Biological-Based Produced Water Treatment Using Microalgae: Challenges and Efficiency
Abstract
:1. Introduction
2. Methodology
3. Produced Water
3.1. Produced Water Generation
3.2. Characteristics of Produced Water
4. Treatment of Produced Water
4.1. Chemical Processes
Organic Type | Techniques | Removal Efficiency% | Initial Concentration mg/L | References |
---|---|---|---|---|
BTEX | Nano photocatalytic | 82% | 600 | [40] |
COD BTEX | Maghemite nanoparticles visible light and ultraviolet | 95%, 96% 97% | 600 | [36] |
Oil and grease Oil and grease phenol | Dissolved air flotation (DAF) E-DAF: Fenton and photo-Fenton reactions | 87%, 90% 57.6%, 73.7% >80%, 95% | Oil &grease: 150 Phenol: 50 | [39] |
COD TOC Color removal COD TOC Color removal COD TOC Color removal | Fenton processes: UV–Fenton US–Fenton Fenton treatment | 82% 73% 68% 95% 79% 70% 66% 95% 70% 58% 51% 92% | COD: 18,825 TOC: 7217 : 1571 | [37] |
Xylenes Ethylbenzene Toluene Benzene | Advanced oxidation treatment and anodic oxidation (AO) | 100% 90% 70% 80% | 0.5, 1.25, and 2.5 mg/L | [35] |
TOC Acetic acid BTEX, naphthalene and phenol BTEX and naphthalene | Advanced oxidation processes (AOPs): Photocatalysis Fenton-based processes Fenton-based processes AOPs processes | 20% 74% 40% 78% <10% ~100% ~100% | BTEX: 10 mg/L Naphthalene: 3 PAHs group, phenol: 10 mg/L Acetic: 150 mg/L malonic acids: 10 mg/L | [38] |
4.2. Biological Processes
4.2.1. Bacterial-Based Biological Processes
4.2.2. Algae-Based Biological Processes
5. Perspectives of Microalgae Cultivation
5.1. Algae Cultivation in Harsh Deserts
5.2. Cultivation Parameters
5.2.1. Temperature
5.2.2. Light Intensity
5.2.3. CO2 and O2 Loading
5.2.4. Nutrients
5.3. Algae Acclimatization to Produced Water
6. Microalgae Cultivation Systems
7. Algae Harvesting
Harvesting Method | Description and Principle | Relative Cost of Harvesting Method | Refs. |
---|---|---|---|
Filtration | Large enough algae can be separated from water by basic filtration, while smaller ones might require ultrafiltration | Medium | [160] |
Centrifugation | Mechanical separation of suspended solids according to their masses and densities by centrifugal force | High | [161,162,163] |
Floatation | Aeration of the tank from an entrance below causes air bubbles to trap and lift the microalgae cells | Low | [161] |
Flocculation | The addition of a flocculants chemical to form larger algae clusters can be easily removed by physical means | High | [78,161,164,165] |
Sonication | The application of sound energy to disrupt and destroy the algal cells, leading to the precipitation of their content | High | [166,167] |
Precipitation | The natural process of self-precipitation for many large algae without the need for interference given enough time | Low | - |
- Osmotic Shock Method: This method is based on the concept of osmotic pressure with the equilibrium then established between the cells and the medium surrounding them. A sudden large change in the salt concentration in the medium causes the cells to either contract or burst depending on whether the change is increasing or decreasing, respectively, and the lipid is then released [180,181].
8. Potential of Algal Biomass Processing
9. Algae Biomass and Biofuel Production
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, A.; Agrawal, S.; Nawaz, T.; Pan, S.; Selvaratnamm, T. A review of algae-based produced water treatment for biomass and biofuel production. Water 2020, 12, 2351. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, W.; Chen, L.; Xu, P.; Wang, H. Treatment of produced water with photocatalysis: Recent advances, affecting factors and future research prospects. Catalysts 2020, 10, 924. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Lu, H.; Pan, Z.; Dai, P.; Sun, G.; Yang, Q. A full-scale process for produced water treatment on offshore oilfield: Reduction of organic pollutants dominated by hydrocarbons. J. Clean. Prod. 2021, 296, 126511. [Google Scholar] [CrossRef]
- Fakhru’L-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef] [PubMed]
- Duraisamy, R.T.; Beni, A.H.; Henni, A. State of the art treatment of produced water. In Water Treatement; InTech Open: London, UK, 2013; pp. 199–222. [Google Scholar]
- Jiménez, S.; Micó, M.M.; Arnaldos, M.; Medina, F.; Contreras, S. State of the art of produced water treatment. Chemosphere 2018, 192, 186–208. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, X.; Carlson, K.H.; Robbins, C.A.; Tong, T. Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration. Desalination 2019, 454, 82–90. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Ali, A.; Quist-Jensen, C.A.; Drioli, E.; Macedonio, F. Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment. Desalination 2018, 434, 161–168. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, L.; Xu, X.; Cheng, X.; Zhang, Y.; Hall, R.; Xu, P. A Critical Review of Analytical Methods for Comprehensive Characterization of Produced Water. Water 2021, 13, 183. [Google Scholar] [CrossRef]
- Riley, S.M.; Oliveira, J.; Regnery, J.; Cath, T.Y. Hybrid membrane bio-systems for sustainable treatment of oil and gas produced water and fracturing flowback water. Sep. Purif. Technol. 2016, 171, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Freedman, D.E.; Riley, S.M.; Jones, Z.L.; Rosenblum, J.S.; Sharp, J.O.; Spear, J.R.; Cath, T.Y. Biologically active filtration for fracturing flowback and produced water treatment. J. Water Process Eng. 2017, 18, 29–40. [Google Scholar] [CrossRef]
- Kiss, Z.L.; Kovacs, I.; Veréb, G.; Hodúr, C.; László, Z. Treatment of model oily produced water by combined pre-ozonation–microfiltration process. Desalin. Water Treat. 2016, 57, 23225–23231. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Zhang, Z.; Yu, W.; Zhu, W. Biological treatment of oilfield-produced water: A field pilot study. Int. Biodeterior. Biodegrad. 2009, 63, 316–321. [Google Scholar] [CrossRef]
- Camarillo, M.K. and Stringfellow, W.T. Biological treatment of oil and gas produced water: A review and meta-analysis. Clean Technol. Environ. Policy 2018, 20, 1127–1146. [Google Scholar] [CrossRef] [Green Version]
- Caspeta, L.; Buijs, N.A.; Nielsen, J. The role of biofuels in the future energy supply. Energy Environ. Sci. 2013, 6, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- De-Luca, R.; Bezzo, F.; Béchet, Q.; Bernard, O. Exploiting meteorological forecasts for the optimal operation of algal ponds. J. Process Control 2017, 55, 55–65. [Google Scholar] [CrossRef]
- Graham, E.J.S.; Dean, C.A.; Yoshida, T.M.; Twary, S.N.; Teshima, M.; Alvarez, M.A.; Zidenga, T.; Heikoop, J.; Perkins, G.; Rahn, T.A.; et al. Oil and gas produced water as a growth medium for microalgae cultivation: A review and feasibility analysis. Algal Res. 2017, 24, 492–504. [Google Scholar] [CrossRef]
- Atoufi, H.D.; Lampert, D.J. Impacts of oil and gas production on contaminant levels in sediments. Curr. Pollut. Rep. 2020, 6, 43–53. [Google Scholar] [CrossRef]
- Igunnu, E.T.; Chen, G.Z. Produced water treatment technologies. Int. J. Low-Carbon Technol. 2014, 9, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Eia, U. International Energy Outlook; US Energy Information Administration: Washington, DC, USA, 2011.
- Campos, J.C.; Borges, R.M.H.; Oliveira Filho, A.M.D.; Nobrega, R.; Sant’Anna, G., Jr. Oilfield wastewater treatment by combined microfiltration and biological processes. Water Res. 2002, 36, 95–104. [Google Scholar] [CrossRef]
- Nouvelles, I.E. Water in Fuel Production-Oil Production and Refining; Techincal Report. 2011. Available online: http://www.ifpenergiesnouvelles.com/content (accessed on 19 November 2021).
- Dórea, H.S.; Bispo, J.R.; Aragão, K.A.; Cunha, B.B.; Navickiene, S.; Alves, J.P.; Romão, L.P.; Garcia, C.A. Analysis of BTEX, PAHs and metals in the oilfield produced water in the State of Sergipe, Brazil. Microchem. J. 2007, 85, 234–238. [Google Scholar] [CrossRef]
- Baca, S.R.; Kupfer, A.; McLain, S. Analysis of the Relationship between Current Regulatory and Legal Frameworks and the “Produced Water Act”; NM WRRI Technical Completion Report No. 396; New Mexico Water Resources Research Institute: Las Cruces, NM, USA, 2021. [Google Scholar]
- Clark, C.E.; Veil, J.A. Produced Water Volumes and Management Practices in the United States; Argonne National Lab. (ANL): Argonne, IL, USA, 2009.
- Winckelmann, D.; Bleeke, F.; Thomas, B.; Elle, C.; Klöck, G. Open pond cultures of indigenous algae grown on non-arable land in an arid desert using wastewater. Int. Aquat. Res. 2015, 7, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Operation, N.G. Qatar Petroleum. State of Qatar. In Proceedings of the International Petroleum Technology Conference, Doha, Qatar, 19–22 January 2014. [Google Scholar]
- Al Kaabi, M.A. Enhancing Produced Water Quality Using Modified Activated Carbon; Qatar University: Doha, Qatar, 2016. [Google Scholar]
- Zemlick, K.; Kalhor, E.; Thomson, B.M.; Chermak, J.M.; Graham, E.J.S.; Tidwell, V.C. Mapping the energy footprint of produced water management in New Mexico. Environ. Res. Lett. 2018, 13, 024008. [Google Scholar] [CrossRef]
- Bhadja, P.; Kundu, R. Status of the Seawater Quality at Few Industrially Important Coasts of Gujarat (India) off Arabian Sea; NISCAIR-CSIR: New Delhi, India, 2012. [Google Scholar]
- Tibbetts, P.; Buchanan, I.; Gawel, L.; Large, R. A comprehensive determination of produced water composition. In Produced Water; Springer: Berlin/Heidelberg, Germany, 1992; pp. 97–112. [Google Scholar]
- Nasiri, M.; Jafari, I. Produced water from oil-gas plants: A short review on challenges and opportunities. Period. Polytech. Chem. Eng. 2017, 61, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Fillo, J.P.; Koraido, S.M.; Evans, J.M. Sources, characteristics, and management of produced waters from natural gas production and storage operations. In Produced Water: Technological/Environmental Issues and Solutions; Ray, J.P., Engelhardt, F.R., Eds.; Springer: Boston, MA, USA, 1992; pp. 151–161. [Google Scholar]
- Tawabini, B.S.; Plakas, K.V.; Karabelas, A.J. A pilot study of BTEX removal from highly saline water by an advanced electrochemical process. J. Water Process Eng. 2020, 37, 101427. [Google Scholar] [CrossRef]
- Sheikholeslami, Z.; Kebria, D.Y.; Qaderi, F. Investigation of photocatalytic degradation of BTEX in produced water using γ-Fe 2 O3 nanoparticle. J. Therm. Anal. Calorim. 2019, 135, 1617–1627. [Google Scholar] [CrossRef]
- Zhai, J.; Ma, H.; Liao, J.; Rahaman, M.; Yang, Z.; Chen, Z. Comparison of Fenton, ultraviolet–Fenton and ultrasonic–Fenton processes on organics and colour removal from pre-treated natural gas produced water. Int. J. Environ. Sci. Technol. 2018, 15, 2411–2422. [Google Scholar] [CrossRef]
- Jiménez, S.; Andreozzi, M.; Mico, M.M.; Alvarez, M.G.; Contreras, S. Produced water treatment by advanced oxidation processes. Sci. Total Environ. 2019, 666, 12–21. [Google Scholar] [CrossRef]
- Jiménez, S.; Mico, M.M.; Arnaldos, M.; Ferrero, E.; Malfeito, J.J.; Medina, F.; Contreras, S. Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes. Chemosphere 2017, 168, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Sheikholeslami, Z.; Kebria, D.Y.; Qaderi, F. Nanoparticle for degradation of BTEX in produced water; an experimental procedure. J. Mol. Liq. 2018, 264, 476–482. [Google Scholar] [CrossRef]
- da Silva Almeida, F.B.P.; Esquerre, K.; Soletti, J.I.; De Farias Silva, C.E. Coalescence process to treat produced water: An updated overview and environmental outlook. Environ. Sci. Pollut. Res. 2019, 26, 1–21. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhao, M.; Wang, J.; Cheng, Z.; Yan, B.; Chen, G. Hydrothermal liquefaction of low-lipid algae Nannochloropsis sand Sargassum sp.: Effect of feedstock composition and temperature. Sci. Total Environ. 2020, 712, 135677. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chen, W.J.; Tian, L.; Shao, B.; Lin, Y. Plant-microbial synergism: An effective approach for the remediation of shale-gas fracturing flowback and produced water. J. Hazard. Mater. 2019, 363, 170–178. [Google Scholar] [CrossRef]
- Wang, H.; Lu, L.; Chen, X.; Bian, Y.; Ren, Z.J. Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States. Water Res. 2019, 164, 114942. [Google Scholar] [CrossRef] [PubMed]
- Kardena, E.; Hidayat, S.; Nora, S.; Helmy, Q. Biological treatment of synthetic oilfield-produced water in activated sludge using a consortium of endogenous bacteria isolated from a tropical area. J. Pet. Environ. Biotechnol. 2017, 8, 3. [Google Scholar] [CrossRef]
- Acharya, S.M.; Chakraborty, R.; Tringe, S.G. Emerging trends in biological treatment of wastewater from unconventional oil and gas extraction. Front. Microbiol. 2020, 11, 569019. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.; Ibraheem, I. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Arbib, Z.; Ruiz, J.; Álvarez-Díaz, P.; Garrido-Perez, C.; Perales, J.A. Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res. 2014, 49, 465–474. [Google Scholar] [CrossRef]
- Åkerström, A.M.; Mortensen, L.M.; Rusten, B.; Gislerød, H.R. Biomass production and nutrient removal by Chlorella sas affected by sludge liquor concentration. J. Environ. Manag. 2014, 144, 118–124. [Google Scholar] [CrossRef]
- Mohamad, S.; Fares, A.; Judd, S.; Bhosale, R.; Kumar, A.; Gosh, U.; Khreisheh, M. Advanced Wastewater Treatment Using Microalgae: Effect of Temperature on Removal of Nutrients and Organic Carbon. In Proceedings of the 7th International Conference on Environment and Industrial Innovation, Kuala Lampur, Malaysia, 28–30 April 2017; Volume 67, p. 012032. [Google Scholar]
- Gao, F.; Peng, Y.-Y.; Li, C.; Yang, G.-J.; Deng, Y.-B.; Xue, B.; Guo, Y.-M. Simultaneous nutrient removal and biomass/lipid production by Chlorella sin seafood processing wastewater. Sci. Total Environ. 2018, 640–641, 943–953. [Google Scholar] [CrossRef]
- Almomani, F.; Judd, S.; Shurair, M. Potential use of mixed indigenous microalgae for carbon dioxide bio-fixation and advanced wastewater treatment. In 2017 Spring Meeting and 13th Global Congress on Process Safety; AIChE: New York, NY, USA, 2017. [Google Scholar]
- Sivakumar, G.; Xu, J.; Thompson, R.W.; Yang, Y.; Randol-Smith, P.; Weathers, P.J. Integrated green algal technology for bioremediation and biofuel. Bioresour. Technol. 2012, 107, 1–9. [Google Scholar] [CrossRef]
- Davis, R.E.; Fishman, D.B.; Frank, E.D.; Johnson, M.C.; Jones, S.B.; Kinchin, C.M.; Skaggs, R.L.; Venteris, E.R.; Wigmosta, M.S. Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale. Environ. Sci. Technol. 2014, 48, 6035–6042. [Google Scholar] [CrossRef] [PubMed]
- Ventura, J.-R.S.; Yang, B.; Lee, Y.-W.; Lee, K.; Jahng, D. Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion. Bioresour. Technol. 2013, 137, 302–310. [Google Scholar] [CrossRef]
- Kang, Z.; Kim, B.-H.; Ramanan, R.; Choi, J.-E.; Yang, J.-W.; Oh, H.-M.; Kim, H.-S. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J. Microbiol. BioTechnol. 2015, 25, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Judd, S.; Al Momani, F.; Znad, H.; Al Ketife, A. The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement. Renew. Sustain. Energy Rev. 2017, 71 (Suppl. C), 379–387. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, V. Production of Biodiesel from Oleaginous Organisms Using Underutilized Wastewaters. Ph.D. Thesis, Utah State University, Logan, UT, USA, 2012. [Google Scholar]
- Ranjbar, S.; Quaranta, J.; Tehrani, R.; Van Aken, B. Algae-based treatment of hydraulic fracturing produced water: Metal removal and biodiesel production by the halophilic microalgae Dunaliella salina. In Bioremediation and Sustainable Environmental Technologies. In Proceedings of the Third International Symposium on Bioremediation and Sustainable Environmental Technologies, Miami, FL, USA, 18–21 May 2015; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Neal, J.N.; Sullivan, E.J.; Dean, C.A.; Steichen, S.A. Recycling Produced Water for Algal Cultivation for Biofuels; Los Alamos National Lab. (LANL): Los Alamos, NL, USA, 2012.
- Hopkins, T.C.; Graham, E.J.S.; Schuler, A.J. Biomass and lipid productivity of Dunaliella tertiolecta in a produced water-based medium over a range of salinities. J. Appl. Phycol. 2019, 31, 3349–3358. [Google Scholar] [CrossRef]
- Singh, G.; Patidar, S. Microalgae harvesting techniques: A review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef]
- Talebi, A.F.; Dastgheib, S.M.M.; Tirandaz, H.; Ghafari, A.; Alaie, E.; Tabatabaei, M. Enhanced algal-based treatment of petroleum produced water and biodiesel production. RSC Adv. 2016, 6, 47001–47009. [Google Scholar] [CrossRef]
- Parsy, A.; Sambusiti, C.; Baldoni-Andrey, P.; Elan, T.; Périé, F. Cultivation of Nannochloropsis oculata in saline oil & gas wastewater supplemented with anaerobic digestion effluent as nutrient source. Algal Res. 2020, 50, 101966. [Google Scholar]
- Takáčová, A.; Smolinská, M.; Semerád, M.; Matúš, P. Degradation of btex by microalgae Parachlorella kessleri. Petrol. Coal 2015, 57, 101–107. [Google Scholar]
- Abdelsalam, E.; Kafiah, F.; Tawalbeh, M.; Almomani, F.; Azzam, A.; Alzoubi, I.; Alkasrawi, M. Performance analysis of hybrid solar chimney–power plant for power production and seawater desalination: A sustainable approach. Int. J. Energy Res. 2021, 45, 17327–17341. [Google Scholar] [CrossRef]
- Das, S.K.; Sathish, A.; Stanley, J. Production of biofuel and bioplastic from Chlorella Pyrenoidosa. Mater. Today Proc. 2018, 5, 16774–16781. [Google Scholar] [CrossRef]
- Wilson, M.H.; Shea, A.; Groppo, J.; Crofcheck, C.; Quiroz, D.; Quinn, J.C.; Crocker, M. Algae-based beneficial re-use of carbon emissions using a novel photobioreactor: A techno-economic and life cycle analysis. BioEnergy Res. 2020, 14, 292–302. [Google Scholar] [CrossRef]
- Rafiee, P.; Ebrahimi, S.; Hosseini, M.; Tong, Y.W. Characterization of soluble algal products (SAPs) after electrocoagulation of a mixed algal culture. Biotechnol. Rep. 2020, 25, e00433. [Google Scholar] [CrossRef]
- Hopkins, T.C.; Graham, E.J.S.; Schwilling, J.; Ingram, S.; Gómez, S.M.; Schuler, A.J. Effects of salinity and nitrogen source on growth and lipid production for a wild algal polyculture in produced water media. Algal Res. 2019, 38, 101406. [Google Scholar] [CrossRef]
- Karatay, S.E.; Dönmez, G. Microbial oil production from thermophile cyanobacteria for biodiesel production. Appl. Energy 2011, 88, 3632–3635. [Google Scholar] [CrossRef]
- Das, P.; Abdulquadir, M.; Thaher, M.; Khan, S.; Chaudhary, A.K.; Alghasal, G.; Al-Jabri, H.M.S.J. Microalgal bioremediation of petroleum-derived low salinity and low pH produced water. J. Appl. Phycol. 2019, 31, 435–444. [Google Scholar] [CrossRef]
- Liber, J.A.; Bryson, A.E.; Bonito, G.; Du, Z. Harvesting microalgae for food and energy products. Small Methods 2020, 4, 2000349. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Slade, R.; Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 2013, 53, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Almomani, F.; Bhosale, R.; Khraisheh, M.; Kumar, A.; Almomani, T. Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl. Surf. Sci. 2020, 506, 144924. [Google Scholar] [CrossRef]
- Fuad, N.; Omar, R.; Kamarudin, S.; Harun, R.; Idris, A.; W.A.K.G., W.A. Mass harvesting of marine microalgae using different techniques. Food Bioprod. Process. 2018, 112, 169–184. [Google Scholar] [CrossRef]
- Grima, E.M.; Belarbi, E.-H.; Fernández, F.G.A.; Medina, A.R.; Chisti, Y. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv. 2003, 20, 491–515. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, L.; Li, S.; Hu, T.; Chu, R.; Mo, F.; Hu, D.; Liu, C.; Li, B. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour. Technol. 2020, 301, 122804. [Google Scholar] [CrossRef] [PubMed]
- Posada, J.A.; Brentner, L.B.; Ramirez, A.; Patel, M.K. Conceptual design of sustainable integrated microalgae biorefineries: Parametric analysis of energy use, greenhouse gas emissions and techno-economics. Algal Res. 2016, 17, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Almomani, F.; Al Ketife, A.; Judd, S.; Shurair, M.; Bhosale, R.R.; Znad, H.; Tawalbeh, M. Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Sci. Total Environ. 2019, 662, 662–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Wang, H.; Cheng, P.; Chang, T.; Chen, P.; Zhou, C.; Ruan, R. Development of integrated culture systems and harvesting methods for improved algal biomass productivity and wastewater resource recovery—A review. Sci. Total Environ. 2020, 746, 141039. [Google Scholar] [CrossRef]
- Anto, S.; Mukherjee, S.S.; Muthappa, R.; Mathimani, T.; Deviram, G.; Kumar, S.; Verma, T.N.; Pugazhendhi, A. Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere 2020, 242, 125079. [Google Scholar] [CrossRef] [PubMed]
- Pruvost, J.; Goetz, V.; Artu, A.; Das, P.; Al Jabri, H. Thermal modeling and optimization of microalgal biomass production in the harsh desert conditions of State of Qatar. Algal Res. 2019, 38, 101381. [Google Scholar] [CrossRef]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Baral, S.S.; Singh, K.; Sharma, P. The potential of sustainable algal biofuel production using CO2 from thermal power plant in India. Renew. Sustain. Energy Rev. 2015, 49, 1061–1074. [Google Scholar] [CrossRef]
- Sturm, B.S.; Lamer, S.L. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl. Energy 2011, 88, 3499–3506. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Hu, B.; Min, M.; Chen, P.; Ruan, R.R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresour. Technol. 2011, 102, 10861–10867. [Google Scholar] [CrossRef]
- Iasimone, F.; Panico, A.; De Felice, V.; Fantasma, F.; Iorizzi, M.; Pirozzi, F. Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. J. Environ. Manag. 2018, 223, 1078–1085. [Google Scholar] [CrossRef]
- Ji, M.-K.; Abou-Shanab, R.; Kim, S.-H.; Salama, E.-S.; Lee, S.-H.; Kabra, A.N.; Lee, Y.-S.; Hong, S.; Jeon, B.-H. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol. Eng. 2013, 58, 142–148. [Google Scholar] [CrossRef]
- Das, P.; Thaher, M.I.; Hakim, M.A.Q.M.A.; Al-Jabri, H.M.S. Sustainable production of toxin free marine microalgae biomass as fish feed in large scale open system in the Qatari desert. Bioresour. Technol. 2015, 192, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Vieira de Mendonça, H.; Assemany, P.; Abreu, M.; Couto, E.; Maciel, A.M.; Duarte, R.L.; Barbosa dos Santos, M.G.; Reis, A. Microalgae in a global world: New solutions for old problems? Renew. Energy 2021, 165, 842–862. [Google Scholar] [CrossRef]
- Al Ghazal, G.; Bounnit, T.; Al Muraikhi, M.; Rasheed, R.; Dalgamouni, T.; Saadaoui, I.; Al Jabri, H. Qatar University culture collection: A source of biodiversity and numerous applications. In Qatar University Life Science Symposium 2016: Biodiversity, Sustainability and Climate Change, with Perspectives from Qatar; Hamad bin Khalifa University Press (HBKU Press): Ar Rayyan, Qatar, 2016. [Google Scholar]
- Das, P.; Thaher, M.; AbdulQuadir, M.; Khan, S.; Chaudhary, A.; Al-Jabri, H. Long-term semi-continuous cultivation of a halo-tolerant Tetraselmis susing recycled growth media. Bioresour. Technol. 2019, 276, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Quadir, M.A.; Chaudhary, A.K.; Thaher, M.I.; Khan, S.; Alghazal, G.; Al-Jabri, H. Outdoor continuous cultivation of self-settling marine Cyanobacterium chroococcidiopsis sp. Ind. Biotechnol. 2018, 14, 45–53. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, F.; Wang, L.; Yang, C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 2017, 3, 318–329. [Google Scholar] [CrossRef]
- Acién, F.; Molina, E.; Reis, A.; Torzillo, G.; Zittelli, G.; Sepúlveda, C.; Masojídek, J. Photobioreactors for the production of microalgae. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 1–44. [Google Scholar]
- Weissman, J.C.; Goebel, R.P. Production of Liquid Fuels and Chemicals by Microalgae. Final Subcontract Report; Microbial Products Inc.: Fairfield, CA, USA, 1985. [Google Scholar]
- Almomani, F.A. Assessment and modeling of microalgae growth considering the effects of CO2, nutrients, dissolved organic carbon and solar irradiation. J. Environ. Manag. 2019, 247, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Almomani, F.; Örmeci, B. Assessment of algae-based wastewater treatment in hot climate region: Treatment performance and kinetics. Process Saf. Environ. Prot. 2020, 141, 140–149. [Google Scholar] [CrossRef]
- Znad, H.; Naderi, G.; Ang, H.; Tadé, M. CO2 biomitigation and biofuel production using microalgae: Photobioreactors developments and future directions. Adv. Chem. Eng. 2012, 9, 230–244. [Google Scholar]
- Álvarez-Díaz, P.D.; Ruiz, J.; Arbib, Z.; Barragán, J.; Garrido-Pérez, M.C.; Perales, J.A. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Res. 2017, 24, 477–485. [Google Scholar] [CrossRef]
- Metsoviti, M.N.; Papapolymerou, G.; Karapanagiotidis, I.T.; Katsoulas, N. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Gunawan, T.J.; Ikhwan, Y.; Restuhadi, F.; Pato, U. Effect of light Intensity and photoperiod on growth of Chlorella pyrenoidosa and CO2 biofixation. E3S Web Conf. EDP Sci. 2018, 31, 03003. [Google Scholar] [CrossRef] [Green Version]
- Richmond, A. Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In Chemicals from Microalgae; Routledge: London, UK, 1999; pp. 353–386. [Google Scholar]
- Abreu, A.P.; Fernandes, B.; Vicente, A.; Teixeira, J.; Dragone, G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour. Technol. 2012, 118, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Abou-Shanab, R.A.; Ji, M.-K.; Kim, H.-C.; Paeng, K.-J.; Jeon, B.-H. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J. Environ. Manag. 2013, 115, 257–264. [Google Scholar] [CrossRef]
- Ruiz-Martinez, A.; Garcia, N.M.; Romero, I.; Seco, A.; Ferrer, J. Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresour. Technol. 2012, 126, 247–253. [Google Scholar] [CrossRef]
- AlMomani, F.A.; Örmeci, B. Performance of Chlorella Vulgaris, Neochloris Oleoabundans, and mixed indigenous microalgae for treatment of primary effluent, secondary effluent and centrate. Ecol. Eng. 2016, 95, 280–289. [Google Scholar] [CrossRef]
- Marbelia, L.; Bilad, M.R.; Passaris, I.; Discart, V.; Vandamme, D.; Beuckels, A.; Muylaert, K.; Vankelecom, I.F. Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresour. Technol. 2014, 163, 228–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Znad, H.; Al Ketife, A.M.; Judd, S.; AlMomani, F.; Vuthaluru, H.B. Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol. Eng. 2018, 110, 1–7. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. Int. J. Greenh. Gas Control 2013, 14, 169–176. [Google Scholar] [CrossRef]
- Li, J.; Xu, N.S.; Su, W.W. Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochem. Eng. J. 2003, 14, 51–65. [Google Scholar] [CrossRef]
- Doucha, J.; Straka, F.; Lívanský, K. Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 2005, 17, 403–412. [Google Scholar] [CrossRef]
- Ugwu, C.; Aoyagi, H.; Uchiyama, H. Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 2007, 45, 309–311. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of CO2 concentration on algal growth: A review. Renew. Sustain. Energy Rev. 2014, 38, 172–179. [Google Scholar] [CrossRef]
- Seckbach, J.; Gross, H.; Nathan, M. Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Isr. J. Bot. 1971, 20, 84–90. [Google Scholar]
- Hanagata, N.; Takeuchi, T.; Fukuju, Y.; Barnes, D.J.; Karube, I. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 1992, 31, 3345–3348. [Google Scholar] [CrossRef]
- Maeda, K.; Owada, M.; Kimura, N.; Omata, K.; Karube, I. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers. Manag. 1995, 6, 717–720. [Google Scholar] [CrossRef]
- Hirata, S.; Hayashitani, M.; Taya, M.; Tone, S. Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-cellection device. J. Ferment. Bioeng. 1996, 81, 470–472. [Google Scholar] [CrossRef]
- Nakano, Y.; Miyatake, K.; Okuno, H.; Hamazaki, K.; Takenaka, S.; Honami, N.; Kiyota, M.; Aiga, I.; Kondo, J. Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. In International Symposium on Plant Production in Closed Ecosystems; International Society for Horticultural Science: Leuven, Belgium, 1996; p. 440. [Google Scholar]
- Douskova, I.; Doucha, J.; Livansky, K.; Machat, J.; Novak, P.; Umysova, D.; Zachleder, V.; Vitova, M. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl. Microbiol. Biotechnol. 2009, 82, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Preisig, H.R.; Andersen, R.A. Historical Review of Algal Culturing Techniques. Algal Cult. Tech. 2005, 65, 79–82. [Google Scholar] [CrossRef]
- Li, Y.; Horsman, M.; Wu, N.; Lan, C.Q.; Dubois-Calero, N. Biofuels from microalgae. Biotechnol. Prog. 2008, 24, 815–820. [Google Scholar] [CrossRef]
- Young, E.B.; Beardall, J. Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. J. Phycol. 2003, 39, 897–905. [Google Scholar] [CrossRef]
- Çelekli, A.; Yavuzatmaca, M.; Bozkurt, H. Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresour. Technol. 2009, 100, 3625–3629. [Google Scholar] [CrossRef]
- Harkness, J.; Dwyer, G.S.; Warner, N.R.; Parker, K.M.; Mitch, W.A.; Vengosh, A. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters. Environmental implications. Environ. Sci. Technol. 2015, 49, 1955–1963. [Google Scholar] [CrossRef]
- Pate, R.; Klise, G.; Wu, B. Resource demand implications for US algae biofuels production scale-u. Appl. Energy 2011, 88, 3377–3388. [Google Scholar] [CrossRef]
- Afkar, E.; Ababna, H.; Fathi, A. Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. Am. J. Environ. Sci. 2010, 6, 230. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Gaur, J. Chemical reaction-and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat. Bioresour. Technol. 2011, 102, 633–640. [Google Scholar] [CrossRef]
- Calderón-Delgado, I.C.; Mora-Solarte, D.A.; Velasco-Santamaría, Y.M. Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation. Environ. Monit. Assess. 2019, 191, 399. [Google Scholar] [CrossRef]
- Ojagh, S.M.A.; Fallah, N.; Nasernejad, B. Biological treatment of organic compounds in produced water with use of halotolerant bacteria. J. Environ. Chem. Eng. 2020, 8, 104412. [Google Scholar] [CrossRef]
- Ammar, S.H.; Khadim, H.J.; Mohamed, A.I. Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production. Environ. Technol. Innov. 2018, 10, 132–142. [Google Scholar] [CrossRef]
- Rahman, A.; Pan, S.; Houston, C.; Selvaratnam, T. Evaluation of Galdieria sulphuraria and Chlorella vulgaris for the bioremediation of produced water. Water 2021, 13, 1183. [Google Scholar] [CrossRef]
- Sastre, R.R.; Csögör, Z.; Perner-Nochta, I.; Fleck-Schneider, P.; Posten, C. Scale-down of microalgae cultivations in tubular photo-bioreactors—A conceptual approach. J. Biotechnol. 2007, 132, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Rajvanshi, M.; Sayre, R. Recent advances in algal biomass production. In Biomass; InTech Open: London, UK, 2020. [Google Scholar]
- Kumar, K.; Mishra, S.K.; Shrivastav, A.; Park, M.S.; Yang, J.-W. Recent trends in the mass cultivation of algae in raceway ponds. Renew. Sustain. Energy Rev. 2015, 51, 875–885. [Google Scholar] [CrossRef]
- White, R.L.; Ryan, R.A. Long-term cultivation of algae in open-raceway ponds: Lessons from the field. Ind. Biotechnol. 2015, 11, 213–220. [Google Scholar] [CrossRef]
- Vadlamani, A.; Viamajala, S.; Pendyala, B.; Varanasi, S. Cultivation of microalgae at extreme alkaline pH conditions: A novel approach for biofuel production. ACS Sustain. Chem. Eng. 2017, 5, 7284–7294. [Google Scholar] [CrossRef]
- Mathimani, T.; Mallick, N. A comprehensive review on harvesting of microalgae for biodiesel—Key challenges and future directions. Renew. Sustain. Energy Rev. 2018, 91, 1103–1120. [Google Scholar] [CrossRef]
- Mathimani, T.; Uma, L.; Prabaharan, D. Formulation of low-cost seawater medium for high cell density and high lipid content of Chlorella vulgaris BDUG 91771 using central composite design in biodiesel perspective. J. Clean. Prod. 2018, 198, 575–586. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Wu, W.-T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol. 2009, 100, 3921–3926. [Google Scholar] [CrossRef]
- Ullah, K.; Ahmad, M.; Sofia; Sharma, V.K.; Lu, P.; Harvey, A.; Zafar, M.; Sultana, S. Assessing the potential of algal biomass opportunities for bioenergy industry: A review. Fuel 2015, 143, 414–423. [Google Scholar] [CrossRef]
- Jay, M.; Kawaroe, M.; Effendi, H. Lipid and fatty acid composition microalgae Chlorella vulgaris using photobioreactor and open pond. IOP Conf Ser. Earth Environ Sci. 2018, 141, 012015. [Google Scholar] [CrossRef]
- Grobbelaar, J.U. Factors governing algal growth in photobioreactors: The “open” versus “closed” debate. J. Appl. Phycol. 2008, 21, 489. [Google Scholar] [CrossRef]
- Jerney, J.; Spilling, K. Large scale cultivation of microalgae: Open and closed systems. In Biofuels from Algae; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–8. [Google Scholar]
- Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Lee, Y.-K. Microalgal mass culture systems and methods: Their limitation and potential. J. Appl. Phycol. 2001, 13, 307–315. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Meireles, L.A.; Malcata, F.X. Microalgal reactors: A review of enclosed system designs and performances. Biotechnol. Progr. 2006, 22, 1490–1506. [Google Scholar] [CrossRef]
- Shurair, M.S. Photobioreator Technology for Carbon Capture and Nutrients Removal. Ph.D. Thesis, Qatar University, Doha, Qatar, 2017. [Google Scholar]
- Elrayies, G.M. Microalgae: Prospects for greener future buildings. Renew. Sustain. Energy Rev. 2018, 81, 1175–1191. [Google Scholar] [CrossRef]
- SundarRajan, P.; Gopinath, K.P.; Greetham, D.; Antonysamy, A.J. A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system. J. Clean. Prod. 2019, 210, 445–458. [Google Scholar] [CrossRef]
- Laksono, S.; ElSherbiny, I.M.; Huber, S.A.; Panglisch, S. Fouling scenarios in hollow fiber membranes during mini-plant filtration tests and correlation to microalgae-loaded feed characteristics. Chem. Eng. J. 2020, 420, 127723. [Google Scholar] [CrossRef]
- Zhao, Z.; Muylaert, K.; Vankelecom, I.F. Combining patterned membrane filtration and flocculation for economical microalgae harvesting. Water Res. 2021, 198, 117181. [Google Scholar] [CrossRef]
- Najjar, Y.S.; Abu-Shamleh, A. Harvesting of microalgae by centrifugation for biodiesel production: A review. Algal Res. 2020, 51, 102046. [Google Scholar] [CrossRef]
- Abu-Shamleh, A.; Najjar, Y.S. Optimization of mechanical harvesting of microalgae by centrifugation for biofuels production. Biomass Bioenergy 2020, 143, 105877. [Google Scholar] [CrossRef]
- Dassey, A.J.; Theegala, C.S. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour. Technol. 2013, 128, 241–245. [Google Scholar] [CrossRef]
- Landels, A.; Beacham, T.A.; Evans, C.T.; Carnovale, G.; Raikova, S.; Cole, I.; Goddard, P.; Chuck, C.; Allen, M.J. Improving electrocoagulation floatation for harvesting microalgae. Algal Res. 2019, 39, 101446. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.M.P.; de Souza, R.A.S.; Leon-Nino, A.D.; da Costa, J.D.a.A.; Tiburcio, R.S.; Nunes, T.A.; de Mello, T.C.S.; Kanemoto, F.T.; Saldanha-Corrêa, F.M.P.; Gianesella, S.M.F. Improvement in microalgae lipid extraction using a sonication-assisted method. Renew. Energy 2013, 55, 525–531. [Google Scholar] [CrossRef]
- Giovannoni, S.J.; DeLong, E.F.; Schmidt, T.M.; Pace, N.R. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl. Environ. Microbiol. 1990, 56, 2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, U.C.M.J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Muñoz, R.; Guieysse, B. Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Bae, C.Y.; Han, J.-I.; Park, J.-K. In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules. Anal. Chem. 2013, 85, 8749–8756. [Google Scholar] [CrossRef]
- Divakaran, R.; Pillai, V.S. Flocculation of river silt using chitosan. Water Res. 2002, 36, 2414–2418. [Google Scholar] [CrossRef]
- Bosma, R.; Van Spronsen, W.A.; Tramper, J.; Wijffels, R.H. Ultrasound, a new separation technique to harvest microalgae. J. Appl. Phycol. 2003, 15, 143–153. [Google Scholar] [CrossRef]
- Gröschl, M. Ultrasonic separation of suspended particles-Part I: Fundamentals. Acta Acust. 1998, 84, 432–447. [Google Scholar]
- Deshmukh, S.; Kumar, R.; Bala, K. Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process. Technol. 2019, 191, 232–247. [Google Scholar] [CrossRef]
- Menegazzo, M.L.; Fonseca, G.G. Biomass recovery and lipid extraction processes for microalgae biofuels production: A review. Renew. Sustain. Energy Rev. 2019, 107, 87–107. [Google Scholar] [CrossRef]
- Vasistha, S.; Khanra, A.; Clifford, M.; Rai, M. Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review. Renew. Sustain. Energy Rev. 2020, 107, 110498. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Sierra, L.S.; Dixon, C.K.; Wilken, L.R. Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction. Algal Res. 2017, 25, 149–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.; Wang, Z.; Sun, Y.; Zhu, S.; Li, L.; Lv, P. Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renew. Energy 2018, 125, 1049–1057. [Google Scholar] [CrossRef]
- Gerde, J.A.; Montalbo-Lomboy, M.; Yao, L.; Grewell, D.; Wang, T. Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresour. Technol. 2012, 125, 175–181. [Google Scholar] [CrossRef]
- Faerman, V.; Mukmenev, I.; Shreiber, I. Sonication of microalgae and its precipitation. Acta Acust. 2002, 88, 592–593. [Google Scholar]
- Dai, Y.-M.; Chen, K.-T.; Chen, C.-C. Study of the microwave lipid extraction from microalgae for biodiesel production. Chem. Eng. J. 2014, 250, 267–273. [Google Scholar] [CrossRef]
- Onumaegbu, C.; Alaswad, A.; Rodriguez, C.; Olabi, A. Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology. Renew. Energy 2019, 132, 1323–1331. [Google Scholar] [CrossRef] [Green Version]
- Teo, C.L.; Idris, A. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production. Bioresour. Technol. 2014, 171, 477–481. [Google Scholar] [CrossRef]
- González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production. Bioresour. Technol. Rep. 2019, 7, 100214. [Google Scholar] [CrossRef]
- González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Osmotic shock pre-treatment of Chaetoceros muelleri wet biomass enhanced solvent-free lipid extraction and biogas production. Algal Res. 2021, 54, 102177. [Google Scholar] [CrossRef]
- Grimi, N.; Dubois, A.; Marchal, L.; Jubeau, S.; Lebovka, N.; Vorobiev, E. Selective extraction from microalgae Nannochloropsis susing different methods of cell disruption. Bioresour. Technol. 2014, 153, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Yoo, C.; Jun, S.-Y.; Ahn, C.-Y.; Oh, H.-M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, L. A review on hydrothermal co-liquefaction of biomass. Appl. Energy 2019, 250, 926–945. [Google Scholar] [CrossRef]
- Gu, X.; Martinez-Fernandez, J.; Pang, N.; Fu, X.; Chen, S. Recent development of hydrothermal liquefaction for algal biorefinery. Renew. Sustain. Energy Rev. 2020, 121, 109707. [Google Scholar] [CrossRef]
- Guo, Y.; Yeh, T.; Song, W.; Xu, D.; Wang, S. A review of bio-oil production from hydrothermal liquefaction of algae. Renew. Sustain. Energy Rev. 2015, 48, 776–790. [Google Scholar] [CrossRef]
- Cui, Z.; Cheng, F.; Jarvis, J.M.; Brewer, C.; Jena, U. Roles of co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae. Bioresour. Technol. 2020, 310, 123454. [Google Scholar] [CrossRef]
- Raheem, A.; Ji, G.; Memon, A.; Sivasangar, S.; Wang, W.; Zhao, M.; Taufiq-Yap, Y. Catalytic gasification of algal biomass for hydrogen-rich gas production: Parametric optimization via central composite design. Energy Convers. Manag. 2018, 158, 235–245. [Google Scholar] [CrossRef]
- Raheem, A.; Liu, H.; Ji, G.; Zhao, M. Gasification of lipid-extracted microalgae biomass promoted by waste eggshell as CaO catalyst. Algal Res. 2019, 42, 101601. [Google Scholar] [CrossRef]
- Yang, C.; Li, R.; Zhang, B.; Qiu, Q.; Wang, B.; Yang, H.; Ding, Y.; Wang, C. Pyrolysis of microalgae: A critical review. Fuel Process. Technol. 2019, 186, 53–72. [Google Scholar] [CrossRef]
- Lee, X.J.; Ong, H.C.; Gan, Y.Y.; Chen, W.-H.; Mahlia, T.M.I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers. Manag. 2020, 210, 112707. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, X.; Li, L. The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas. Bioresour. Technol. 2013, 140, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Beneroso, D.; Bermúdez, J.; Arenillas, A.; Menéndez, J. Microwave pyrolysis of microalgae for high syngas production. Bioresour. Technol. 2013, 144, 240–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efremenko, E.; Nikolskaya, A.; Lyagin, I.; Sen’Ko, O.; Makhlis, T.; Stepanov, N.; Maslova, O.; Mamedova, F.; Varfolomeev, S. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour. Technol. 2012, 114, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Xia, A.; Liao, Q.; Fu, Q.; Huang, Y.; Zhu, X. Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste. Renew. Sustain. Energy Rev. 2019, 112, 395–410. [Google Scholar] [CrossRef]
- Chen, C.; Sun, C.; Xia, A.; Liao, Q.; Guo, X.; Huang, Y.; Fu, Q.; Zhu, X.; Zhu, X. Sustainable biohythane production from algal bloom biomass through two-stage fermentation: Impacts of the physicochemical characteristics and fermentation performance. Int. J. Hydrogen Energy 2020, 45, 27. [Google Scholar] [CrossRef]
- Karpagam, R.; Jawaharraj, K.; Gnanam, R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: A cascade approach for sustainable bioenergy. Sci. Total Environ. 2021, 766, 144236. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Tyagi, R.; Surampalli, R. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew. Sustain. Energy Rev. 2013, 26, 216–223. [Google Scholar] [CrossRef]
- Kim, B.; Heo, H.Y.; Son, J.; Yang, J.; Chang, Y.-K.; Lee, J.H.; Lee, J.W. Simplifying biodiesel production from microalgae via wet in situ transesterification: A review in current research and future prospects. Algal Res. 2019, 41, 101557. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Incharoensakdi, A. Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel 2018, 217, 458–466. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Anal, A.K. Enhanced lipid and starch productivity of microalga (Chlorococcum sTISTR 8583) with nitrogen limitation following effective pretreatments for biofuel production. Biotechnol. Rep. 2019, 21, e00298. [Google Scholar] [CrossRef]
- El-Dalatony, M.M.; Salama, E.-S.; Kurade, M.; Kim, K.-Y.; Govindwar, S.P.; Kim, J.R.; Kwon, E.E.; Min, B.; Jang, M.; Oh, S.-E.; et al. Whole conversion of microalgal biomass into biofuels through successive high-throughput fermentation. Chem. Eng. J. 2018, 360, 797–805. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, Z. Nature-inspired virus-assisted algal cell disruption for cost-effective biofuel production. Appl. Energy 2019, 251, 113330. [Google Scholar] [CrossRef]
- Church, J.; Hwang, J.-H.; Kim, K.-T.; McLean, R.; Oh, Y.-K.; Nam, B.; Joo, J.C.; Lee, W.H. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresour. Technol. 2017, 243, 147–153. [Google Scholar] [CrossRef]
- Bell, T.A.S.; Doig, L.; Peyton, B.; Gerlach, R.; Fields, M.W. Contributions of the microbial community to algal biomass and biofuel productivity in a wastewater treatment lagoon system. Algal Res. 2019, 39, 101461. [Google Scholar] [CrossRef]
- Biswas, B.; Kumar, A.A.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T. Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae. Bioresour. Technol. 2017, 242, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Q.M.; Zhang, B.; Wang, L.; Joseph, G.; Shahbazi, A. A combined fermentation and ethanol-assisted liquefaction process to produce biofuel from Nannochloropsis sp. Fuel 2019, 238, 159–165. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Zhang, D.; Feng, L. Catalytic upgrading of bio-oil in hydrothermal liquefaction of algae major model components over liquid acids. Energy Convers. Manag. 2017, 154, 336–343. [Google Scholar] [CrossRef]
- Hanchate, N.; Ramani, S.; Mathpati, C.; Dalvi, V.H. Biomass gasification using dual fluidized bed gasification systems: A review. J. Clean. Prod. 2020, 280, 123148. [Google Scholar] [CrossRef]
- Soares, R.B.; Martins, M.F.; Gonçalves, R.F. Experimental investigation of wastewater microalgae in a pilot-scale downdraft gasifier. Algal Res. 2020, 51, 102049. [Google Scholar] [CrossRef]
- Xu, D.; Liu, L.; Wei, N.; Guo, Y.; Wang, S.; Wu, Z.; Duan, P. Catalytic supercritical water gasification of aqueous phase directly derived from microalgae hydrothermal liquefaction. Int. J. Hydrogen Energy 2019, 44, 26181–26192. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Chen, W.-H.; Kamyab, H.; Kumar, G.; Ala’a, H.; Ngamcharussrivichai, C. Cultivation of microalgae Chlorella sin municipal sewage for biofuel production and utilization of biochar derived from residue for the conversion of hematite iron ore (Fe2O3) to iron (Fe)–Integrated algal biorefinery. Energy 2019, 189, 116128. [Google Scholar] [CrossRef]
- Wang, S.; Hu, S.; Shang, H.; Barati, B.; Gong, X.; Hu, X.; Abomohra, A.E.-F. Study on the co-operative effect of kitchen wastewater for harvest and enhanced pyrolysis of microalgae. Bioresour. Technol. 2020, 317, 123983. [Google Scholar] [CrossRef]
- Du, Z.; Li, Y.; Wang, X.; Wan, Y.; Chen, Q.; Wang, C.; Lin, X.; Liu, Y.; Chen, P.; Ruan, R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 2011, 102, 4890–4896. [Google Scholar] [CrossRef]
- Choi, D.; Nam, I.-H.; Park, Y.-K.; Ok, Y.S.; Lee, J.; Kwon, E.E. Catalytic pyrolysis of brown algae using carbon dioxide and oyster shell. J. CO2 Util. 2019, 34, 668–675. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, X.; Li, L.; Wu, J. The catalytic pyrolysis of microalgae to produce syngas. Energy Convers. Manag. 2014, 85, 545–550. [Google Scholar] [CrossRef]
- Ho, S.-H.; Huang, S.-W.; Chen, C.-Y.; Hasunuma, T.; Kondo, A.; Chang, J.-S. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour. Technol. 2013, 135, 191–198. [Google Scholar] [CrossRef]
- Llamas, M.; Magdalena, J.A.; Tomás-Pejó, E.; González-Fernández, C. Microalgae-based anaerobic fermentation as a promising technology for producing biogas and microbial oils. Energy 2020, 206, 118184. [Google Scholar] [CrossRef]
- David, B.; Federico, B.; Cristina, C.; Marco, G.; Federico, M.; Paolo, P. Biohythane production from food wastes. In Biohydrogen; Elsevier: Amsterdam, The Netherlands, 2019; pp. 347–368. [Google Scholar]
- Salaeh, S.; Kongjan, P.; Panphon, S.; Hemmanee, S.; Reungsang, A.; Jariyaboon, R. Feasibility of ABE fermentation from Rhizoclonium sphydrolysate with low nutrient supplementation. Biomass Bioenergy 2019, 127, 105269. [Google Scholar] [CrossRef]
- Ha, G.-S.; El-Dalatony, M.M.; Kurade, M.B.; Salama, E.-S.; Basak, B.; Kang, D.; Roh, H.-S.; Lim, H.; Jeon, B.-H. Energy-efficient pretreatments for the enhanced conversion of microalgal biomass to biofuels. Bioresour. Technol. 2020, 309, 123333. [Google Scholar] [CrossRef] [PubMed]
- Serrà, A.; Artal, R.; García-Amorós, J.; Gómez, E.; Philippe, L. Circular zero-residue process using microalgae for efficient water decontamination, biofuel production, and carbon dioxide fixation. Chem. Eng. J. 2020, 388, 124278. [Google Scholar] [CrossRef]
- Deng, C.; Lin, R.; Kang, X.; Wu, B.; O’Shea, R.; Murphy, J.D. Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis. Renew. Sustain. Energy Rev. 2020, 128, 109895. [Google Scholar] [CrossRef]
- Chandra, N.; Shukla, P.; Mallick, N. Role of cultural variables in augmenting carbohydrate accumulation in the green microalga Scenedesmus acuminatus for bioethanol production. Biocatal. Agric. Biotechnol. 2020, 26, 101632. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Periyasamy, M.; Prathima, A. Combustion analysis of a CI engine with Caulerpa racemosa algae biofuel with nano additives. Mater. Today Proc. 2020, 33, 3324–3329. [Google Scholar] [CrossRef]
- Shwetharani, R.; Balakrishna, R.G. Efficient algal lipid extraction via photocatalysis and its conversion to biofuel. Appl. Energy 2016, 168, 364–374. [Google Scholar] [CrossRef]
- Vignesh, N.S.; Vimali, E.; Sangeetha, R.; Arumugam, M.; Ashokkumar, B.; Ganeshmoorthy, I.; Varalakshmi, P. Sustainable biofuel from microalgae: Application of lignocellulosic wastes and bio-iron nanoparticle for biodiesel production. Fuel 2020, 278, 118326. [Google Scholar] [CrossRef]
- Hess, D.; Quinn, J.C. Impact of inorganic contaminants on microalgal biofuel production through multiple conversion pathways. Biomass Bioenergy 2018, 119, 237–245. [Google Scholar] [CrossRef]
- Phukan, M.M.; Hazarika, N.; Bora, P.; Borah, T.; Konwar, B.K. Leveraging microalga feedstock for biofuel production and wasteland reclamation using remote sensing and ex situ experimentation. Renew. Energy 2020, 159, 973–981. [Google Scholar] [CrossRef]
- Dogaris, I.; Loya, B.; Cox, J.; Philippidis, G. Study of landfill leachate as a sustainable source of water and nutrients for algal biofuels and bioproducts using the microalga Picochlorum oculatum in a novel scalable bioreactor. Bioresour. Technol. 2019, 282, 18–27. [Google Scholar] [CrossRef] [PubMed]
Parameter | Raw Produced Water | Filtered Water |
---|---|---|
Total organic carbon (mg/L) | 389.1 | 317 |
Total nitrogen (mg/L) | 35.77 | 27.6 |
Total phosphorus (μg/L) | 277.78 | 180 |
Benzene (mg/L) | 21 | 16.1 |
Toluene (mg/L) | 3.8 | 3.21 |
Ethylbenzene (mg/L) | 1.22 | 1.05 |
Xylene (mg/L) | 3.43 | 3.11 |
Country | Salinity Rang (gTDS/L) | References | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1998 | 2014 | 2020 | 1998 | 2014 | 2020 | 1998 | 2014 | 2020 | |||
Qatar | 4.1 × 105 | 50.5 × 106 | 58.8 × 106 | 5.6 × 102 | 2.4 × 104 | 6.7 × 104 | 0.36 | 1.2 | 1.60 | 3.9 | [28,29] |
Oman | 3.2 × 106 | 5.7 × 106 | 6.9 × 106 | 1.07 × 104 | 1.90 × 104 | 2.7 × 104 | 0.37 | 1.26 | 1.68 | 4.2–9.8 | [18] |
New Mexico | 0.9 × 109 | 1.1 × 109 | 1.25 × 109 | 3.1 × 105 | 3.8 × 106 | 3.9 × 106 | 0.39 | 1.32 | 1.764 | ≥100 | [25,30] |
Australia | 2.1 × 1010 | 2.52 × 1010 | 3.02 × 1010 | 7.00 × 107 | 8.40 × 107 | 1.01 × 108 | 0.41 | 1.38 | 1.82 | 2.65–9.09 | [18] |
Composition | Concentration Range (mg/L) | References |
---|---|---|
Chemical oxygen demand (COD) | 1220–2600 | [4,6,8,32,33] |
Sodium ions () | 0–150,000 | |
Total suspended solids (TSS) | 1.2–1000 | [4,6,8,20,32,33] |
Calcium ion () | 0–74,000 | |
Total polar compounds | 9.7–600 | [6,8,34] |
Boron (B) | 5–95 | |
Total dissolved solids (TDS) | 100–400,000 | [8,34] |
Chlorine ( | 0–270,000 | |
BTEX; benzene (B), toluene (T), ethylbenzene (E), and xylenes (X) | 0.73–24.1 | [4,32] |
Magnesium ( | 8–6000 | |
Total organic compound (TOC) | 0–1500 | [4,6,20,32,33] |
Iron(II) () | 0.1–1100 | |
Total oil and grease | 2–565 | [34] |
Barium ion ( | 0–850 | |
Phenol | 0.009–23 | [6,32,34] |
Potassium ion () | 24–4300 | |
pH | 4.3–10 | [4] |
Strontium ion () | 0–6250 | |
Total organic acids | 0.001–10,000 | [4] |
Aluminium () | 310–340 | |
) | 3–40 | [4,32] |
Lead (Pb) | 0.008–0.08 | |
) | 0–15,000 | [8] |
Arsenic (As) | 0.002–11 | |
Sulfate () | 0–15,000 | [4,6,8] |
Manganese (Mn) | 0.004–175 | |
Titanium (Ti) | 0.01–0.7 | [4,6] |
Zinc (Zn) | 0.01–35 |
Microalgae Species | Type of Nutrients | Removal Efficiency% | References |
---|---|---|---|
Dunaliella salina | Nitrogen Phosphorus heavy metal: Ni Zn | 65% 40% 90% 80% | [63] |
Nannochloropsis oculata | Ammonium and Nitrogen Organic carbon Iron | ~100% 40% >90% | [64] |
Parachlorella kessleri | Benzene and Xylenes Toluene Ethylbenzene | 40% 63% 30% | [65] |
Chlorella vulgaris (C.v) Neochloris oleoabundans (N.o) | COD by (C.v) by (N.o) Ammonia by C.v. and N.o Phosphorus by C.v. and N.o | 51%, 55% and 80% 63%, 47% and 72% (70–84%) (>84%), (>22%) and (<15%) | [66] |
Chlorella pyrenoidosa | Chromium Nickel | 11.24% 33.89% | [67] |
Cultivation System | Algae Species | Cultivation Condition | Type of Waste | Biomass Productivity g/(L.d). | Organic Removal | Biofuel Type | Refs. |
---|---|---|---|---|---|---|---|
Closed system (PBRs) | Scenedesmus acutus (UTEX B72) | Agriculture-grade urea, triple super phosphate (TSP), pot ash and Sprint 330 (iron chelate) | Flue gas | 0.15 | Sulfur, NOx | [68] | |
Closed system 4-L cylindrical photobioreactor (PBR) | Mixed culture of Chlorella vulgaris, Scenedesmus Obliquus, Botryococcus braunii, Botryococcus sudeticus, and Afrocarpus falcatus | pH = 7, Temp = 25 °C. | 0.15 | 21, 60, and 47% for protein, carbohydrate and DOC, respectively | [69] | ||
500 mL glass flasks | Dunaliella tertiolecta | pH—8.1, Temp = 24 °C, f/2 medium | Real PW | 0.0172 @ salinity 30 gTDS/L to 0.0098 @ 201 gTDS/L | Biodiesel | [61] | |
500 mL glass flasks | Cyanobacterium aponinum, Parachlorella kessleri | pH—8.1, Temp = 24 °C, f/2 medium | Real PW | 0.113 * | Biodiesel | [70] | |
Synechococcus sp., Cyanobacterium aponinum and Phormidium sp. | pH = (6–9), | BG-11 medium | NA | Biodiesel | [71] | ||
Chlorella sp. and Scenedesmus sp. | pH = 7.1 | 0.115 * | Chlorella sp.: remove 92% of the TN and 73% of the TOC | [72] | |||
Dunaliella salina | Salinity 52.7–63.3 g/L NaCl | Real produced water | NA | Aluminum, barium, copper, magnesium, manganese, nickel, and strontium | Biodiesel | [59] | |
Horizontal laminar air flow chamber | Chlorella pyrenoidosa | T = 121 °C | Fogg’s Medium, slant culture | NA | Biofuel and bioplastic | [67] |
Algae Species | PW Concentration | Medium Culture | Cultivation System | Biodegraded Organic Matter | Biomass Production | Refs. |
---|---|---|---|---|---|---|
Dunaliella tertiolecta | 30–210 g TDS/L | f/2 medium | 500 mL glass flasks | Nitrogen and phosphorus | Lipid:35–40% at 30 and 60 g TDS/L and Fatty acid methyl ester profiles (FAME) | [61] |
Cyanobacterium aponinum, Parachlorella kessleri | 15, 30, 60, 75, 90 g TDS/L | f/2 medium | 500 mL glass flasks | Phosphorus, ammonium | Lipid production for biofuel: 12 mg lipids/L/D at a salinity of 60 g TDS/L | [70] |
Nannochloropsis oculata and Isochrysis galbana | 10–50% | BG11 medium | 250 mL Erlenmeyer flask | COD and oil content | -At 25% PW: 0.856 g/L and at 50% PW: 0.311 g/L -At 25% PW: 0.638 g/L and at 50% PW: 0.314 g/L | [133] |
Galdieria sulphuraria and Chlorella vulgaris | 0%, 5%, 10%, 20%, 50%, 100% | CM Medium, Bold’s Basal Medium (BBM) | 1 L Erlenmeyer flasks, 500 mL borosilicate Erlenmeyer flask | Nitrogen and phosphorus | - | [134] |
Chlorella vulgaris | 0%, 25%, 75%, 100% and crude oil | F/2 Guillard | 3 L glass flask | Hydrocarbons and total phenols, PAHs | - | [131] |
Nannochloropsis oculata | 0–50% | Mix of seawater and saline produced water | 500 mL glass test bottles | Nitrogen (ammonium) and chemical oxygen demand(COD) | - | [64] |
Dunaliella salina | PW and sea water (1:1, 1:2 and 1:3, respectively) | PW and sea water | - | Nitrogen, phosphorus, Ni and Zn | Lipid and biodiesel | [63] |
Rhodococcus erythropolis PTCC 1767 | 600 mg/L | Synthetic and real PW | 250 mL Erlenmeyer flasks | Total organic carbon (TOC), COD, hydrocarbons (C14-C26) | - | [132] |
Culture Medium | Open System | Closed System |
---|---|---|
Land required | Large areas | Depends on PBRs |
Construction and operation | Easy | Easy–difficult |
Cost and maintenance | Low cost required | High |
Light penetration and utilization | Limit light absorption to the culture | Sufficient/depends on PBRs type |
Biomass productivity | Low and poor productivity | Low–high (depends on PBRs type) |
Cultivation parameters | Low control strategies of the culture conditions | Easy to control |
The need for water for operation | Large quantity | Small quantity |
Seasonal variation | Effected and difficult to control | Not effected and easy to control |
Algal harvesting from culture | Costly and difficult | Depends on harvesting techniques and PBRs type |
Energy consumption | Low energy consumption | High energy |
Culture contamination | Easy to contaminate and difficult to control | Prevent contamination |
Evaporation | Very high | Low |
Algal cultivation density | Low–high | Very high density |
level | Diffuse to the atmosphere | Dissolved in the culture |
Variation in water quality | High variation in water quality and the growth rates | Low variation |
Exposure to pollution | High chance of cultures contamination | Low chance and prevents culture contamination |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsarayreh, M.; Almomani, F.; Khraisheh, M.; Nasser, M.S.; Soliman, Y. Biological-Based Produced Water Treatment Using Microalgae: Challenges and Efficiency. Sustainability 2022, 14, 499. https://doi.org/10.3390/su14010499
Alsarayreh M, Almomani F, Khraisheh M, Nasser MS, Soliman Y. Biological-Based Produced Water Treatment Using Microalgae: Challenges and Efficiency. Sustainability. 2022; 14(1):499. https://doi.org/10.3390/su14010499
Chicago/Turabian StyleAlsarayreh, Malak, Fares Almomani, Majeda Khraisheh, Mustafa S. Nasser, and Yousria Soliman. 2022. "Biological-Based Produced Water Treatment Using Microalgae: Challenges and Efficiency" Sustainability 14, no. 1: 499. https://doi.org/10.3390/su14010499