Analysis of Biodeteriogens on Architectural Heritage. An Approach of Applied Botany on a Gothic Building in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Environment and State of the Art
2.2. Sampling and Analysis
2.2.1. Higher Plants
2.2.2. Biofilms
3. Results
3.1. Higher Plants
3.2. Biofilms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuzman, O.A.; Tiano, P.; Ventura, S.; Frediani, P. Biodiversity on Stone Artifacts. In The Importance of Biological Interactions in the Study of Biodiversity; InTech: London, UK, 2011; pp. 367–390. [Google Scholar]
- Santo, A.; Agostini, B.; Checcucci, A.; Pecchioni, E.; Perito, B. An interdisciplinary study of biodeterioration of the external marbles of Santa Maria del Fiore Cathedral, Florence (IT). In Proceedings of the International Conference Florence Heritech: The Future of Heritage Science and Technologies, Florence, Italy, 14–16 October 2020. [Google Scholar]
- Tiano, P. Biodegradation of Cultural Heritage: Decay Mechanisms and Control Methods. In Proceedings of the 9th ARIADNE Workshop “Historic Material and their Diagnostic” ARCCHIP, Prague, Czech Republic, 22–28 April 2002; Available online: http://www.arcchip.cz/w09/w09_tiano.pdf (accessed on 13 December 2021).
- Gorbushina, A.A. Life on the rocks. Environ. Microbiol. 2007, 9, 1613–1631. [Google Scholar] [CrossRef]
- Albertano, P. Cyanobacterial Biofilms in Monuments and Caves. In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 317–343. ISBN 978-94-007-3855-3. [Google Scholar]
- Borderie, F.; Denis, M.; Barani, A.; Alaoui-Sossé, B.; Aleya, L. Microbial composition and ecological features of phototrophic biofilms proliferating in the Moidons Caves (France): Investigation at the single-cell level. Environ. Sci. Pollut. Res. 2016, 23, 12039–12049. [Google Scholar] [CrossRef] [PubMed]
- Hueck, H. The biodeterioration of materials—An appraisal. Int. Biodeterior. Biodegrad. 2001, 48, 5–11. [Google Scholar] [CrossRef]
- Griffin, P.; Indictor, N.; Koestler, R. The biodeterioration of stone: A review of deterioration mechanisms, conservation case histories, and treatment. Int. Biodeterior. 1991, 28, 187–207. [Google Scholar] [CrossRef]
- Guillitte, O. Bioreceptivity: A new concept for building ecology studies. Sci. Total. Environ. 1995, 167, 215–220. [Google Scholar] [CrossRef]
- Miller, A.; Sanmartín, P.; Pereira-Pardo, L.; Dionísio, A.; Saiz-Jimenez, C.; Macedo, M.; Prieto, B. Bioreceptivity of building stones: A review. Sci. Total. Environ. 2012, 426, 1–12. [Google Scholar] [CrossRef]
- Prieto, B.; Silva, B. Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int. Biodeterior. Biodegrad. 2005, 56, 206–215. [Google Scholar] [CrossRef]
- Motti, R.; Bonanomi, G. Vascular plant colonisation of four castles in southern Italy: Effects of substrate bioreceptivity, local environment factors and current management. Int. Biodeterior. Biodegrad. 2018, 133, 26–33. [Google Scholar] [CrossRef]
- Pinna, D.; Salvadori, O. Meccanismi Generali Dei Processi Di Biodeterioramento. In La biologia Vegetale per i Beni Culturali. Biodeterioramento e Conservazione; Nardini: Firenze, Italy, 2005; Volume 1, pp. 15–34. [Google Scholar]
- Albertano, P.; Altieri, A.; Caneva, G.; Ceschin, S.; Maggi, O.; Nugari, M.P.; Pasquariello, G.; Persiani, A.; Piervittori, R.; Pietrini, M.; et al. Problems of Biodeterioration in Relation to Particular Types of Environments. In Plant Biology for Cultural Heritage: Biodeterioration and Conservation; Caneva, G., Nugari, M.P., Salvadori, O., Eds.; The Getty Conservation Institute: Los Angeles, CA, USA, 2008; pp. 171–218. [Google Scholar]
- Caneva, G.; Ceschin, S. Ecology of Biodeterioration. In Plant Biology for Cultural Heritage: Biodeterioration and Conservation; Caneva, G., Nugari, M.P., Salvadori, O., Eds.; The Getty Conservation Institute: Los Angeles, CA, USA, 2009; pp. 35–58. [Google Scholar]
- Tiano, P.; Accolla, P.; Tomaselli, L. Phototrophic biodeteriogens on lithoid surfaces: An ecological study. Microb. Ecol. 1995, 29, 299–309. [Google Scholar] [CrossRef]
- Morton, L.; Surman, S. Biofilms in biodeterioration—A review. Int. Biodeterior. Biodegrad. 1994, 34, 203–221. [Google Scholar] [CrossRef]
- Roldán, M.; Hernández Mariné, M. Exploring the secrets of the three-dimensional architecture of phototrophic biofilms in caves. Int. J. Speleol. 2009, 38, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Bellezza, S.; Paradossi, G.; De Philippis, R.; Albertano, P. Leptolyngbya strains from Roman hypogea: Cytochemical and physico-chemical characterisation of exopolysaccharides. Environ. Boil. Fishes 2003, 15, 193–200. [Google Scholar] [CrossRef]
- Roy, P.K.; Ha, A.J.-W.; Mizan, F.R.; Hossain, I.; Ashrafudoulla; Toushik, S.H.; Nahar, S.; Kim, Y.K.; Ha, S.-D. Effects of environmental conditions (temperature, pH, and glucose) on biofilm formation of Salmonella enterica serotype Kentucky and virulence gene expression. Poult. Sci. 2021, 100, 101209. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.K.; Mizan, F.R.; Hossain, I.; Han, N.; Nahar, S.; Ashrafudoulla; Toushik, S.H.; Shim, W.-B.; Kim, Y.-M.; Ha, S.-D. Elimination of Vibrio parahaemolyticus biofilms on crab and shrimp surfaces using ultraviolet C irradiation coupled with sodium hypochlorite and slightly acidic electrolyzed water. Food Control 2021, 128, 108179. [Google Scholar] [CrossRef]
- Crispim, C.; Gaylarde, C. Cyanobacteria and Biodeterioration of Cultural Heritage: A Review. Microb. Ecol. 2005, 49, 226–235. [Google Scholar] [CrossRef]
- Walker, J.J.; Pace, N.R. Endolithic Microbial Ecosystems. Annu. Rev. Microbiol. 2007, 61, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Rivera, L.E.C.; Ramos, A.P.; Sánchez, J.I.C.; Serrano, M.E.D. Origin and Control Strategies of Biofilms in the Cultural Heritage. In Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods; IntechOpen: London, UK, 2019; pp. 51–74. [Google Scholar] [CrossRef] [Green Version]
- Dornieden, T.; Gorbushina, A.A.; Krumbein, W.E. Patina. In Of Microbes and Art: The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage; Ciferri, O., Tiano, P., Mastromei, G., Eds.; Springer: Boston, MA, USA, 2000; pp. 105–119. ISBN 978-1-4615-4239-1. [Google Scholar]
- Eyssautier-Chuine, S.; Vaillant-Gaveau, N.; Charpentier, E.; Reffuveille, F. Comparison of biofilm development on three building and restoration stones used in French monuments. Int. Biodeterior. Biodegrad. 2021, 165, 105322. [Google Scholar] [CrossRef]
- Sterflinger, K.; Piñar, G. Microbial deterioration of cultural heritage and works of art—Tilting at windmills? Appl. Microbiol. Biotechnol. 2013, 97, 9637–9646. [Google Scholar] [CrossRef] [Green Version]
- Caneva, G.; Galotta, G.; Cancellieri, L.; Savo, V. Tree roots and damages in the Jewish catacombs of Villa Torlonia (Roma). J. Cult. Herit. 2009, 10, 53–62. [Google Scholar] [CrossRef]
- Ferraro Pelle, C. La Cosiddetta Chiesetta Di, S. Maria Della Pietà a Squillace: Problemi Ed Aspetti Del Restauro in Un Prezioso Esempio Di Architettura Gotica Calabrese. In Proceedings of the I Beni Culturali e le Chiese di Calabria, Convegno Ecclesiale Regionale Promosso dalla Conferenza Episcopale Calabra, Reggio Calabria-Gerace, Italy, 24–26 October 1980; Volume 37, pp. 477–479. [Google Scholar]
- Mafrici, M. Squillace e Il Suo Castello Nel Sistema Difensivo Calabrese; Nuove Edizioni Barbaro: Delianuova, Italy, 1981. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Giannotti, G.B. Analisi Stratigrafiche Sugli Intonaci Di, S. Maria Della Pietà Di Squillace. Archit. Catanzaro News 2009, 1, 40–41. [Google Scholar]
- Mascaro, M.E.; Pellegrino, G.; De Rose, I.; Palermo, A.M. Contribution to the Knowledge of Biodeteriogenic Flora on Three Historical Calabrian (Southern Italy) Churches. Open J. Ecol. 2021, 11, 287–300. [Google Scholar] [CrossRef]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 1982. [Google Scholar]
- Pignatti, S.; Guarino, R.; Rosa, M.L. Flora d’Italia; Flora d’Italia in 4 Volumi: Flora Digitale; Edagricole-New Business Media: Milano, Italy, 2017; ISBN 978-88-506-5243-3. [Google Scholar]
- Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmondson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.; Walters, S.; Webb, D. Flora Europaea, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993; Volume 1. [Google Scholar]
- Raunkiær, C. Life Forms of Plants and Statistical Plant Geography. In History of Ecology; Arno Press: New York, NY, USA, 1977; ISBN 978-0-405-10418-3. [Google Scholar]
- Signorini, M. L’indice Di Pericolosità: Un Contributo Del Botanico al Controllo Della Vegetazione Infestante Nelle Aree Monumentali. Inf. Bot. Ital. 1996, 28, 7–14. [Google Scholar]
- Signorini, M.A. Lo Studio e Il Controllo Della Vegetazione Infestante Nei Siti Archeologici. Una Proposta Metodologica. In L’Area Archeologica di Fiesole. Rilievi e Ricerche per la Conservazione; Marino, L., Nenci, C., Eds.; Alinea: Firenze, Italy, 1995; pp. 41–46. [Google Scholar]
- Motti, R.; Stinca, A. Analysis of the biodeteriogenic vascular flora at the Royal Palace of Portici in southern Italy. Int. Biodeterior. Biodegrad. 2011, 65, 1256–1265. [Google Scholar] [CrossRef]
- Urzì, C.; DE Leo, F. Sampling with adhesive tape strips: An easy and rapid method to monitor microbial colonization on monument surfaces. J. Microbiol. Methods 2001, 44, 1–11. [Google Scholar] [CrossRef]
- Normal Commissione. Normal 9/88 Microflora Autotrofa Ed Eterotrofa: Tecniche Di Isolamento in Coltura; CNR-ICR: Roma, Italy, 1990. [Google Scholar]
- Anagnostidis, K.; Komárek, J. Modern Approach to the Classification System of Cyanophytes. 3—Oscillatoriales. Algol. Stud. Für Hydrobiol. Suppl. Vol. 1988, 50–53, 327–472. [Google Scholar]
- Anagnostidis, K.; Komárek, J. Modern Approach to the Classification System of Cyanophytes. 1—Introduction. Algol. Stud. Hydrobiol. Suppl. Vol. 1985, 38–39, 291–302. [Google Scholar]
- Komarek, J.; Anagnostidis, K. Modern Approach to the Classification System of Cyanophytes 4—Noazstocales. Arch. Hydrobiol. Suppl. Monogr. Beitr. 1989, 82, 247–345. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Modern Approach to the Classification System of Cyanophytes. Chroococcales. Algol. Stud. Hydrobiol. Suppl. Vol. 1986, 43, 157–226. [Google Scholar]
- Komárek, J. Cyanoprokaryota Teil/3rd Part: Heterocytous Genera; Springer Spektrum: Berlin, Germany, 2013. [Google Scholar]
- Castenholz, R.W. Culturing methods for cyanobacteria. In Methods in Enzymology; Elsevier BV: Amsterdam, The Netherlands, 1988; Volume 167, pp. 68–93. [Google Scholar]
- Preisig, H.R.; Andersen, R.A. Historical Review of Algal Culturing Techniques. Algal Cult. Tech. 2005, 65, 79–82. [Google Scholar]
- Drug Administration. Bacteriological Analytical Manual; AOAC International: Gaithersburg, MD, USA, 1995; ISBN 0-935584-59-5. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull 1987, 19, 11–15. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. Available online: http://pdf.xuebalib.com:1262/3x0d5gC6z4eF.pdf (accessed on 4 October 2018).
- Coelho, C.; Mesquita, N.; Costa, I.; Soares, F.; Trovão, J.; Freitas, H.; Portugal, A.; Tiago, I. Bacterial and Archaeal Structural Diversity in Several Biodeterioration Patterns on the Limestone Walls of the Old Cathedral of Coimbra. Microorganisms 2021, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Romani, M.; Carrion, C.; Fernandez, F.; Intertaglia, L.; Pecqueur, D.; Lebaron, P.; Lami, R. High bacterial diversity in pioneer biofilms colonizing ceramic roof tiles. Int. Biodeterior. Biodegrad. 2019, 144, 144. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Li, Y.; Huang, Z.; Petropoulos, E.; Ma, Y.; Shen, Y. Humidity governs the wall-inhabiting fungal community composition in a 1600-year tomb of Emperor Yang. Sci. Rep. 2020, 10, 8421. [Google Scholar] [CrossRef]
- Laiz, L.; Gonzalez, J.; Saiz-Jimenez, C. Microbial Communities in Caves: Ecology, Physiology, and Effects on Paleolithic Paintings. In Art, Biology, and Conservation: Biodeterioration of Works of Art; MetPublications: New York, NY, USA, 2003; pp. 210–215. [Google Scholar]
- Sigler, W.V.; Bachofen, R.; Zeyer, J. Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ. Microbiol. 2003, 5, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Casamatta, D.A.; Johansen, J.R.; Vis, M.L.; Broadwater, S.T. Molecular and morphological characterization of ten polar and near-polar strains within the oscillatoriales (cyanobacteria). J. Phycol. 2005, 41, 421–438. [Google Scholar] [CrossRef]
- Monteith, J.; Unsworth, M. Principles of Environmental Physics: Plants, Animals, and the Atmosphere; Academic Press: Cambridge, MA, USA, 2013; ISBN 0-12-386993-5. [Google Scholar]
- Dahmani, J.; Benharbit, M.; Fassar, M.; Hajila, R.; Zidane, L.; Magri, N.; Belahbib, N. Vascular plants census linked to the biodeterioration process of the Portuguese city of Mazagan in El Jadida, Morocco. J. King Saud Univ. Sci. 2020, 32, 682–689. [Google Scholar] [CrossRef]
- Almeida, M.; Mouga, T.; Barracosa, P. The weathering ability of higher plants. The case of Ailanthus altissima (Miller) Swingle. Int. Biodet. Biodeg. 1994, 33, 333–343. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Blasi, C. The Role of Alien and Native Weeds in the Deterioration of Archaeological Remains in Italy. Weed Technol. 2004, 18, 1508–1513. [Google Scholar]
- Trotta, G.; Savo, V.; Cicinelli, E.; Carboni, M.; Caneva, G. Colonization and damages of Ailanthus altissima (Mill.) Swingle on archaeological structures: Evidence from the Aurelian Walls in Rome (Italy). Int. Biodeterior. Biodegrad. 2020, 153, 105054. [Google Scholar] [CrossRef]
- Korkanç, M.; Savran, A. Impact of the surface roughness of stones used in historical buildings on biodeterioration. Constr. Build. Mater. 2015, 80, 279–294. [Google Scholar] [CrossRef]
- Warscheid, T.; Braams, J. Biodeterioration of stone: A review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Franzoni, E. State-of-the-art on methods for reducing rising damp in masonry. J. Cult. Herit. 2018, 31, S3–S9. [Google Scholar] [CrossRef]
- Thomson, M. Characterisation of Old Mortars with Respect to their Repair—Final Report of RILEM TC 167-COM; Rilem Publications: Marne-la-Vallée, France, 2005; pp. 77–106. [Google Scholar]
- Pfendler, S.; Karimi, B.; Maron, P.-A.; Ciadamidaro, L.; Valot, B.; Bousta, F.; Alaoui-Sosse, L.; Alaoui-Sosse, B.; Aleya, L. Biofilm biodiversity in French and Swiss show caves using the metabarcoding approach: First data. Sci. Total. Environ. 2018, 615, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Caneva, G.; Fidanza, M.R.; Tonon, C.; Favero-Longo, S.E. Biodeterioration Patterns and Their Interpretation for Potential Applications to Stone Conservation: A Hypothesis from Allelopathic Inhibitory Effects of Lichens on the Caestia Pyramid (Rome). Sustainability 2020, 12, 1132. [Google Scholar] [CrossRef] [Green Version]
- Cennamo, P.; Montuori, N.; Trojsi, G.; Fatigati, G.; Moretti, A. Biofilms in churches built in grottoes. Sci. Total. Environ. 2016, 543, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Otlewska, A.; Adamiak, J.; Gutarowska, B. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects. Acta Biochim. Pol. 2014, 61, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schabereiter-Gurtner, C.; Pinar, G.; Lubitz, W.; Rölleke, S. An advanced molecular strategy to identify bacterial communities on art objects. J. Microbiol. Methods 2001, 45, 77–87. [Google Scholar] [CrossRef]
- Saarela, M.; Alakomi, H.-L.; Suihko, M.-L.; Maunuksela, L.; Raaska, L.; Mattila-Sandholm, T. Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi. Int. Biodeterior. Biodegrad. 2004, 54, 27–37. [Google Scholar] [CrossRef]
- Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. The impact of arthropods on fungal community structure in Lascaux Cave. J. Appl. Microbiol. 2009, 106, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Bastian, F.; Jurado, V.; Novakova, A.; Alabouvette, C.; Saiz-Jimenez, C. The microbiology of Lascaux Cave. Microbiology 2010, 156, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Kolařík, M.; Kubátová, A.; Hulcr, J.; Pažoutová, S. Geosmithia Fungi are Highly Diverse and Consistent Bark Beetle Associates: Evidence from their Community Structure in Temperate Europe. Microb. Ecol. 2008, 55, 65–80. [Google Scholar] [CrossRef]
- Ienco, A.; Bernardini, V.; Scalercio, S.; Turco, R.; Corona, P. Updating the mapping of cork oak forests in Calabria (Italy). For. J. Silvic. For. Ecol. 2020, 17, 30–32. [Google Scholar] [CrossRef]
- Popović, S.; Simić, G.S.; Stupar, M.; Unkovic, N.; Predojevic, D.; Jovanovic, J.; Grbić, M.L. Cyanobacteria, algae and microfungi present in biofilm from Božana Cave (Serbia). Int. J. Speleol. 2015, 44, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Castlebury, L.A.; Rossman, A.Y.; Sung, G.-H.; Hyten, A.S.; Spatafora, J.W. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycol. Res. 2004, 108, 864–872. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V. Rock-Dwelling Cyanobacteria: Survival Strategies and Biodeterioration of Monuments. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 519–524. [Google Scholar]
- Crispim, C.A.; Gaylarde, P.M.; Gaylarde, C.C. Algal and Cyanobacterial Biofilms on Calcareous Historic Buildings. Curr. Microbiol. 2003, 46, 79–82. [Google Scholar] [CrossRef]
- Hauer, T. Phototrophic biofilms on the interior walls of concrete Iterson-type cooling towers. Environ. Boil. Fishes 2010, 22, 733–736. [Google Scholar] [CrossRef]
- Ortega-Calvo, J.-J.; Hernandez-Marine, M.; Saiz-Jimenez, C. Biodeterioration of building materials by cyanobacteria and algae. Int. Biodeterior. 1991, 28, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Zammit, G.; Billi, D.; Shubert, E.; Kaštovský, J.; Albertano, P. The biodiversity of subaerophytic phototrophic biofilms from Maltese hypogea. Fottea 2011, 11, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Cuzman, O.A.; Ventura, S.; Sili, C.; Mascalchi, C.; Turchetti, T.; D’Acqui, L.P.; Tiano, P. Biodiversity of Phototrophic Biofilms Dwelling on Monumental Fountains. Microb. Ecol. 2010, 60, 81–95. [Google Scholar] [CrossRef]
- Miller, A.Z.; Laiz, L.; Dionísio, A.; Macedo, M.F.; Saiz-Jimenez, C. Growth of phototrophic biofilms from limestone monuments under laboratory conditions. Int. Biodeterior. Biodegrad. 2009, 63, 860–867. [Google Scholar] [CrossRef] [Green Version]
- Komárek, J. Phenotype Diversity of the Cyanobacterial Genus Leptolyngbya in the Maritime Antarctic. Pol. Polar Res. 2006, 28, 211–231. [Google Scholar]
- Macedo, M.F.; Miller, A.Z.; Dionísio, A.; Saiz-Jimenez, C. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: An overview. Microbiol. Read. Engl. 2009, 155, 3476–3490. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.; Naik, T. Biodeterioration of Concrete Structures in Coastal Zone. In Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies, Kyoto, Japan, 18–21 August 2013. [Google Scholar]
- Chao, A.; Shen, T.-J. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ. Ecol. Stat. 2003, 10, 429–443. [Google Scholar] [CrossRef]
- Conti, F.; Abbate, G.; Alessandrini, A.; Blasi, C. An Annotated Checklist of the Italian Vascular Flora; Springer: Berlin, Germany, 2005; ISBN 88-7621-458-5. [Google Scholar]
- Rojas, T.I.; Aira, M.J.; Batista, A.; Cruz, I.L.; González, S. Fungal biodeterioration in historic buildings of Havana (Cuba). Grana 2012, 51, 44–51. [Google Scholar] [CrossRef]
- Grbic, M.L.; Simic, G.S.; Stupar, M.; Jelikic, A.; Sabovljevic, M.; Dordevic, M.; Vukojevic, J. Biodiversity’s Hidden Treasure:Biodeteriorated Archaeological Tombstones of Serbia. Curr. Sci. 2017, 112, 304. [Google Scholar] [CrossRef]
Wall | Sample | Type of Colonization | Position | Surface Material | Sampling Modality |
---|---|---|---|---|---|
North (n = 6) | N1 | Brownish compact | Corner column | Limestone | Swab/Adhesive Tape |
N2 | Dull green compact | Wall | Mortar | Scalpel | |
N3 | Yellowish green patina | Wall | Mortar | Swab/Adhesive Tape | |
N4 | Brownish patina | Corner column | Limestone | Swab/Adhesive Tape | |
N5 | Light green compact | Semi-pillar | Plaster | Scalpel | |
N6 | Dull green thick | Wall | Plaster | Scalpel | |
South (n = 6) | S1 | Greyish green powdery | Wall | Mortar | Swab/Adhesive Tape |
S2 | Yellowish green compact | Niche | Plaster | Scalpel | |
S3 | Olive green patina | Wall | Plaster | Swab/Adhesive Tape | |
S4 | Dull green thick | Semi pillar | Plaster | Swab/Adhesive Tape | |
S5 | Bright green thick | Wall | Plaster | Scalpel | |
S6 | Dark brown patina | Plaster plate | Gypsum | Swab | |
West (n = 6) | W1 | Bright green thick | Corner column | Limestone | Swab/Adhesive Tape |
W2 | White greysh spongy | Wall | Mortar | Scalpel | |
W3 | Dull green thick | Wall | Plaster | Scalpel | |
W4 | Brownish green compact | Wall | Mortar | Swab/Adhesive Tape | |
W5 | Greyish green spongy | Wall | Mortar | Scalpel | |
W6 | Light green spongy | Wall | Mortar | Scalpel |
Name | Family | Life Form | HI | Exposure | Inclination | Position |
---|---|---|---|---|---|---|
Ailanthus altissima (Mill.) Swingle | Simaroubaceae | P scap | 10 | S | H | Embankment |
Anogramma leptophylla (L.) | Pteridaceae | Ch pulv | 0 | N | V | Wall |
Diplotaxis tenuifolia (L.) Dc. | Brassicaceae | H scap | 5 | N/E | H | Wall perimeter |
Erigeron canadensis L. | Asteraceae | T scap | 4 | N/E | H | Wall perimeter |
Ficus carica L. | Moraceae | P scap | 10 | N | H,V | Embankment, Wall |
Mirabilis jalapa L. | Nyctaginaceae | G bulb | 6 | E | H | Wall |
Parietaria judaica L. | Urticaceae | H scap | 5 | N/E/S | V,H | Ubiquitous |
Phytolacca americana L. | Phytolaccaceae | G rhiz | 6 | N/E | H,V | Embankment, Wall |
Picris hieracioides L. | Asteraceae | H scap | 6 | E | V | Wall |
Rubus ulmifolius Schott. | Rosaceae | P caesp | 8 | S | H,V | Embankment, Wall |
Sambucus nigra L. | Adoxaceae | P caesp | 7 | N | H | Embankment |
Sanguisorba minor Scop. | Rosaceae | H scap | 6 | E | V | Wall |
Smyrnium olusatrum (L.) | Apiaceae | H bienn | 3 | N | H | Embankment |
Sorghum halepense (L.) Pers. | Poaceae | G rhiz | 6 | E | V | Wall |
Taraxacum officinale Web. | Asteraceae | H ros | 6 | N/E | H | Wall perimeter |
Umbilicus rupestris (Salisb.) Dandy | Crassulaceae | G bulb | 5 | N | H | Embankment |
Urtica dioica L. | Urticaceae | H scap | 5 | N/E/S | V,H | Ubiquitous |
Veronica polita Fr. | Plantaginaceae | T scap | 3 | N/E | H | Wall perimeter |
Genus/Species | Accession Number | bp | Sample |
---|---|---|---|
Alternaria alternata | OK356512 | 540 | S1 |
Alternaria infectoria | OK356513 | 532 | N5 |
Engyodontium album | OK356514 | 562 | W5/W6 |
Geosmithia sp. | OK356515 | 589 | N6 |
Lecanicillium sp. | OK356516 | 602 | W2 |
Penicillium brevicompactum | OK356517 | 547 | S1 |
Penicillium chrysogenum | OK356518 | 544 | N4 |
Penicillium glabrum | OK356519 | 529 | W1/W5 |
Penicillium sumatrense | OK356520 | 539 | S4 |
Periconia macrospinosa | OK356521 | 522 | S1 |
Stachybotris chartarum | OK356522 | 528 | N4 |
Cyanophyta | Class | Family | Genus | Identification | Acc. No. | Position |
Cyanophyceae | Chroococcidiopsidaceae | Chroococcidiopsis | morphological | N, W | ||
Cyanophyceae | Stigonemataceae | Stigonema | morphological | S, N | ||
Cyanophyceae | Oscillatoriaceae | Phormidium | molecular | OK382073 | S | |
Cyanophyceae | Oscillatoriaceae | Oscillatoria | morphological | N | ||
Cyanophyceae | Leptolyngbyaceae | Leptolyngbya | molecular | OK382066—OK382072 | N, S, W | |
Cyanophyceae | Prochlorotrichaceae | Nodosilinea | molecular | OK382074 | N, W | |
Cyanophyceae | Schizotrichaceae | Schizothrix | morphological | S | ||
Cyanophyceae | Nostocaceae | Nostoc | morphological | S, N | ||
Chlorophyta | ||||||
Trebouxiophyceae | Chlorellaceae | Chlorella | morphological | S, W, N | ||
Trebouxiophyceae | Prasiolaceae | Stichococcus | morphological | S, W | ||
Chlorophyceae | Chlorococcaceae | Chlorococcum | morphological | S, W | ||
Ulvophyceae | Cladophoraceae | Cladophora | morphological | S |
Sampled Wall | Observed | Chao 1 | Shannon | Simpson |
---|---|---|---|---|
NORTH | 10 | 17.00000 | 2.205598 | 0.8775510 |
SOUTH | 15 | 19.66667 | 2.614589 | 0.9201389 |
WEST | 10 | 10.50000 | 2.232694 | 0.8864266 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascaro, M.E.; Pellegrino, G.; Palermo, A.M. Analysis of Biodeteriogens on Architectural Heritage. An Approach of Applied Botany on a Gothic Building in Southern Italy. Sustainability 2022, 14, 34. https://doi.org/10.3390/su14010034
Mascaro ME, Pellegrino G, Palermo AM. Analysis of Biodeteriogens on Architectural Heritage. An Approach of Applied Botany on a Gothic Building in Southern Italy. Sustainability. 2022; 14(1):34. https://doi.org/10.3390/su14010034
Chicago/Turabian StyleMascaro, Maria Emanuela, Giuseppe Pellegrino, and Anna Maria Palermo. 2022. "Analysis of Biodeteriogens on Architectural Heritage. An Approach of Applied Botany on a Gothic Building in Southern Italy" Sustainability 14, no. 1: 34. https://doi.org/10.3390/su14010034
APA StyleMascaro, M. E., Pellegrino, G., & Palermo, A. M. (2022). Analysis of Biodeteriogens on Architectural Heritage. An Approach of Applied Botany on a Gothic Building in Southern Italy. Sustainability, 14(1), 34. https://doi.org/10.3390/su14010034