Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Proximate Analysis
3.2. Ultimate Analysis
3.3. Heating Value (HHV) Analysis
3.4. Fourier Transform Infrared Analysis (FTIR)
3.5. Thermal Analysis (TGA and DTG Study)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, T.; Chowdhury, H.; Ahmed, A.; Park, Y. Energy, Exergy, and Sustainability Analyses of the Agricultural Sector in Bangladesh. Sustainability 2020, 12, 4447. [Google Scholar] [CrossRef]
- Moogi, S.; Nakka, L.; Potharaju, S.S.P.; Ahmed, A.; Farooq, A.; Jung, S.C.; Rhee, G.H.; Park, Y.K. Copper promoted Co/MgO: A stable and efficient catalyst for glycerol steam reforming. Int. J. Hydrogen Energy 2020, 46, 18073–18084. [Google Scholar] [CrossRef]
- Miskat, M.I.; Ahmed, A.; Rahman, M.S.; Chowdhury, H.; Chowdhury, T.; Chowdhury, P.M.; Sait, S.; Park, Y.-K. An Overview of the Hydropower Production Potential in Bangladesh to Meet the Energy Requirements. Environ. Eng. Res. 2020, 26, 120–132. [Google Scholar] [CrossRef]
- Jamil, F.; Aslam, M.; Al-Muhtaseb, A.H.; Bokhari, A.; Rafiq, S.; Khan, Z.; Inayat, A.; Ahmed, A.; Hossain, S.; Khurrum, M.S.; et al. Greener and Sustainable Production of Bioethylene from Bioethanol: Current Status, Opportunities and Perspectives. Rev. Chem. Eng. 2020, 36. [Google Scholar] [CrossRef]
- Ahmed, A.; Abu Bakar, M.S.; Sukri, R.S.; Hussain, M.; Farooq, A.; Moogi, S.; Park, Y.-K. Sawdust Pyrolysis from the Furniture Industry in an Auger Pyrolysis Reactor System for Biochar and Bio-Oil Production. Energy Convers. Manag. 2020, 42, 113502. [Google Scholar] [CrossRef]
- Abdullah, A.; Ahmed, A.; Akhter, P.; Razzaq, A.; Hussain, M.; Hossain, N.; Abu Bakar, M.S.; Khurram, S.; Majeed, K.; Park, Y.K. Potential for Sustainable Utilisation of Agricultural Residues for Bioenergy Production in Pakistan: An Overview. J. Clean. Prod. 2020, 287, 125047. [Google Scholar] [CrossRef]
- Abu Bakar, M.S.; Ahmed, A.; Jeffery, D.M.; Hidayat, S.; Sukri, R.S.; Mahlia, T.M.I.; Jamil, F.; Khurrum, M.S.; Inayat, A.; Moogi, S.; et al. Pyrolysis of Solid Waste Residues from Lemon Myrtle Essential Oils Extraction for Bio-Oil Production. Bioresour. Technol. 2020, 318, 123913. [Google Scholar] [CrossRef]
- Radenahmad, N.; Morni, N.A.; Ahmed, A.; Abu Bakar, M.; Zaini, J.; Azad, A. Characterization of rice husk as a potential renewable energy source. In Proceedings of the 7th Brunei International Conference on Engineering and Technology (BICET 2018), Bandar Seri Begawan, Brunei, 12–14 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Hidayat, S.; Abu Bakar, M.S.; Ahmed, A.; Agustina, D.; Hussain, M.; Jamil, F.; Park, Y. Comprehensive Kinetic Study of Imperata Cylindrica Pyrolysis via Asym2sig Deconvolution and Combined Kinetics. J. Anal. Appl. Pyrolysis 2021, 156, 105133. [Google Scholar] [CrossRef]
- Mahari, W.A.W.; Azwar, E.; Foong, S.Y.; Ahmed, A.; Peng, W.; Tabatabaei, M.; Aghbashlo, M.; Park, Y. Valorization of Municipal Wastes Using Co-Pyrolysis for Green Energy Production, Energy Security, and Environmental Sustainability: A Review. Chem. Eng. J. 2021, 421, 129749. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; González-Aguirre, J.A.; Poveda Giraldo, J.A.; Cardona Alzate, C.A. Thermochemical Processing of Woody Biomass: A Review Focused on Energy-Driven Applications and Catalytic Upgrading. Renew. Sustain. Energy Rev. 2021, 136, 110376. [Google Scholar] [CrossRef]
- Rashidah, E.; Shazali, H.; Afiqah, N.; Morni, H.; Saifullah, M.; Bakar, A.; Ahmed, A.; Azad, A.K.; Phusunti, N.; Park, Y. Characterisation and Co-pyrolytic Degradation of the Sawdust and Waste Tyre Blends to Study the Effect of Temperature on the Yield of the Products. Appl. Chem. Eng. 2021, 32, 205–213. [Google Scholar]
- Osunkoya, O.O.; Othman, F.E.; Kahar, R.S. Growth and Competition Between Seedlings of an Invasive Plantation Tree, Acacia Mangium, and those of a Native Borneo Heath-Forest Species, Melastoma Beccarianum. Ecol. Res. 2005, 20, 205–214. [Google Scholar] [CrossRef]
- Ahmed, A.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Mahlia, T.M.I. Potential Thermochemical Conversion of Bioenergy from Acacia Species in Brunei Darussalam: A Review. Renew. Sustain. Energy Rev. 2017, 82, 3060–3076. [Google Scholar] [CrossRef]
- Koutika, L.S.; Richardson, D.M. Acacia Mangium Willd: Benefits and Threats Associated with Its Increasing Use around the World. For. Ecosyst. 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Jambul, R.; Limin, A.; Ali, A.N.; Slik, F. Invasive Acacia Mangium Dominance as an Indicator for Heath Forest Disturbance. Environ. Sustain. Indic. 2020, 8, 100059. [Google Scholar] [CrossRef]
- Matali, S.; Metali, F. Selected Soil Physico-Chemical Properties in the Acacia Mangium Plantation and the Adjacent Heath Forest at Andulau Forest Reserve. Malays. J. Soil Sci. 2015, 19, 45–48. [Google Scholar]
- Akhtar, N.; Goyal, D.; Goyal, A. Physico-Chemical Characteristics of Leaf Litter Biomass to Delineate the Chemistries Involved in Biofuel Production. J. Taiwan Inst. Chem. Eng. 2015, 62, 239–246. [Google Scholar] [CrossRef]
- Vassilev, S.; Baxter, D.; Andersen, L.; Vassileva, C. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Guimarães, J.L.; Frollini, E.; da Silva, C.G.; Wypych, F.; Satyanarayana, K.G. Characterization of Banana, Sugarcane Bagasse and Sponge Gourd Fibers of Brazil. Ind. Crop. Prod. 2009, 30, 407–415. [Google Scholar] [CrossRef]
- Griffin, A.R.; Midgley, S.J.; Bush, D.; Cunningham, P.J.; Rinaudo, A.T. Global Uses of Australian Acacias—Recent Trends and Future Prospects. Divers. Distrib. 2011, 17, 837–847. [Google Scholar] [CrossRef]
- Titiloye, J.O.; Abu Bakar, M.S.; Odetoye, T.E. Thermochemical Characterisation of Agricultural Wastes from West Africa. Ind. Crop. Prod. 2013, 47, 199–203. [Google Scholar] [CrossRef]
- Pazmiño-Hernandez, M.; Moreira, C.M.; Pullammanappallil, P. Feasibility Assessment of Waste Banana Peduncle as Feedstock for Biofuel Production. Biofuels 2017, 7269, 1–12. [Google Scholar] [CrossRef]
- Singh, Y.D.; Mahanta, P.; Bora, U. Comprehensive Characterization of Lignocellulosic Biomass through Proximate, Ultimate and Compositional Analysis for Bioenergy Production. Renew. Energy 2017, 103, 490–500. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renew. Sustain. Energy Rev. 2016, 57, 126–1140. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Spanish Biofuels Heating Value Estimation. Part I: Ultimate Analysis Data. Fuel 2014, 117, 1130–1138. [Google Scholar] [CrossRef]
- Odetoye, T.E.; Onifade, K.R.; AbuBakar, M.S.; Titiloye, J.O. Thermochemical Characterisation of Parinari Polyandra Benth Fruit Shell. Ind. Crop. Prod. 2013, 44, 62–66. [Google Scholar] [CrossRef]
- Abdullah, A.; Ahmed, A.; Akhter, P.; Razzaq, A.; Zafar, M.; Hussain, M.; Shahzad, N.; Majeed, K.; Khurrum, S.; Abu Bakar, M.S.; et al. Bioenergy Potential and Thermochemical Characterization of Lignocellulosic Biomass Residues Available in Pakistan. Korean J. Chem. Eng. 2020, 37, 1899–1906. [Google Scholar] [CrossRef]
- Naik, S.; Goud, V.V.; Rout, P.K.; Jacobson, K.; Dalai, A.K. Characterization of Canadian Biomass for Alternative Renewable Biofuel. Renew. Energy 2010, 35, 1624–1631. [Google Scholar] [CrossRef]
- Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T.; Dastjerdi, B. Lignocellulose Biomass Pyrolysis for Bio-Oil Production: A Review of Biomass Pre-Treatment Methods for Production of Drop-In Fuels. Renew. Sustain. Energy Rev. 2020, 123, 109763. [Google Scholar] [CrossRef]
- Motta, I.L.; Miranda, N.T.; Filho, R.M.; Maciel, M.R.W. Biomass Gasification in Fluidized Beds: A Review of Biomass Moisture Content and Operating Pressure Effects. Renew. Sustain. Energy Rev. 2018, 94, 998–1023. [Google Scholar] [CrossRef]
- Ahmed, A.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Intermediate Pyrolysis of Acacia Cincinnata and Acacia Holosericea Species for Bio-Oil and Biochar Production. Energy Convers. Manag. 2018, 176, 393–408. [Google Scholar] [CrossRef]
- Din, Z.U.; Zainal, Z. Biomass Integrated Gasification—SOFC Systems: Technology Overview. Renew. Sustain. Energy Rev. 2016, 53, 1356–1376. [Google Scholar] [CrossRef]
- Williams, C.L.; Westover, T.L.; Emerson, R.M.; Tumuluru, J.S.; Li, C. Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. Bioenergy Res. 2016, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kenney, K.L.; Smith, W.A.; Gresham, G.L.; Westover, T.L. Understanding Biomass Feedstock Variability. Biofuels 2013, 4, 111–127. [Google Scholar] [CrossRef]
- Charusiri, W. Fast Pyrolysis of Residues from Paper Mill Industry to Bio-Oil and Value Chemicals: Optimization Studies. Energy Procedia 2015, 74, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Marsoem, S.N.; Irawati, D. Basic properties of Acacia mangium and Acacia auriculiformis as a heating fuel. AIP Conf. Proc. 2016, 1755, 130007. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.; Pizarro, C.; Lavin, A.G.; Bueno, J.L. Characterization of Spanish Biomass Wastes for Energy Use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef]
- Kanwal, F.; Ahmed, A.; Jamil, F.; Rafiq, S.; Ayub, H.M.U.; Ghauri, M.; Khurram, M.S.; Munir, S.; Inayat, A.; Bakar, M.S.A.; et al. Co-Combustion of Blends of Coal and Underutilised Biomass Residues for Environmental Friendly Electrical Energy Production. Sustainability 2021, 13, 4881. [Google Scholar] [CrossRef]
- Garcia, R.; Pizarro, C.; Lavin, A.G.; Bueno, J.L. Biomass Proximate Analysis Using Thermogravimetry. Bioresour. Technol. 2013, 139, 1–4. [Google Scholar] [CrossRef]
- ÖzyuǧUran, A.; Yaman, S. Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia 2017, 107, 130–136. [Google Scholar] [CrossRef]
- Demiral, I.; Ayan, E.A. Pyrolysis of grape bagasse: Effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour. Technol. 2011, 102, 3946–3951. [Google Scholar] [CrossRef]
- Kumar, R.; Pandey, K.K.; Chandrashekar, N.; Mohan, S. Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. Biomass Bioenergy 2011, 35, 1339–1344. [Google Scholar] [CrossRef]
- Patwardhan, P.R.; Satrio, J.A.; Brown, R.C.; Shanks, B.H. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour. Technol. 2010, 101, 4646–4655. [Google Scholar] [CrossRef]
- Liu, H.; Feng, Y.; Wu, S.; Liu, D. The role of ash particles in the bed agglomeration during the fluidized bed combustion of rice straw. Bioresour. Technol. 2009, 100, 6505–6513. [Google Scholar] [CrossRef]
- Garg, R.; Anand, N.; Kumar, D. Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization. Renew. Energy 2016, 96, 167–171. [Google Scholar] [CrossRef]
- Lacey, J.A.; Aston, J.E.; Thompson, V.S. Wear properties of ash minerals in biomass. Front. Energy Res. 2018, 6, 119. [Google Scholar] [CrossRef]
- Liu, W.J.; Li, W.W.; Jiang, H.; Yu, H.Q. Fates of Chemical Elements in Biomass during Its Pyrolysis. Chem. Rev. 2017, 117, 6367–6398. [Google Scholar] [CrossRef]
- Obernberger, I.; Brunner, T.; Barnthaler, G. Chemical properties of solid biofuels-significance and impact. Biomass Bioenergy 2006, 30, 973–982. [Google Scholar] [CrossRef]
- World Health Organization. Ambient (Outdoor) Air Pollution Standards. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 23 April 2021).
- Galiana, A.; Chaumont, J.; Diem, H.G.; Dommergues, Y.R. Nitrogen-Fixing Potential of Acacia Mangium and Acacia Auriculiformis Seedlings Inoculated with Bradyrhizobium and Rhizobium spp. Biol. Fertil. Soils 1990, 9, 261–267. [Google Scholar] [CrossRef]
- Abe, H.; Katayama, A.; Sah, B.P.; Toriu, T.; Samy, S.; Pheach, P.; Adams, M.A.; Grierson, P.F. Potential for Rural Electrification Based on Biomass Gasification in Cambodia. Biomass Bioenergy 2007, 31, 656–664. [Google Scholar] [CrossRef]
- Crespo, Y.A.; Naranjo, R.A.; Quitana, Y.G.; Sanchez, C.G.; Sanchez, E.M.S. Optimisation and Characterisation of Bio-Oil Produced by Acacia Mangium Willd Wood Pyrolysis. Wood Sci. Technol. 2017, 51, 1155–1171. [Google Scholar] [CrossRef]
- Cao, L.; Yuan, X.; Jiang, L.; Li, C.; Xiao, Z.; Huang, Z.; Chen, X.; Zeng, G.; Li, H. Thermogravimetric Characteristics and Kinetics Analysis of Oil Cake and Torrefied Biomass Blends. Fuel 2016, 175, 129–136. [Google Scholar] [CrossRef]
- Lyubchik, S.B.; Benoit, R.; Béguin, F. Influence of Chemical Modification of Anthracite on the Porosity of the Resulting Activated Carbons. Carbon N.Y. 2002, 40, 1287–1294. [Google Scholar] [CrossRef]
- Nhuchhen, D.R.; Afzal, M.T. HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering 2017, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Salaheldeen, M.; Aroua, M.K.; Mariod, A.A.; Cheng, S.F.; Abdelrahman, M.A. An Evaluation of Moringa Peregrina Seeds as a Source for Bio-Fuel. Ind. Crop. Prod. 2014, 61, 49–61. [Google Scholar] [CrossRef]
- Sasmal, S.; Goud, V.V.; Mohanty, K. Characterization of Biomasses Available in the Region of North-East India for Production of Biofuels. Biomass Bioenergy 2012, 45, 212–220. [Google Scholar] [CrossRef]
- Boumanchar, I.; Charafeddine, K.; Chhiti, Y.; Alaoui, F.E.M.; Sahibed-dine, A.; Bentiss, F.; Jama, C.; Bensitel, M. Biomass Higher Heating Value Prediction from Ultimate Analysis Using Multiple Regression and Genetic Programming. Biomass Convers. Biorefinery 2019, 9, 499–509. [Google Scholar] [CrossRef]
- Hossain, N.; Rafidah, J. Analysis of Bio-Energy Properties from Malaysian Local Plants: Sentang and Sesendok. Asia Pac. J. Energy Environ. 2015, 2, 141–144. [Google Scholar]
- Ahmed, A.; Hidayat, S.; Abu Bakar, M.S.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Thermochemical Characterisation of Acacia Auriculiformis Tree Parts via Proximate, Ultimate, TGA, DTG, Calorific Value and FTIR Spectroscopy Analyses to Evaluate their Potential as a Biofuel Resource. Biofuels 2018, 7269, 1–12. [Google Scholar] [CrossRef]
- Weerachanchai, P.; Tangsathitkulchai, C.; Tangsathitkulchai, M. Characterization of Products from Slow Pyrolysis of Palm Kernel Cake and Cassava Pulp Residue. Korean J. Chem. Eng. 2011, 28, 2262–2274. [Google Scholar] [CrossRef]
- Mothé, C.G.; De Miranda, I.C. Characterization of Sugarcane and Coconut Fibers by Thermal Analysis and FTIR. J. Therm. Anal. Calorim. 2009, 97, 661–665. [Google Scholar] [CrossRef]
- Özçimen, D.; Ersoy-Meriçboyu, A. Characterization of Biochar and Bio-Oil Samples Obtained from Carbonization of Various Biomass Materials. Renew. Energy 2010, 35, 1319–1324. [Google Scholar] [CrossRef]
- Slopiecka, K.; Bartocci, P.; Fantozzi, F. Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis. Appl. Energy 2012, 97, 491–497. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Pyrolysis Kinetics and Thermal Behavior of Waste Sawdust Biomass Using Thermogravimetric Analysis. Bioresour. Technol. 2018, 251, 63–74. [Google Scholar] [CrossRef]
- Munir, S.; Daood, S.S.; Nimmo, W.; Cunliffe, A.M.; Gibbs, B.M. Thermal Analysis and Devolatilization Kinetics of Cotton Stalk, Sugar Cane Bagasse and Shea Meal Under Nitrogen and Air Atmospheres. Bioresour. Technol. 2009, 100, 1413–1418. [Google Scholar] [CrossRef]
- Márquez-Montesino, F.; Correa-Méndez, F.; Glauco-Sánchez, G.; Zanzi-Vigouroux, R.; Rutiaga-Quiñones, J.; Aguiar-Trujillo, L. Pyrolytic Degradation Studies of Acacia Mangium Wood. BioResources 2015, 10, 1825–1844. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ye, G.; Luo, H.; Liu, C.; Malik, S.; Afzal, I.; Xu, J.; Ahmad, M.S. Pyrolysis and Kinetic Analyses of Camel Grass (Cymbopogon Schoenanthus) for Bioenergy. Bioresour. Technol. 2017, 228, 18–24. [Google Scholar] [CrossRef]
- Manyá, J.J.; Velo, E.; Puigjaner, L. Kinetics of Biomass Pyrolysis: A Reformulated Three-Parallel-Reactions Model. Ind. Eng. Chem. Res. 2003, 42, 434–441. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D. In-depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin. Energy Fuels 2006, 20, 388–393. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, J.; Kim, S.S.; Park, Y.K. Pyrolysis Characteristics and Kinetics of Oak Trees Using Thermogravimetric Analyzer and Micro-Tubing Reactor. Bioresour. Technol. 2009, 100, 400–405. [Google Scholar] [CrossRef]
Sample | MC (wt.%) | VM (wt.%) | FC (wt.%) | Ash (wt.%) | HHV (MJ/kg) |
---|---|---|---|---|---|
Phyllodes | 9.06 ± 0.17 | 70.52 ± 0.45 | 18.31 ± 0.09 | 2.11 ± 0.16 | 21.16 |
Trunk | 11.65 ± 0.15 | 69.82 ± 0.39 | 16.71 ± 0.18 | 1.82 ± 0.19 | 19.51 |
Bark | 9.78 ± 0.09 | 73.35 ± 0.29 | 15.45 ± 0.10 | 1.42 ± 0.18 | 21.50 |
Twigs | 10.29 ± 0.12 | 74.85 ± 0.56 | 14.47 ± 0.10 | 1.41 ± 0.14 | 20.87 |
Pods | 7.88 ± 0.11 | 73.80 ± 0.35 | 15.63 ± 0.13 | 2.69 ± 0.29 | 21.58 |
Branches | 9.98 ± 0.10 | 72.39 ± 0.19 | 15.38 ± 0.10 | 2.25 ± 0.20 | 21.26 |
Biomass Sample | C (%) | H (%) | N (%) | S (%) | O * (%) | O/C | H/C | Empirical Formula |
---|---|---|---|---|---|---|---|---|
Phyllodes | 48.95 ± 0.63 | 6.01 ± 0.14 | 1.72 ± 0.04 | 0.20 ± 0.01 | 43.12 ± 0.54 | 0.66 | 1.47 | CH1.47N0.12O0.66 |
Trunk | 45.50 ± 0.59 | 5.68 ± 0.06 | 0.49 ± 0.01 | 0.06 ± 0.01 | 48.27 ± 0.34 | 0.79 | 1.50 | CH1.50N0.04O0.79 |
Bark | 47.74 ± 0.27 | 5.26 ± 0.10 | 0.94 ± 0.02 | 0.04 ± 0.00 | 43.11 ± 0.24 | 0.68 | 1.32 | CH1.32N0.06O0.68 |
Twigs | 47.08 ± 0.10 | 5.44 ± 0.07 | 0.65 ± 0.01 | 0.01 ± 0.00 | 46.82 ± 0.36 | 0.75 | 1.39 | CH1.39N0.04O0.75 |
Pods | 50.65 ± 0.04 | 5.36 ± 0.01 | 1.14 ± 0.01 | 0.16 ± 0.01 | 45.60 ± 0.21 | 0.68 | 1.27 | CH1.27N0.08O0.68 |
Branches | 48.09 ± 0.61 | 5.66 ± 0.03 | 0.48 ± 0.01 | ND | 45.77 ± 0.36 | 0.71 | 1.41 | CH1.41N0.03O0.71 |
Phyllodes | Trunk | Bark | Twigs | Pods | Branches | Functional Group |
---|---|---|---|---|---|---|
3403 | 3423 | 3399 | 3423 | 3404 | 3423 | Phenols, and alcohols (broader peaks) |
2921 | 2914 | 2918 | 2914 | 2928 | 2918 | Alkanes/primary amines or Alkanes and acids/Aliphatic H–C–H stretching |
- | 1732 | - | 1728 | - | 1732 | C = O, C = C, H–O–H |
1630 | 1638 | 1623 | 1628 | 1630 | 1637 | Aromatic C=C ring stretching |
1441 | 1446 | 1449 | 1438 | - | 1441 | aromatic C–C stretching, Deformation of C–H |
1349 | 1342 | 1353 | 1346 | 1373 | 1355 | C–H deformation in Hemicellulose and cellulose |
- | 1248 | - | - | - | 1246 | Esters or ethers |
1034 | 1053 | 1028 | 1056 | 1072 | 1059 | Aromatic C–O stretching |
838 | 846 | 842 | 839 | 833 | 835 | Aromatic C-H out of plane bending vibration |
Sample | 1st Stage (°C) | 2nd Stage (°C) | 3rd Stage (°C) |
---|---|---|---|
Phyllodes | 50 to 140 ± 10 | 200 ± 10 to 600 ± 20 | Up to 900 |
Trunk | 50 to 100 ± 10 | 200 ±10 to 450 ± 20 | Up to 900 |
Bark | 50 to 100 ± 10 | 200 ±10 to 450 ± 20 | Up to 900 |
Twigs | 50 to 100 ± 10 | 200 ±10 to 450 ± 20 | Up to 900 |
Pods | 50 to 140 ± 10 | 200 ±10 to 600 ± 20 | Up to 900 |
Branches | 50 to 100 ± 10 | 200 ±10 to 450 ± 20 | Up to 900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.; Bakar, M.S.A.; Razzaq, A.; Hidayat, S.; Jamil, F.; Amin, M.N.; Sukri, R.S.; Shah, N.S.; Park, Y.-K. Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion. Sustainability 2021, 13, 5249. https://doi.org/10.3390/su13095249
Ahmed A, Bakar MSA, Razzaq A, Hidayat S, Jamil F, Amin MN, Sukri RS, Shah NS, Park Y-K. Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion. Sustainability. 2021; 13(9):5249. https://doi.org/10.3390/su13095249
Chicago/Turabian StyleAhmed, Ashfaq, Muhammad S. Abu Bakar, Abdul Razzaq, Syarif Hidayat, Farrukh Jamil, Muhammad Nadeem Amin, Rahayu S. Sukri, Noor S. Shah, and Young-Kwon Park. 2021. "Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion" Sustainability 13, no. 9: 5249. https://doi.org/10.3390/su13095249
APA StyleAhmed, A., Bakar, M. S. A., Razzaq, A., Hidayat, S., Jamil, F., Amin, M. N., Sukri, R. S., Shah, N. S., & Park, Y.-K. (2021). Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion. Sustainability, 13(9), 5249. https://doi.org/10.3390/su13095249