 0.64 | 0.22 | 0.22 | 1.20 | 0.36 | 0.67 |
10 | 19.95 | Bicyclogermacrene | C15H24 | 0.84 | 0.18 | -- | 0.56 | 0.23 | 0.33 |
11 | 22.02 | Caryophyllene oxide | C15H24O | 0.25 | -- | -- | 0.19 | 2.40 | -- |
12 | 22.32 | (-)-Spathulenol | C15H24O | 0.26 | 1.81 | 2.92 | 1.09 | 0.13 | 1.82 |
13 | 24.17 | tau.-Cadinol | C15H26O | 0.22 | 0.90 | 1.32 | 0.60 | 1.33 | 0.71 |
14 | 24.64 | α-Bisabolol oxide B | C15H26O2 | 15.32 | 12.43 | 15.36 | 8.23 | 12.74 | 11.09 |
15 | 24.79 | cis-α-Santalol | C15H24O | 0.31 | 2.00 | 2.28 | 1.13 | 2.23 | 0.80 |
16 | 25.38 | α-Bisabolone oxide A | C15H24O2 | 8.66 | 9.28 | 14.58 | 5.37 | 10.27 | 7.01 |
17 | 25.44 | α-Bisabolol | C15H26O | 4.10 | -- | -- | -- | -- | -- |
18 | 26.57 | Chamazulene | C14H16 | 5.17 | 1.88 | 2.37 | 2.25 | 3.09 | 2.55 |
19 | 27.25 | α-Bisabolol oxide A | C15H26O2 | 44.80 | 50.46 | 32.95 | 47.00 | 41.17 | 48.34 |
20 | 27.78 | α-Costol | C15H24O | -- | 0.15 | -- | -- | 0.07 | -- |
21 | 30.60 | (Z)-Tonghaosu | C13H12O2 | 9.95 | 10.02 | 16.39 | 18.73 | 14.51 | 14.89 |
22 | 32.25 | (E)-Tibetin spiroether | C14H14O2 | 0.36 | 0.55 | 1.00 | 1.06 | 1.21 | 0.98 |
23 | 36.77 | Linoleic acid | C18H32O2 | -- | 1.01 | 1.14 | 0.31 | 0.80 | 0.37 |
24 | 40.51 | Heptacosane | C27H56 | 0.09 | 0.50 | 0.54 | 0.11 | 0.40 | -- |
Monoterpene hydrocarbons | 1.37 | -- | -- | -- | 0.09 | -- | |||
Oxygenated monoterpenes | 1.28 | 0.95 | 0.87 | -- | 1.06 | -- | |||
Sesquiterpene hydrocarbons | 9.32 | 5.74 | 7.52 | 12.02 | 8.21 | 9.16 | |||
Oxygenated sesquiterpene | 84.01 | 87.71 | 86.61 | 83.11 | 85.65 | 85.30 | |||
Total detected compounds | 95.98 | 94.40 | 95.00 | 95.13 | 95.00 | 94.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.M.; Seddik, M.A.; Gahory, A.-A.; Salaheldin, S.; Soliman, W.S. Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions. Sustainability 2021, 13, 5083. https://doi.org/10.3390/su13095083
Abbas AM, Seddik MA, Gahory A-A, Salaheldin S, Soliman WS. Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions. Sustainability. 2021; 13(9):5083. https://doi.org/10.3390/su13095083
Chicago/Turabian StyleAbbas, Ahmed Mahmoud, Mohamed Abdelmoneim Seddik, Abd-Allah Gahory, Sabri Salaheldin, and Wagdi Saber Soliman. 2021. "Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions" Sustainability 13, no. 9: 5083. https://doi.org/10.3390/su13095083
APA StyleAbbas, A. M., Seddik, M. A., Gahory, A.-A., Salaheldin, S., & Soliman, W. S. (2021). Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions. Sustainability, 13(9), 5083. https://doi.org/10.3390/su13095083