Application of Shrimp Waste for the Synthesis of Polyurethane–Chitosan Materials with Potential Use in Sorption of Oil Micro-Spills in Water Treatment
Abstract
:1. Introduction
- Biodiversity (measures to protect our fragile ecosystem);
- From farm to fork (ways to ensure more sustainable food systems);
- Sustainable agriculture (sustainability in EU agriculture and rural areas due to the common agricultural policy);
- Clean energy;
- Sustainable industry (ways to ensure more sustainable, more environmentally respectful production cycles);
- Building and renovating (the need for a cleaner construction sector);
- Sustainable mobility (promoting more sustainable means of transport);
- Eliminating pollution (measures to cut pollution rapidly and efficiently);
- Climate action (making the EU climate neutral by 2050) [10].
- Urban and domestic use (increasing costs of water treatment);
- Human health (increasing costs of health treatment);
- Social values and tourism (threat to sailing, fishing, and bathing areas);
- Commercial fisheries (extinction of fish and contamination of shellfish);
- Ecosystem health (threat to flora and fauna);
- Industrial productivity (post-production water shortage);
- Agricultural productivity (water shortage after soil irrigation);
- Property values (adverse impact on the environment polluted in coastal areas).
2. Materials and Methods
2.1. Materials
2.1.1. Chitosan
2.1.2. Polyurethane–Chitosan Foams
- Stage 1:
- Dehydration of PCldiol (vacuum; mixing 200 rpm; 100 °C; 3 h).
- Stage 2:
- Preparation of the prepolymer by adding excess H12MDI to the PCLdiol in OSn presence (vacuum; mixing 200 rpm; 100 C; 3 h).
- Stage 3:
- Mixing the obtained prepolymer with Ch in a 1% solution of acetic acid in water, DABCO 33-LV, and TEGOSTAB B 8465 (mixing; 1000 rpm; 60 s).
- Stage 4:
- Storage of the sample in air at room temperature for 18 h.
- Stage 5:
- Drying the sample in a vacuum oven at room temperature for 6 h.
- Stage 6:
- Rinsing the sample by soaking it in a crystallizer with distilled water for 5 min.
- Stage 7:
- Storage of the sample in air at room temperature for 18 h.
- Stage 8:
- Drying the sample in a vacuum oven at room temperature for 12 h.
2.2. Methods
2.2.1. Deacetylation Degree of Chitosan
2.2.2. Molecular Weight of Chitosan
2.2.3. Chemical Structure
2.2.4. Structure Morphology
2.2.5. Apparent Density
2.2.6. Hardness
2.2.7. Thermal Properties
2.2.8. Sorption Properties
2.2.9. SWOT Analysis
3. Results and Discussion
3.1. Deacetylation Degree of Chitosan
3.2. Molecular Weight of Chitosan
3.3. Chemical Structure
3.4. Structure Morphology
3.5. Apparent Density and Hardness
3.6. Thermal Properties
3.7. Sorption Properties
3.8. SWOT Analysis
- Preservation, protection, and improvement of the quality of the environment;
- Protection of human health;
- Cautious and rational use of natural resources;
- Promotion of measures at the international level to deal with regional or worldwide environmental problems, in particular combating climate change.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallucio, M. Climate Change and Extreme Hazards. In Science and Diplomacy; Springer: Cham, Switzerland, 2021; pp. 75–82. [Google Scholar] [CrossRef]
- The 2030 Agenda for Sustainable Development Goals. Available online: https://www.un.org.pl/agenda-2030-rezolucja (accessed on 3 March 2021).
- Ulucak, R.; Danish; Ozcan, B. Relationship between energy consumption and environmental sustainability in OECD countries: The role of natural resources rents. Resour. Policy 2020, 69, 101803. [Google Scholar] [CrossRef]
- Sustainable Development Goals–Goal 12. Available online: https://www.un.org.pl/cel12 (accessed on 3 March 2021).
- Didenko, N.I.; Skripnuk, D.F.; Mirolyubova, O.V. Urbanization and Greehouse Gas Emissions from Industry. IOP Conf. Ser. Earth Environ. Sci. 2017, 72, 012014. [Google Scholar] [CrossRef]
- Sustainable Development Goals–Goal 13. Available online: https://www.un.org.pl/cel13 (accessed on 3 March 2021).
- Sustainable Development Goals–Goal 14. Available online: https://www.un.org.pl/cel14 (accessed on 3 March 2021).
- Piotrowska-Kirschling, A.; Brzeska, J. Environmental management through example of polysaccharide materials using in water treatment. Pol. J. Commod. Sci. 2020, 4, 60–75. [Google Scholar]
- European Commission—A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019–2024/european-green-deal_en (accessed on 3 March 2021).
- European Commission—A European Green Deal “Communication form the Commission”. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN (accessed on 3 March 2021).
- Korhonen, J.; Honkasalo, A.; Sepala, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Kandra, P.; Challa, M.M.; Jyothi, H.K.P. Efficient use of shrimp waste: Present and future trends. Appl. Microbiol. Biotechnol. 2012, 93, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Fabisiak, J. Zagrożenia ekologiczne Bałtyku związane z zanieczyszczeniami chemicznymi–węglowodory. Zeszyty Naukowe AMW 2008, 3, 7–28. [Google Scholar] [CrossRef]
- Shafiq, M.; Alazba, A.A.; Amin, M.T. Kinetic and Isotherm Studies of Ni2+ and Pb2+ Adsorption from Synthetic Wastewater Using Eucalyptus camdulensis—Derived Biochar. Sustainability 2021, 13, 3785. [Google Scholar] [CrossRef]
- Akhayere, E.; Vaseashta, A.; Kavaz, D. Novel Magnetic Nano Silica Synthesis Using Barley Husk Waste for Removing Petroleum from Polluted Water for Environmental Sustainability. Sustainability 2020, 12, 10646. [Google Scholar] [CrossRef]
- Prakash, N.; Acharylu, R.; Sudha, P.N.; Renganathan, N.G. Kinetics of copper and nickel removal from industrial wastewater using chitosan impregnated polyurethane foam. Int. J. Chem. Res. 2011, 1, 1–11. [Google Scholar]
- Anh, Q.T.Q.; Zenitova, L.A. Liquidation of oil spills using a sorbent based on chitosan. IOP Conf. Ser. Earth Environ. Sci. 2019, 337, 0100202. [Google Scholar] [CrossRef]
- Cangemi, J.M.; dos Santos, A.M.; Neto, S.C.; Chierice, G.O. Biodegradation of Polyurethane Derived from Castor Oil. Polimeros 2008, 18, 201–206. [Google Scholar] [CrossRef]
- Castro, N.; Goldstein, P.; Cooke, M.N. Synthesis and manufacture of photocrosslinkable poly(caproplactone)-based three-dimensional scaffolds for tissue engineering applications. Adv. Biosci. Biotechnol. 2011, 2, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Bull, J.W.; Jobstvogt, N.; Böhnke-Henrichs, A.; Mascarenhas, A.; Sitas, N.; Baulcomb, C.; Lambini, C.K.; Rawlins, M.; Baral, H.; Zähringer, J.; et al. Strengths, Weaknesses, Opportunities and Threats: A SWOT analysis of the ecosystem services framework. Ecosyst. Serv. 2016, 17, 99–111. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Gastaldi, M.; Morone, P. RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport. Energy Policy 2020, 138, 111220. [Google Scholar] [CrossRef]
- Uhunamure, S.E.; Shale, K. A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa. Sustainability 2021, 13, 3933. [Google Scholar] [CrossRef]
- Rodrigues, M.; Antunes, C. Best Management Practices for the Transition to a Water-Sensitive City in the South of Portugal. Sustainability 2021, 13, 2983. [Google Scholar] [CrossRef]
- Ricart, S.; Villar-Navascues, R.A.; Hernandez-Hernandez, M.; Rico-Amoros, A.M.; Olcina-Cantos, J.; Molto-Mantero, E. Extending Natural Limits to Address Water Scarcity? The Role of Non-Conventional Water Fluxes in Climate Change Adaptation Capacity: A Review. Sustainability 2021, 13, 2473. [Google Scholar] [CrossRef]
- Rudakov, M.; Gridina, E.; Kretschmann, J. Risk-Based Thinking as a Basis for Efficient Occupational Safety Management in the Mining Industry. Sustainability 2021, 13, 470. [Google Scholar] [CrossRef]
- Abbasi, S.A.; Harijan, K.; Memon, Z.A.; Shaikh, F.; Mirjat, N.H. Is Coal Power Generation a Sustainable Solution for Energy Needs of Pakistan: A Delphi-SWOT Paradigm? Int. J. Energy Econ. Policy 2021, 11, 308–317. [Google Scholar] [CrossRef]
- Pena, C.; Civit, B.; Gallego-Schmid, A.; Druckman, A.; Caldeira-Pires, A.; Weidema, B.; Mieras, E.; Wang, F.; Fava, J.; Canals, L.M.; et al. Using life cycle assessment to achieve a circular economy. Int. J. Life Cycle Assess. 2021. [Google Scholar] [CrossRef]
- Paes, L.A.B.; Bezerra, B.S.; Deus, R.M.; Jugend, D.; Battistelle, R.A.G. Organic solid waste management in a circular economy perspective—A systematic review and SWOT analysis. J. Clean. Prod. 2019, 239, 118086. [Google Scholar] [CrossRef]
- Chawla, S.P.; Kanatt, S.R.; Sharma, A.K. Chitosan. In Polysaccharides; Springer International Publishing: Cham, Switzerland, 2015; pp. 219–246. [Google Scholar] [CrossRef]
- Wojtasz-Pająk, A.; Szumilewicz, J. Heterogeneous deacetylation of chitin degraded with hydrogen peroxide in a microwave field. Prog. Chem. Appl. Chitin Deriv. 2009, XIV, 15–24. [Google Scholar]
- Piotrowska-Kirschling, A.; Brzeska, J. Review of chitosan nanomaterials for metal cation adsorption. Prog. Chem. Appl. Chitin Deriv. 2020, XXV, 51–62. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications—A review. RSC Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Wang, K. Study on preparation and performance of PEG-based polyurethane foams modified by the chitosan with different molecular weight. Int. J. Biol. Macromol. 2019, 140, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Czechowska-Biskup, R.; Jarosińska, D.; Rokita, B.; Ulański, P.; Rosiak, J.M. Determination of degree of deacetylation of chitosan–comparison of methods. Prog. Chem. Appl. Chitin Deriv. 2012, XVII, 5–20. [Google Scholar]
- Hasegawa, M.; Isogai, A.; Onabe, F. Molecular mass distribution of chitin and chitosan. Carbohydr. Res. 1994, 262, 161–166. [Google Scholar] [CrossRef]
- Queiroz, M.F.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the use of chitosan contribute to oxalate kidney stone formation? Mar. Drugs 2015, 13, 141–158. [Google Scholar] [CrossRef]
- Brzeska, J.; Elert, A.M.; Morawska, M.; Sikorska, W.; Kowalczuk, M.; Rutkowska, M. Branched polyurethanes based on synthetic polyhydroxybutyrate with tunable structure and properties. Polymers 2018, 10, 826. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska-Kirschling, A.; Brzeska, J. The effect of chitosan on the chemical structure, morphology, and selected properties of polyurethane/chitosan composites. Polymers 2020, 12, 1205. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Yang, F. Oleophilic polyurethane foams for oil spill cleanup. Procedia Environ. Sci. 2013, 18, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.J.; Oh, S.T.; Lee, S.D. Hydrophilic and flexible polyurethane foams using sodium alginate as polyol: Effects of PEG molecular weight and cross-linking agent content on water absorbency. Fiber Polym. 2007, 8, 347–355. [Google Scholar] [CrossRef]
- Hernandez-Martinez, A.R.; Molina, G.A.; Jimenez-Hernandez, L.F.; Oskam, A.H.; Fonseca, G.; Estevez, M. Evaluation of inulin replacing chitosan in a polyurethane/polysaccharide material for Pb2+ removal. Molecules 2017, 22, 2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Rosa Schio, R.; Da Rosa, B.C.; Gonçalves, J.O.; Pinto, L.A.A.; Mallmann, E.S.; Dotto, G.L. Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye. Int. J. Biol. Macromol. 2019, 121, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.S. Polyurethane Foam Chemistry. In Recycling of Polyurethane Foams; William Andrew Applied Science Publishers: Norwich, NY, USA, 2018; pp. 17–27. [Google Scholar] [CrossRef]
- Javni, I.; Song, K.; Lin, J.; Petrovic, Z.S. Structure and properties of flexible polyurethane foams with nano- and micro-fillers. J. Cell. Plast. 2011, 47, 357–372. [Google Scholar] [CrossRef]
- Ryszkowska, J.; Leszczyńska, M.; Auguścik, M.; Bryśkiewicz, A.; Półka, M.; Kukfisz, B.; Wierzbicki, Ł.; Aleksandrowicz, J.; Szczepkowski, L.; Oliwa, R. Rdzenie konstrukcji kompozytowych z pianek półsztywnych do zastosowań w tarczach ochronnych dla strażaków (in Polish). Polimery 2018, 63, 125–133. [Google Scholar] [CrossRef]
- Vargas-Gutiérrez, C.V.; Castro-Salazar, H.T.; Ríos-Reyes, C.A. Synthesis and Properties of Polyurethane Foams Obtained from Cassava Starch and Rice by-products. J. Mex. Chem. Soc. 2018, 62. [Google Scholar] [CrossRef]
- Kucińska-Lipka, J.; Gubańska, I.; Janik, H. Gelatin-Modified Polyurethanes for Soft Tissue Scaffold. Sci. World J. 2013, 450132. [Google Scholar] [CrossRef]
- Chen, S.; Qiu, H.; Xiao, H.; He, W.; Mou, J.; Siponen, M. Consumption behavior of eco-friendly products and applications of ICT innovation. J. Clean. Prod. 2021, 287, 125436. [Google Scholar] [CrossRef]
- The Treaty on the Functioning of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A12012E%2FTXT (accessed on 18 March 2021).
- Regulation (EC) No 1221/2009 of the European Parliament and of the Council of 25 November 2009. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32009R1221 (accessed on 18 March 2021).
- Horizon Europe. Available online: https://ec.europa.eu/info/horizon-europe_en (accessed on 18 March 2021).
- Obłój, K. Strategia Organizacji, 1st ed.; Polish Economic Publishers: Warszawa, Poland, 2014; pp. 62–74. [Google Scholar]
- Vigna, I.; Bianco, L.; Goia, F.; Serra, V. Phase Change Materials in Transparent Building Envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT) Analysis. Energies 2018, 11, 111. [Google Scholar] [CrossRef] [Green Version]
Foam | Quantitative Composition of Foams | ||||||
---|---|---|---|---|---|---|---|
PCLdiol [g] | H12MDI [g] | OSn [g] | Ch [wt%] | CH3COOH (1% in Water) [mL] | DABCO 33-LV [g] | TEGOSTABB 8465 [g] | |
PUR | 15.010 | 8.234 | 0.045 | - | 7.5 | 0.075 | 0.282 |
PUR+Ch1 | 15.044 | 8.334 | 0.045 | 1.5% | 7.5 | 0.075 | 0.270 |
PUR+Ch2 | 15.009 | 8.261 | 0.045 | 1.5% | 12.5 | 0.075 | 0.280 |
PUR+Ch3 | 15.020 | 8.209 | 0.045 | 3% | 15.0 | 0.075 | 0.273 |
Foam | Density ± SD [kg/m3] | Hardness ± SD [°Shore H0] |
---|---|---|
PUR | 423 ± 72.7 | 36 ± 2.2 |
PUR+Ch1 | 415 ± 74.9 | 40 ± 1.5 |
PUR+Ch2 | 151 ± 18.8 | 18 ± 2.3 |
PUR+Ch3 | 434 ± 60.6 | 34 ± 0.6 |
Foam | Tm1 [°C] | ΔH1 [J/g] | Tm2 [°C] | ΔH2 [J/g] |
---|---|---|---|---|
PUR | 38.4 | 31.1 | 158.0 | 20.4 |
PUR+Ch1 | - | - | 163.7 | 47.0 |
PUR+Ch2 | 41.0 | 19.2 | 160.1 | 59.2 |
PUR+Ch3 | 44.2 | 20.0 | 164.2 | 54.4 |
STRENGHTS | Weight | Grade | Weighted Scores | WEAKNESSES | Weight | Grade | Weighted Scores |
---|---|---|---|---|---|---|---|
| 0.10 | 5 | 0.50 |
| 0.70 | 4 | 2.80 |
0.40 | 5 | 2.00 | |||||
0.30 | 5 | 1.50 | |||||
0.20 | 4 | 0.80 | 0.30 | 3 | 1.00 | ||
1.00 | 1.00 | ||||||
Summary assessment | 4.80 | Summary assessment | 3.80 | ||||
OPPORTUNITIES | Weight | Grade | Weighted scores | THREATS | Weight | Grade | Weighted scores |
| 0.20 | 5 | 1.00 |
| 0.30 | 2 | 0.60 |
0.27 | 5 | 1.35 | |||||
0.33 | 5 | 1.65 | |||||
0.13 | 4 | 0.52 | |||||
0.07 | 4 | 0.26 | 0.70 | 4 | 2.80 | ||
1.00 | 1.00 | ||||||
Summary assessment | 4.78 | Summary assessment | 3.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowska-Kirschling, A.; Szelągowska-Rudzka, K.; Karczewski, J.; Brzeska, J. Application of Shrimp Waste for the Synthesis of Polyurethane–Chitosan Materials with Potential Use in Sorption of Oil Micro-Spills in Water Treatment. Sustainability 2021, 13, 5098. https://doi.org/10.3390/su13095098
Piotrowska-Kirschling A, Szelągowska-Rudzka K, Karczewski J, Brzeska J. Application of Shrimp Waste for the Synthesis of Polyurethane–Chitosan Materials with Potential Use in Sorption of Oil Micro-Spills in Water Treatment. Sustainability. 2021; 13(9):5098. https://doi.org/10.3390/su13095098
Chicago/Turabian StylePiotrowska-Kirschling, Agnieszka, Katarzyna Szelągowska-Rudzka, Jakub Karczewski, and Joanna Brzeska. 2021. "Application of Shrimp Waste for the Synthesis of Polyurethane–Chitosan Materials with Potential Use in Sorption of Oil Micro-Spills in Water Treatment" Sustainability 13, no. 9: 5098. https://doi.org/10.3390/su13095098
APA StylePiotrowska-Kirschling, A., Szelągowska-Rudzka, K., Karczewski, J., & Brzeska, J. (2021). Application of Shrimp Waste for the Synthesis of Polyurethane–Chitosan Materials with Potential Use in Sorption of Oil Micro-Spills in Water Treatment. Sustainability, 13(9), 5098. https://doi.org/10.3390/su13095098