Digitalization in Food Supply Chains: A Bibliometric Review and Key-Route Main Path Analysis
Abstract
:1. Introduction
- What are the dynamics between technology and the FSC in the reviewed publications?
- What technologies are being adopted to improve the FSC?
- How are various technologies being adopted in the FSC?
- What are the current research gaps at the intersection of technology and the FSC?
2. Research Methodology
2.1. Bibliometric Method
2.2. Key-Route Main Path Analysis
2.3. Data Collection
3. Results of the Descriptive Statistics
3.1. Publications by Year
3.2. Publications by Country
3.3. Publications by Institutions
3.4. Publications by Journals
3.5. Most Productive Authors
3.6. Keyword Frequency Analysis
4. Results from Bibliometric and Key-Route Main Path Analysis
4.1. Keyword Co-Occurrence Network Analysis
4.1.1. ICT for Agriculture and Food Security
4.1.2. Food Waste and Circular Economy
4.1.3. IoT and Blockchain in FSCs
4.1.4. GIS and Consumer Perceptions
4.1.5. Indian and Chinese FSCs
4.2. Key-Route Main Path Analysis
5. Conclusions, Research Implications, and Limitations
5.1. Conclusions
5.2. Research Implications
5.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sufiyan, M.; Haleem, A.; Khan, S.; Khan, M.I. Evaluating Food Supply Chain Performance Using Hybrid Fuzzy MCDM Technique. Sustain. Prod. Consum. 2019, 20, 40–57. [Google Scholar] [CrossRef]
- Aqeel-Ur-Rehman; Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A Review of Wireless Sensors and Networks’ Applications in Agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar] [CrossRef]
- Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.A.; Wang, X. Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE CAA J. Autom. Sin. 2021, 8, 718–752. [Google Scholar] [CrossRef]
- Apaiah, R.K.; Hendrix, E.M. Design of a Supply Chain Network for Pea-Based Novel Protein Foods. J. Food Eng. 2005, 70, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Behzadi, G.; O’Sullivan, M.J.; Olsen, T.L.; Zhang, A. Agribusiness Supply Chain Risk Management: A Review of Quantitative Decision Models. Omega 2018, 79, 21–42. [Google Scholar] [CrossRef]
- UN World Population Prospects 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 10 December 2021).
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in Agriculture, Recent Advances and Future Challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Agyabeng-Mensah, Y.; Ahenkorah, E.; Afum, E.; Dacosta, E.; Tian, Z. Green Warehousing, Logistics Optimization, Social Values and Ethics and Economic Performance: The Role of Supply Chain Sustainability. Int. J. Logist. Manag. 2020, 31, 549–574. [Google Scholar] [CrossRef]
- Manzini, R.; Accorsi, R. The New Conceptual Framework for Food Supply Chain Assessment. J. Food Eng. 2013, 115, 251–263. [Google Scholar] [CrossRef]
- Trivellas, P.; Malindretos, G.; Reklitis, P. Implications of Green Logistics Management on Sustainable Business and Supply Chain Performance: Evidence from a Survey in the Greek Agri-Food Sector. Sustainability 2020, 12, 10515. [Google Scholar] [CrossRef]
- Huan, M.; Ding, Z.; Li, S.; Zhang, C. Blockchain Consensus Mechanism Design for Food Safety Traceability. In Advances in Intelligent Automation and Soft Computing; Springer: Cham, Switzerland, 2021; pp. 620–627. [Google Scholar]
- Zheng, M.; Zhang, S.; Zhang, Y.; Hu, B. Construct Food Safety Traceability System for People’s Health Under the Internet of Things and Big Data. IEEE Access 2021, 9, 70571–70583. [Google Scholar] [CrossRef]
- Barbosa, M.W. Uncovering Research Streams on Agri-Food Supply Chain Management: A Bibliometric Study. Glob. Food Secur. 2021, 28, 100517. [Google Scholar] [CrossRef]
- Kayikci, Y.; Subramanian, N.; Dora, M.; Bhatia, M.S. Food Supply Chain in the Era of Industry 4.0: Blockchain Technology Implementation Opportunities and Impediments from the Perspective of People, Process, Performance, and Technology. Prod. Plan. Control 2020, 1–21. [Google Scholar] [CrossRef]
- Bermeo-Almeida, O.; Cardenas-Rodriguez, M.; Samaniego-Cobo, T.; Ferruzola-Gómez, E.; Cabezas-Cabezas, R.; Bazán-Vera, W. Blockchain in Agriculture: A Systematic Literature Review. In Technologies and Innovation; Springer: Cham, Switzerland, 2018; pp. 44–56. [Google Scholar]
- Galvez, J.F.; Mejuto, J.C.; Simal-Gandara, J. Future Challenges on the Use of Blockchain for Food Traceability Analysis. TrAC Trends Anal. Chem. 2018, 107, 222–232. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Telles, R.; Bonilla, S.H. Blockchain and Supply Chain Management Integration: A Systematic Review of the Literature. Supply Chain Manag. Int. J. 2019, 25, 241–254. [Google Scholar] [CrossRef]
- Rogerson, M.; Parry, G.C. Blockchain: Case Studies in Food Supply Chain Visibility. Supply Chain Manag. Int. J. 2020, 25, 601–614. [Google Scholar] [CrossRef]
- Gill, S.S.; Chana, I.; Buyya, R. IoT Based Agriculture as a Cloud and Big Data Service: The Beginning of Digital India. J. Organ. End User Comput. JOEUC 2017, 29, 1–23. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Parekh, H.; Joshi, S. Modeling the Internet of Things Adoption Barriers in Food Retail Supply Chains. J. Retail. Consum. Serv. 2019, 48, 154–168. [Google Scholar] [CrossRef]
- Liu, S.; Guo, L.; Webb, H.; Ya, X.; Chang, X. Internet of Things Monitoring System of Modern Eco-Agriculture Based on Cloud Computing. IEEE Access 2019, 7, 37050–37058. [Google Scholar] [CrossRef]
- Lu, S.; Wang, X. Toward an Intelligent Solution for Perishable Food Cold Chain Management. In Proceedings of the 7th IEEE International Conference on Software Engineering and Service Science, Beijing, China, 26–28 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 852–856. [Google Scholar]
- Rejeb, A.; Keogh, J.G.; Treiblmaier, H. Leveraging the Internet of Things and Blockchain Technology in Supply Chain Management. Future Internet 2019, 11, 161. [Google Scholar] [CrossRef] [Green Version]
- Khan, P.W.; Byun, Y.-C.; Park, N. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced Deep Learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Wijewardena, K.P.; Karuppuswami, S.; Kriti, N.; Kumar, D.; Chahal, P. Blockchain Inspired RFID-Based Information Architecture for Food Supply Chain. IEEE Internet Things J. 2019, 6, 5803–5813. [Google Scholar] [CrossRef]
- Pincheira, M.; Vecchio, M.; Giaffreda, R.; Kanhere, S.S. Cost-Effective IoT Devices as Trustworthy Data Sources for a Blockchain-Based Water Management System in Precision Agriculture. Comput. Electron. Agric. 2021, 180, 105889. [Google Scholar] [CrossRef]
- Singh, A.; Kumari, S.; Malekpoor, H.; Mishra, N. Big Data Cloud Computing Framework for Low Carbon Supplier Selection in the Beef Supply Chain. J. Clean. Prod. 2018, 202, 139–149. [Google Scholar] [CrossRef]
- Tantalaki, N.; Souravlas, S.; Roumeliotis, M. Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems. J. Agric. Food Inf. 2019, 20, 344–380. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, W. Design of a Precision Agriculture Leakage Seeding System Based on Wireless Sensors. Int. J. Online Eng. 2018, 14. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, Y.; Shao, L. Simulation of the Core Technology of a Greenhouse-Monitoring System Based on a Wireless Sensor Network. Int. J. Online Eng. 2016, 12, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Mercier, S.; Uysal, I. Neural Network Models for Predicting Perishable Food Temperatures along the Supply Chain. Biosyst. Eng. 2018, 171, 91–100. [Google Scholar] [CrossRef]
- Parsaeian, M.; Shahabi, M.; Hassanpour, H. Estimating Oil and Protein Content of Sesame Seeds Using Image Processing and Artificial Neural Network. J. Am. Oil Chem. Soc. 2020, 97, 691–702. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Somov, A.; Bornemann, G.; Hauslage, J.; Fedorov, M. Enabling Precision Agriculture through Embedded Sensing with Artificial Intelligence. IEEE Trans. Instrum. Meas. 2019, 69, 4103–4113. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A Systematic Literature Review on Machine Learning Applications for Sustainable Agriculture Supply Chain Performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Hsu, T.-C.; Yang, H.; Chung, Y.-C.; Hsu, C.-H. A Creative IoT Agriculture Platform for Cloud Fog Computing. Sustain. Comput. Inform. Syst. 2020, 28, 100285. [Google Scholar] [CrossRef]
- Jinbo, C.; Xiangliang, C.; Han-Chi, F.; Lam, A. Agricultural Product Monitoring System Supported by Cloud Computing. Clust. Comput. 2019, 22, 8929–8938. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart Farming IoT Platform Based on Edge and Cloud Computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A. Big GIS Analytics Framework for Agriculture Supply Chains: A Literature Review Identifying the Current Trends and Future Perspectives. Comput. Electron. Agric. 2018, 155, 103–120. [Google Scholar] [CrossRef]
- Korošak, Ž.; Suhadolnik, N.; Pleteršek, A. The Implementation of a Low Power Environmental Monitoring and Soil Moisture Measurement System Based on UHF RFID. Sensors 2019, 19, 5527. [Google Scholar] [CrossRef] [Green Version]
- Cancela, J.J.; González, X.P.; Vilanova, M.; Mirás-Avalos, J.M. Water Management Using Drones and Satellites in Agriculture. Water 2019, 11, 874. [Google Scholar] [CrossRef] [Green Version]
- Mahroof, K.; Omar, A.; Rana, N.P.; Sivarajah, U.; Weerakkody, V. Drone as a Service (DaaS) in Promoting Cleaner Agricultural Production and Circular Economy for Ethical Sustainable Supply Chain Development. J. Clean. Prod. 2021, 287, 125522. [Google Scholar] [CrossRef]
- Rivera, M.A.; Pizam, A. Advances in Hospitality Research: “From Rodney Dangerfield to Aretha Franklin”. Int. J. Contemp. Hosp. Manag. 2015, 27, 362–378. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2020, 17, 4322–4334. [Google Scholar] [CrossRef]
- Abdollahi, A.; Rejeb, K.; Rejeb, A.; Mostafa, M.M.; Zailani, S. Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis. Sustainability 2021, 13, 12011. [Google Scholar] [CrossRef]
- Ben-Daya, M.; Hassini, E.; Bahroun, Z. Internet of Things and Supply Chain Management: A Literature Review. Int. J. Prod. Res. 2019, 57, 4719–4742. [Google Scholar] [CrossRef] [Green Version]
- Ben-Daya, M.; Hassini, E.; Bahroun, Z.; Banimfreg, B.H. The Role of Internet of Things in Food Supply Chain Quality Management: A Review. Qual. Manag. J. 2020, 28, 17–40. [Google Scholar] [CrossRef]
- Bouzembrak, Y.; Klüche, M.; Gavai, A.; Marvin, H.J. Internet of Things in Food Safety: Literature Review and a Bibliometric Analysis. Trends Food Sci. Technol. 2019, 94, 54–64. [Google Scholar] [CrossRef]
- Nurgazina, J.; Pakdeetrakulwong, U.; Moser, T.; Reiner, G. Distributed Ledger Technology Applications in Food Supply Chains: A Review of Challenges and Future Research Directions. Sustainability 2021, 13, 4206. [Google Scholar] [CrossRef]
- Feng, H.; Wang, X.; Duan, Y.; Zhang, J.; Zhang, X. Applying Blockchain Technology to Improve Agri-Food Traceability: A Review of Development Methods, Benefits and Challenges. J. Clean. Prod. 2020, 260, 121031. [Google Scholar] [CrossRef]
- Misra, N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, Big Data and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, C.; Gong, Y.; Brown, S.; Li, Z. A Content-Analysis Based Literature Review in Blockchain Adoption within Food Supply Chain. Int. J. Environ. Res. Public Health 2020, 17, 1784. [Google Scholar] [CrossRef] [Green Version]
- Niknejad, N.; Ismail, W.; Bahari, M.; Hendradi, R.; Salleh, A.Z. Mapping the Research Trends on Blockchain Technology in Food and Agriculture Industry: A Bibliometric Analysis. Environ. Technol. Innov. 2020, 21, 101272. [Google Scholar] [CrossRef]
- Jin, C.; Bouzembrak, Y.; Zhou, J.; Liang, Q.; van den Bulk, L.M.; Gavai, A.; Liu, N.; van den Heuvel, L.J.; Hoenderdaal, W.; Marvin, H.J. Big Data in Food Safety—A Review. Curr. Opin. Food Sci. 2020, 36, 24–32. [Google Scholar] [CrossRef]
- Vernier, C.; Loeillet, D.; Thomopoulos, R.; Macombe, C. Adoption of ICTs in Agri-Food Logistics: Potential and Limitations for Supply Chain Sustainability. Sustainability 2021, 13, 6702. [Google Scholar] [CrossRef]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.d.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-Food 4.0: A Survey of the Supply Chains and Technologies for the Future Agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Wahyuni, H.; Vanany, I.; Ciptomulyono, U. Food Safety and Halal Food in the Supply Chain: Review and Bibliometric Analysis. J. Ind. Eng. Manag. 2019, 12, 373–391. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green Supply Chain Management: A Review and Bibliometric Analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Cullen, J.G. Educating Business Students About Sustainability: A Bibliometric Review of Current Trends and Research Needs. J. Bus. Ethics 2017, 145, 429–439. [Google Scholar] [CrossRef]
- Marvuglia, A.; Havinga, L.; Heidrich, O.; Fonseca, J.; Gaitani, N.; Reckien, D. Advances and Challenges in Assessing Urban Sustainability: An Advanced Bibliometric Review. Renew. Sustain. Energy Rev. 2020, 124, 109788. [Google Scholar] [CrossRef]
- Kamran, M.; Khan, H.U.; Nisar, W.; Farooq, M.; Rehman, S.-U. Blockchain and Internet of Things: A Bibliometric Study. Comput. Electr. Eng. 2020, 81, 106525. [Google Scholar] [CrossRef]
- Rejeb, A.; Treiblmaier, H.; Rejeb, K.; Zailani, S. Blockchain Research in Healthcare: A Bibliometric Review and Current Research Trends. J. Data Inf. Manag. 2021, 3, 109–124. [Google Scholar] [CrossRef]
- Haleem, A.; Khan, M.I.; Khan, S.; Jami, A.R. Research Status in Halal: A Review and Bibliometric Analysis. Mod. Supply Chain Res. Appl. 2020, 2, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, M.M. A Knowledge Domain Visualization Review of Thirty Years of Halal Food Research: Themes, Trends and Knowledge Structure. Trends Food Sci. Technol. 2020, 99, 660–677. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Zailani, S. Are Halal Food Supply Chains Sustainable: A Review And Bibliometric Analysis. J. Foodserv. Bus. Res. 2021, 24, 1–42. [Google Scholar] [CrossRef]
- Lee, P.-C.; Su, H.-N. Investigating the Structure of Regional Innovation System Research through Keyword Co-Occurrence and Social Network Analysis. Innovation 2010, 12, 26–40. [Google Scholar] [CrossRef] [Green Version]
- An, X.Y.; Wu, Q.Q. Co-Word Analysis of the Trends in Stem Cells Field Based on Subject Heading Weighting. Scientometrics 2011, 88, 133–144. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, Q.; Lai, K.-H. Corporate Social Responsibility for Supply Chain Management: A Literature Review and Bibliometric Analysis. J. Clean. Prod. 2017, 158, 296–307. [Google Scholar] [CrossRef]
- Kaffash, S.; Marra, M. Data Envelopment Analysis in Financial Services: A Citations Network Analysis of Banks, Insurance Companies and Money Market Funds. Ann. Oper. Res. 2017, 253, 307–344. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.S.; Lu, L.Y.Y.; Ho, M.H.-C. A Few Notes on Main Path Analysis. Scientometrics 2019, 119, 379–391. [Google Scholar] [CrossRef]
- Liu, J.S.; Lu, L.Y.Y. An Integrated Approach for Main Path Analysis: Development of the Hirsch Index as an Example. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 528–542. [Google Scholar] [CrossRef]
- Foncubierta-Rodríguez, A.; Müller, H.; Depeursinge, A. Retrieval of High-Dimensional Visual Data: Current State, Trends and Challenges Ahead. Multimed. Tools Appl. 2014, 69, 539–567. [Google Scholar] [CrossRef] [Green Version]
- Maflahi, N.; Thelwall, M. When Are Readership Counts as Useful as Citation Counts? Scopus versus Mendeley for LIS Journals. J. Assoc. Inf. Sci. Technol. 2016, 67, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Bradford, S.C. Sources of Information on Specific Subjects. Engineering 1934, 137, 85–86. [Google Scholar]
- Fu, H.; Hu, T.; Wang, J.; Feng, D.; Fang, H.; Wang, M.; Tang, S.; Yuan, F.; Feng, Z. A Bibliometric Analysis of Malaria Research in China during 2004–2014. Malar. J. 2015, 14, 195. [Google Scholar] [CrossRef] [Green Version]
- Rejeb, A.; Simske, S.; Rejeb, K.; Treiblmaier, H.; Zailani, S. Internet of Things Research in Supply Chain Management and Logistics: A Bibliometric Analysis. Internet Things 2020, 12, 100318. [Google Scholar] [CrossRef]
- Govindan, K. Sustainable Consumption and Production in the Food Supply Chain: A Conceptual Framework. Int. J. Prod. Econ. 2018, 195, 419–431. [Google Scholar] [CrossRef]
- Bernardi, D.P.D.; Bertello, A.; Venuti, D.F.; Zardini, D.A. Knowledge Transfer Driving Community-Based Business Models towards Sustainable Food-Related Behaviours: A Commons Perspective. Knowl. Manag. Res. Pract. 2019, 19, 319–326. [Google Scholar] [CrossRef]
- Mohapatra, A.G.; Keswani, B.; Lenka, S.K. ICT Specific Technological Changes in Precision Agriculture Environment. Int. J. Comput. Sci. Mob. Appl. 2018, 6, 1–16. [Google Scholar]
- Brewster, C.; Roussaki, I.; Kalatzis, N.; Doolin, K.; Ellis, K. IoT in Agriculture: Designing a Europe-Wide Large-Scale Pilot. IEEE Commun. Mag. 2017, 55, 26–33. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving Sustainable Performance in a Data-Driven Agriculture Supply Chain: A Review for Research and Applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS—Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A Review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Salah, K.; Nizamuddin, N.; Jayaraman, R.; Omar, M. Blockchain-Based Soybean Traceability in Agricultural Supply Chain. IEEE Access 2019, 7, 73295–73305. [Google Scholar] [CrossRef]
- Christiaensen, L.; Rutledge, Z.; Taylor, J.E. Viewpoint: The Future of Work in Agri-Food. Food Policy 2021, 99, 101963. [Google Scholar] [CrossRef]
- Di Vaio, A.; Boccia, F.; Landriani, L.; Palladino, R. Artificial Intelligence in the Agri-Food System: Rethinking Sustainable Business Models in the COVID-19 Scenario. Sustainability 2020, 12, 4851. [Google Scholar] [CrossRef]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ Perspective on Circular Economy Strategy for Reducing Food Waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Halloran, A.; Clement, J.; Kornum, N.; Bucatariu, C.; Magid, J. Addressing Food Waste Reduction in Denmark. Food Policy 2014, 49, 294–301. [Google Scholar] [CrossRef]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A Roadmap towards a Circular and Sustainable Bioeconomy through Waste Valorization. Curr. Opin. Green Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Li, X.; Wu, P.; Shen, G.Q.; Wang, X.; Teng, Y. Mapping the Knowledge Domains of Building Information Modeling (BIM): A Bibliometric Approach. Autom. Constr. 2017, 84, 195–206. [Google Scholar] [CrossRef]
- Borner, K.; Chen, C.; Boyack, K.W. Visualizing Knowledge Domains. Annu. Rev. Inf. Sci. Technol. ARIST 2003, 37, 179–255. [Google Scholar] [CrossRef]
- Cambrosio, A.; Limoges, C.; Courtial, J.; Laville, F. Historical Scientometrics? Mapping over 70 Years of Biological Safety Research with Coword Analysis. Scientometrics 2005, 27, 119–143. [Google Scholar] [CrossRef]
- Kriegel, H.-P.; Kröger, P.; Sander, J.; Zimek, A. Density-Based Clustering. WIREs Data Min. Knowl. Discov. 2011, 1, 231–240. [Google Scholar] [CrossRef]
- Fernandez-Alles, M.; Ramos-Rodríguez, A. Intellectual Structure of Human Resources Management Research: A Bibliometric Analysis of the Journal Human Resource Management, 1985–2005. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 161–175. [Google Scholar] [CrossRef]
- Garrone, P.; Melacini, M.; Perego, A. Opening the Black Box of Food Waste Reduction. Food Policy 2014, 46, 129–139. [Google Scholar] [CrossRef]
- McMichael, P. Value-Chain Agriculture and Debt Relations: Contradictory Outcomes. Third World Q. 2013, 34, 671–690. [Google Scholar] [CrossRef]
- Pereira, L.M. Cassava Bread in Nigeria: The Potential of ‘Orphan Crop’ Innovation for Building More Resilient Food Systems. Int. J. Technol. Glob. 2017, 8, 97–115. [Google Scholar] [CrossRef]
- Tahir, I.S.A.; Mustafa, H.M.; Idris, A.A.M.; Elhashimi, A.M.A.; Hassan, M.K.; Fadul, E.M.; Kurmut, A.M.A.; Eltayeb, S.M.; Meheesi, S.; Hassan, A.O.; et al. Enhancing Wheat Production and Food Security in Sudan through Scaling up Improved Technologies Using Innovation Platforms. Int. J. Agric. Sustain. 2020, 18, 376–388. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the Adoption and Diffusion of Technological Innovations for Climate-Smart Agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, M.C.; Rouphael, Y. Towards a New Definition of Quality for Fresh Fruits and Vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Lehmann, R.J.; Reiche, R.; Schiefer, G. Future Internet and the Agri-Food Sector: State-of-the-Art in Literature and Research. Comput. Electron. Agric. 2012, 89, 158–174. [Google Scholar] [CrossRef]
- El Bilali, H.; Allahyari, M.S. Transition towards Sustainability in Agriculture and Food Systems: Role of Information and Communication Technologies. Inf. Process. Agric. 2018, 5, 456–464. [Google Scholar] [CrossRef]
- Manocha, P.; Srai, J.S. Exploring Environmental Supply Chain Innovation in M&A. Sustainability 2020, 12, 10105. [Google Scholar] [CrossRef]
- Kaur, H. Modelling Internet of Things Driven Sustainable Food Security System. Benchmarking 2019, 28, 1740–1760. [Google Scholar] [CrossRef]
- Alamar, M.D.C.; Falagán, N.; Aktas, E.; Terry, L.A. Minimising Food Waste: A Call for Multidisciplinary Research. J. Sci. Food Agric. 2018, 98, 8–11. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The Role of Life Cycle Assessment in Supporting Sustainable Agri-Food Systems: A Review of the Challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Wognum, P.M.; Bremmers, H.; Trienekens, J.H.; Van Der Vorst, J.G.A.J.; Bloemhof, J.M. Systems for Sustainability and Transparency of Food Supply Chains—Current Status and Challenges. Adv. Eng. Inform. 2011, 25, 65–76. [Google Scholar] [CrossRef]
- Civancik-Uslu, D.; Puig, R.; Ferrer, L.; Fullana-i-Palmer, P. Influence of End-of-Life Allocation, Credits and Other Methodological Issues in LCA of Compounds: An in-Company Circular Economy Case Study on Packaging. J. Clean. Prod. 2019, 212, 925–940. [Google Scholar] [CrossRef]
- Borrello, M.; Lombardi, A.; Pascucci, S.; Cembalo, L. The Seven Challenges for Transitioning into a Bio-Based Circular Economy in the Agri-Food Sector. Recent Pat. Food Nutr. Agric. 2016, 8, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Jarvie, H.P.; Flaten, D.; Sharpley, A.N.; Kleinman, P.J.A.; Healy, M.G.; King, S.M. Future Phosphorus: Advancing New 2D Phosphorus Allotropes and Growing a Sustainable Bioeconomy. J. Environ. Qual. 2019, 48, 1145–1155. [Google Scholar] [CrossRef] [Green Version]
- Valenti, F.; Porto, S.M.C.; Dale, B.E.; Liao, W. Spatial Analysis of Feedstock Supply and Logistics to Establish Regional Biogas Power Generation: A Case Study in the Region of Sicily. Renew. Sustain. Energy Rev. 2018, 97, 50–63. [Google Scholar] [CrossRef]
- Fassio, F.; Tecco, N. Circular Economy for Food: A Systemic Interpretation of 40 Case Histories in the Food System in Their Relationships with SDGs. Systems 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Khoifin, K.; Nimsai, S. Investigating Traceability Costs and Benefits in Food Supply Chain: Case Study in Serang City, Indonesia. Int. J. Supply Chain Manag. 2018, 7, 153. [Google Scholar]
- Sun, S.; Wang, X. Promoting Traceability for Food Supply Chain with Certification. J. Clean. Prod. 2019, 217, 658–665. [Google Scholar] [CrossRef]
- Xiang, B. Study on Safety Management of Food Traceability Based on Food Supply Chain. J. Food Sci. Technol. 2015, 8, 394–397. [Google Scholar] [CrossRef]
- Yadav, S.; Garg, D.; Luthra, S. Analysing Challenges for Internet of Things Adoption in Agriculture Supply Chain Management. Int. J. Ind. Syst. Eng. 2020, 36, 73–97. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Qu, J. Safety Traceability System of Characteristic Food Based on RFID and EPC Internet of Things. Int. J. Online Biomed. Eng. 2019, 15, 119–126. [Google Scholar] [CrossRef]
- Astill, J.; Dara, R.A.; Campbell, M.; Farber, J.M.; Fraser, E.D.; Sharif, S.; Yada, R.Y. Transparency in Food Supply Chains: A Review of Enabling Technology Solutions. Trends Food Sci. Technol. 2019, 91, 240–247. [Google Scholar] [CrossRef]
- Tian, F. A Supply Chain Traceability System for Food Safety Based on HACCP, Blockchain & Internet of Things. In Proceedings of the 2017 International Conference on Service Systems and Service Management, Dalian, China, 16–18 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Bhutta, M.N.M.; Ahmad, M. Secure Identification, Traceability and Real-Time Tracking of Agricultural Food Supply During Transportation Using Internet of Things. IEEE Access 2021, 9, 65660–65675. [Google Scholar] [CrossRef]
- Tsang, Y.P.; Choy, K.L.; Wu, C.H.; Ho, G.T.S.; Lam, H.Y. Blockchain-Driven IoT for Food Traceability with an Integrated Consensus Mechanism. IEEE Access 2019, 7, 129000–129017. [Google Scholar] [CrossRef]
- Moudoud, H.; Cherkaoui, S.; Khoukhi, L. An IoT Blockchain Architecture Using Oracles and Smart Contracts: The Use-Case of a Food Supply Chain. In Proceedings of the IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radion Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Awan, S.H.; Ahmad, S.; Khan, Y.; Safwan, N.; Qurashi, S.S.; Hashim, M.Z. A Combo Smart Model of Blockchain with the Internet of Things (IoT) for the Transformation of Agriculture Sector. Wirel. Pers. Commun. 2021, 121, 2233–2249. [Google Scholar] [CrossRef]
- Banerjee, M.; Lee, J.; Choo, K.-K.R. A Blockchain Future for Internet of Things Security: A Position Paper. Digit. Commun. Netw. 2018, 4, 149–160. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, Y.; Xu, Y. Amount of Information and the Willingness of Consumers to Pay for Food Traceability in China. Food Control 2017, 77, 163–170. [Google Scholar] [CrossRef]
- Kshetri, N. 1 Blockchain’s Roles in Meeting Key Supply Chain Management Objectives. Int. J. Inf. Manag. 2018, 39, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Anisi, M.H.; Abdul-Salaam, G.; Abdullah, A.H. A Survey of Wireless Sensor Network Approaches and Their Energy Consumption for Monitoring Farm Fields in Precision Agriculture. Precis. Agric. 2015, 16, 216–238. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Befort, C.A.; Nazir, N.; Perri, M.G. Prevalence of Obesity among Adults from Rural and Urban Areas of the United States: Findings from NHANES (2005–2008). J. Rural Health 2012, 28, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Cheng, X.; Xue, H.; Wang, Y. Applications of Geographic Information Systems (GIS) Data and Methods in Obesity-related Research. Obes. Rev. 2017, 18, 400–411. [Google Scholar] [CrossRef]
- Lucan, S.C.; Mitra, N. The Food Environment and Dietary Intake: Demonstrating a Method for GIS-Mapping and Policy-Relevant Research. J. Public Health 2012, 20, 375–385. [Google Scholar] [CrossRef]
- McGuirt, J.T.; Jilcott Pitts, S.B.; Gustafson, A. Association between Spatial Access to Food Outlets, Frequency of Grocery Shopping, and Objectively-Assessed and Self-Reported Fruit and Vegetable Consumption. Nutrients 2018, 10, 1974. [Google Scholar] [CrossRef] [Green Version]
- Barnes, T.L.; Bell, B.A.; Freedman, D.A.; Colabianchi, N.; Liese, A.D. Do People Really Know What Food Retailers Exist in Their Neighborhood? Examining GIS-Based and Perceived Presence of Retail Food Outlets in an Eight-County Region of South Carolina. Spat. Spatio-Temporal Epidemiol. 2015, 13, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, T.L.; Colabianchi, N.; Freedman, D.A.; Bell, B.A.; Liese, A.D. Do GIS-Derived Measures of Fast Food Retailers Convey Perceived Fast Food Opportunities? Implications for Food Environment Assessment. Ann. Epidemiol. 2017, 27, 27–34. [Google Scholar] [CrossRef]
- Moore, L.V.; Diez Roux, A.V.; Nettleton, J.A.; Jacobs, D.R., Jr. Associations of the Local Food Environment with Diet Quality—A Comparison of Assessments Based on Surveys and Geographic Information Systems: The Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2008, 167, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.V.; Roux, A.V.D.; Brines, S. Comparing Perception-Based and Geographic Information System (GIS)-Based Characterizations of the Local Food Environment. J. Urban Health 2008, 85, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Thornton, L.E.; Pearce, J.R.; Kavanagh, A.M. Using Geographic Information Systems (GIS) to Assess the Role of the Built Environment in Influencing Obesity: A Glossary. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Meter, E.; Lawson, A.; Colabianchi, N.; Nichols, M.; Hibbert, J.; Porter, D.; Liese, A. Spatial Accessibility and Availability Measures and Statistical Properties in the Food Environment. Spat. Spatio-Temporal Epidemiol. 2011, 2, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.V.; Diez Roux, A.V.; Nettleton, J.A.; Jacobs, D.R.; Franco, M. Fast-Food Consumption, Diet Quality, and Neighborhood Exposure to Fast Food: The Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2009, 170, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharkey, J.R. Measuring Potential Access to Food Stores and Food-Service Places in Rural Areas in the US. Am. J. Prev. Med. 2009, 36, S151–S155. [Google Scholar] [CrossRef]
- Balcetis, E.; Cole, S.; Bisi, A. Near and Nothing to it: Perceived Proximity Improves Exercise by Increasing Feasibility Appraisals. Motiv. Sci. 2015, 1, 203. [Google Scholar] [CrossRef]
- Sugovic, M.; Turk, P.; Witt, J.K. Perceived Distance and Obesity: It’s What You Weigh, Not What You Think. Acta Psychol. 2016, 165, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Baldock, K.L.; Paquet, C.; Howard, N.J.; Coffee, N.T.; Taylor, A.W.; Daniel, M. Correlates of Discordance between Perceived and Objective Distances to Local Fruit and Vegetable Retailers. Int. J. Environ. Res. Public. Health 2019, 16, 1262. [Google Scholar] [CrossRef] [Green Version]
- Balcetis, E. Approach and Avoidance as Organizing Structures for Motivated Distance Perception. Emot. Rev. 2016, 8, 115–128. [Google Scholar] [CrossRef]
- Chrisinger, B.W.; King, A.C.; Hua, J.; Saelens, B.E.; Frank, L.D.; Conway, T.L.; Cain, K.L.; Sallis, J.F. How Well Do Seniors Estimate Distance to Food? The Accuracy of Older Adults’ Reported Proximity to Local Grocery Stores. Geriatrics 2019, 4, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kärmeniemi, M.; Lankila, T.; Ikäheimo, T.; Koivumaa-Honkanen, H.; Korpelainen, R. The Built Environment as a Determinant of Physical Activity: A Systematic Review of Longitudinal Studies and Natural Experiments. Ann. Behav. Med. 2018, 52, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Mayne, S.L.; Auchincloss, A.H.; Michael, Y.L. Impact of Policy and Built Environment Changes on Obesity-related Outcomes: A Systematic Review of Naturally Occurring Experiments. Obes. Rev. 2015, 16, 362–375. [Google Scholar] [CrossRef]
- Van der Velde, L.A.; Zitman, F.M.; Mackenbach, J.D.; Numans, M.E.; Kiefte-de Jong, J.C. The Interplay between Fast-Food Outlet Exposure, Household Food Insecurity, and Diet Quality in Disadvantaged Districts. Public Health Nutr. 2020, 1–20. [Google Scholar] [CrossRef]
- Caldwell, E.M.; Kobayashi, M.M.; DuBow, W.; Wytinck, S. Perceived Access to Fruits and Vegetables Associated with Increased Consumption. Public Health Nutr. 2009, 12, 1743–1750. [Google Scholar] [CrossRef] [Green Version]
- Giskes, K.; van Lenthe, F.; Kamphuis, C.; Huisman, M.; Brug, J.; Mackenbach, J.P. Household and Food Shopping Environments: Do They Play a Role in Socioeconomic Inequalities in Fruit and Vegetable Consumption? A Multilevel Study among Dutch Adults. J. Epidemiol. Community Health 2009, 63, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Pitts, S.B.J.; Keyserling, T.C.; Johnston, L.F.; Smith, T.W.; McGuirt, J.T.; Evenson, K.R.; Rafferty, A.P.; Gizlice, Z.; Garcia, B.A.; Ammerman, A.S. Associations between Neighborhood-Level Factors Related to a Healthful Lifestyle and Dietary Intake, Physical Activity, and Support for Obesity Prevention Polices among Rural Adults. J. Community Health 2015, 40, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Xue, H.; Yin, L.; Stein, A.; Wang, M.; Wang, Y. Spatial Technologies in Obesity Research: Current Applications and Future Promise. Trends Endocrinol. Metab. 2019, 30, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Baldock, K.L.; Paquet, C.; Howard, N.J.; Coffee, N.T.; Taylor, A.W.; Daniel, M. Are Perceived and Objective Distances to Fresh Food and Physical Activity Resources Associated with Cardiometabolic Risk? Int. J. Environ. Res. Public. Health 2018, 15, 224. [Google Scholar] [CrossRef] [Green Version]
- Bernsdorf, K.A.; Lau, C.J.; Andreasen, A.H.; Toft, U.; Lykke, M.; Glümer, C. Accessibility of Fast Food Outlets Is Associated with Fast Food Intake. A Study in the Capital Region of Denmark. Health Place 2017, 48, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Cannuscio, C.C.; Hillier, A.; Karpyn, A.; Glanz, K. The Social Dynamics of Healthy Food Shopping and Store Choice in an Urban Environment. Soc. Sci. Med. 2014, 122, 13–20. [Google Scholar] [CrossRef]
- Chrisinger, B. A Mixed-Method Assessment of a New Supermarket in a Food Desert: Contributions to Everyday Life and Health. J. Urban Health 2016, 93, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Cummins, S.; Flint, E.; Matthews, S.A. New Neighborhood Grocery Store Increased Awareness of Food Access but Did Not Alter Dietary Habits or Obesity. Health Aff. 2014, 33, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Dubowitz, T.; Ghosh-Dastidar, M.; Cohen, D.A.; Beckman, R.; Steiner, E.D.; Hunter, G.P.; Flórez, K.R.; Huang, C.; Vaughan, C.A.; Sloan, J.C. Diet and Perceptions Change with Supermarket Introduction in a Food Desert, but Not Because of Supermarket Use. Health Aff. 2015, 34, 1858–1868. [Google Scholar] [CrossRef] [Green Version]
- Hillier, A.; Smith, T.E.; Whiteman, E.D.; Chrisinger, B.W. Discrete Choice Model of Food Store Trips Using National Household Food Acquisition and Purchase Survey (FoodAPS). Int. J. Environ. Res. Public Health 2017, 14, 1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehning, A.J.; Smith, R.J.; Dunkle, R.E. Age-Friendly Environments and Self-Rated Health: An Exploration of Detroit Elders. Res. Aging 2014, 36, 72–94. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Hawkley, L.C.; Cacioppo, J.T. Objective and Perceived Neighborhood Environment, Individual SES and Psychosocial Factors, and Self-Rated Health: An Analysis of Older Adults in Cook County, Illinois. Soc. Sci. Med. 2006, 63, 2575–2590. [Google Scholar] [CrossRef]
- Cebrecos, A.; Díez, J.; Gullón, P.; Bilal, U.; Franco, M.; Escobar, F. Characterizing Physical Activity and Food Urban Environments: A GIS-Based Multicomponent Proposal. Int. J. Health Geogr. 2016, 15, 35. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Srivastava, M.K. Towards a Grounded View of Collaboration in Indian Agri-Food Supply Chains: A Qualitative Investigation. Br. Food J. 2016, 118. [Google Scholar] [CrossRef]
- Parwez, S. A Conceptual Model for Integration of Indian Food Supply Chains. Glob. Bus. Rev. 2016, 17, 834–850. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Luthra, S.; Mangla, S.K.; Uniyal, S. Applications of Information and Communication Technology for Sustainable Growth of SMEs in India Food Industry. Resour. Conserv. Recycl. 2019, 147, 10–18. [Google Scholar] [CrossRef]
- Akhtar, P.; Tse, Y.K.; Khan, Z.; Rao-Nicholson, R. Data-Driven and Adaptive Leadership Contributing to Sustainability: Global Agri-Food Supply Chains Connected with Emerging Markets. Int. J. Prod. Econ. 2016, 181, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Luthra, S.; Mangla, S.K.; Garg, D.; Kumar, A. Internet of Things (IoT) in Agriculture Supply Chain Management: A Developing Country Perspective. In Emerging Markets from a Multidisciplinary Perspective; Springer: Cham, Switzerland, 2018; pp. 209–220. [Google Scholar]
- Luthra, S.; Mangla, S.K. When Strategies Matter: Adoption of Sustainable Supply Chain Management Practices in an Emerging Economy’s Context. Resour. Conserv. Recycl. 2018, 138, 194–206. [Google Scholar] [CrossRef]
- Mirkovski, K.; Davison, R.M.; Martinsons, M.G. The Effects of Trust and Distrust on ICT-Enabled Information Sharing in Supply Chains: Evidence from Small-and Medium-Sized Enterprises in Two Developing Economies. Int. J. Logist. Manag. 2019, 30, 892–926. [Google Scholar] [CrossRef]
- Balaji, M.; Arshinder, K. Modeling the Causes of Food Wastage in Indian Perishable Food Supply Chain. Resour. Conserv. Recycl. 2016, 114, 153–167. [Google Scholar]
- Huang, L.; Liu, P. Key Technologies and Alogrithms’ Application in Agricultural Food Supply Chain Tracking System in e-Commerce. In Computer and Computing Technologies in Agriculture VII; Springer: Berlin/Heidelberg, Germany, 2013; pp. 269–281. [Google Scholar]
- Zhuo, N.; Ji, C.; Yin, N. Supply Chain Integration and Resilience in China’s Pig Sector: Case Study Evidences from Emerging Institutional Arrangements. Environ. Sci. Pollut. Res. 2021, 28, 8310–8322. [Google Scholar] [CrossRef]
- Vranda, J.; Tavishi, T.; Narayanan, G.B. Unlocking Technology Adoption for a Robust Food Supply Chain: Evidence from Indian Food Processing Sector. Экoнoмический Журнал Высшей Шкoлы Экoнoмики 2021, 25, 147–164. [Google Scholar]
- Anthony, V.M.; Ferroni, M. Agricultural Biotechnology and Smallholder Farmers in Developing Countries. Curr. Opin. Biotechnol. 2012, 23, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Singh, N.; Kumari, S.; Khan, S. Bioentrepreneurship in Agricultural Biotechnology. In Bioentrepreneurship and Transferring Technology Into Product Development; IGI Global: Hershey, PA, USA, 2021; pp. 183–200. [Google Scholar]
- Kakkar, A. A Blockchain Technology Solution to Enhance Operational Efficiency of Rice Supply Chain for Food Corporation of India. In Sustainable Communication Networks and Application; Springer: Cham, Switzerland, 2019; pp. 24–31. [Google Scholar]
- Kumar, M.V.; Iyengar, N.C.S.N.; Goar, V. Employing Blockchain in Rice Supply Chain Management. In Advances in Information Communication Technology and Computing; Springer: Singapore, 2021; pp. 451–461. [Google Scholar]
- Li, Y.; Chu, X.; Tian, D.; Feng, J.; Mu, W. A Traceability Architecture for the Fresh Food Supply Chain Based on Blockchain Technology in China. In Artificial Intelligence and Security; Springer: Singapore, 2020; pp. 347–358. [Google Scholar]
- Praveen, P.; Shaik, M.A.; Kumar, T.S.; Choudhury, T. Smart Farming: Securing Farmers Using Block Chain Technology and IOT. In Blockchain Applications in IoT Ecosystem; Springer: Cham, Switzerland, 2021; pp. 225–238. [Google Scholar]
- Tian, F. An Agri-Food Supply Chain Traceability System for China Based on RFID & Blockchain Technology. In Proceedings of the 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Chhabra, V.; Rajan, P.; Chopra, S. User Acceptance of New Technology in Mandatory Adoption Scenario for Food Distribution in India. Int. J. Food Syst. Dyn. 2020, 11, 153–170. [Google Scholar]
- Chauhan, A.; Kaur, H.; Yadav, S.; Jakhar, S.K. A Hybrid Model for Investigating and Selecting a Sustainable Supply Chain for Agri-Produce in India. Ann. Oper. Res. 2020, 290, 621–642. [Google Scholar] [CrossRef]
- Joshi, S.; Singh, R.K.; Sharma, M. Sustainable Agri-Food Supply Chain Practices: Few Empirical Evidences from a Developing Economy. Glob. Bus. Rev. 2020, 0972150920907014. [Google Scholar] [CrossRef]
- Memon, S.U.R.; Pawase, V.R.; Pavase, T.R.; Soomro, M.A. Investigation of COVID-19 Impact on the Food and Beverages Industry: China and India Perspective. Foods 2021, 10, 1069. [Google Scholar] [CrossRef] [PubMed]
- Hummon, N.P.; Dereian, P. Connectivity in a Citation Network: The Development of DNA Theory. Soc. Netw. 1989, 11, 39–63. [Google Scholar] [CrossRef]
- Verspagen, B. Mapping Technological Trajectories as Patent Citation Networks: A Study on the History of Fuel Cell Research. Adv. Complex Syst. 2007, 10, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Sivaprasad, A.; Beevi, N.S.; Manojkumar, T.K. Dengue and Early Warning Systems: A Review Based on Social Network Analysis. Procedia Comput. Sci. 2020, 171, 253–262. [Google Scholar] [CrossRef]
- Tu, Y.-N.; Hsu, S.-L. Constructing Conceptual Trajectory Maps to Trace the Development of Research Fields. J. Assoc. Inf. Sci. Technol. 2016, 67, 2016–2031. [Google Scholar] [CrossRef]
- Salin, V. Information Technology in Agri-Food Supply Chains. Int. Food Agribus. Manag. Rev. 1998, 1, 329–334. [Google Scholar] [CrossRef]
- Opara, L.U.; Mazaud, F. Food Traceability from Field to Plate. Outlook Agric. 2001, 30, 239–247. [Google Scholar] [CrossRef]
- Mangina, E.; Vlachos, I.P. The Changing Role of Information Technology in Food and Beverage Logistics Management: Beverage Network Optimisation Using Intelligent Agent Technology. J. Food Eng. 2005, 70, 403–420. [Google Scholar] [CrossRef]
- Taylor, D.H.; Fearne, A. Towards a Framework for Improvement in the Management of Demand in Agri-food Supply Chains. Supply Chain Manag. Int. J. 2006, 11, 379–384. [Google Scholar] [CrossRef]
- Kumar, P.; Reinitz, H.W.; Simunovic, J.; Sandeep, K.P.; Franzon, P.D. Overview of RFID Technology and Its Applications in the Food Industry. J. Food Sci. 2009, 74, R101–R106. [Google Scholar] [CrossRef] [PubMed]
- Jedermann, R.; Ruiz-Garcia, L.; Lang, W. Spatial Temperature Profiling by Semi-Passive RFID Loggers for Perishable Food Transportation. Comput. Electron. Agric. 2009, 65, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Chrysochou, P.; Chryssochoidis, G.; Kehagia, O. Traceability Information Carriers. The Technology Backgrounds and Consumers’ Perceptions of the Technological Solutions. Appetite 2009, 53, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Trienekens, J.H.; Wognum, P.M.; Beulens, A.J.M.; van der Vorst, J.G.A.J. Transparency in Complex Dynamic Food Supply Chains. Adv. Eng. Inform. 2012, 26, 55–65. [Google Scholar] [CrossRef]
- Bosona, T.; Gebresenbet, G. Food Traceability as an Integral Part of Logistics Management in Food and Agricultural Supply Chain. Food Control 2013, 33, 32–48. [Google Scholar] [CrossRef]
- Costa, C.; Antonucci, F.; Pallottino, F.; Aguzzi, J.; Sarriá, D.; Menesatti, P. A Review on Agri-Food Supply Chain Traceability by Means of RFID Technology. Food Bioprocess Technol. 2013, 6, 353–366. [Google Scholar] [CrossRef]
- Verdouw, C.N.; Wolfert, J.; Beulens, A.J.M.; Rialland, A. Virtualization of Food Supply Chains with the Internet of Things. J. Food Eng. 2016, 176, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yue, H. Food Safety Pre-Warning System Based on Data Mining for a Sustainable Food Supply Chain. Food Control 2017, 73, 223–229. [Google Scholar] [CrossRef]
- Vivaldini, M. Blockchain in Operations for Food Service Distribution: Steps before Implementation. Int. J. Logist. Manag. 2021, 32, 995–1029. [Google Scholar] [CrossRef]
- Mangla, S.K.; Kazancoglu, Y.; Ekinci, E.; Liu, M.; Özbiltekin, M.; Sezer, M.D. Using System Dynamics to Analyze the Societal Impacts of Blockchain Technology in Milk Supply Chainsrefer. Transp. Res. E Logist. Transp. Rev. 2021, 149, 102289. [Google Scholar] [CrossRef]
- Anastasiadis, F.; Apostolidou, I.; Michailidis, A. Food Traceability: A Consumer-centric Supply Chain Approach on Sustainable Tomato. Foods 2021, 10, 543. [Google Scholar] [CrossRef]
- Vlachopoulou, M.; Ziakis, C.; Vergidis, K.; Madas, M. Analyzing AgriFood-Tech e-Business Models. Sustainability 2021, 13, 5516. [Google Scholar] [CrossRef]
- Sharma, R.; Shishodia, A.; Kamble, S.; Gunasekaran, A.; Belhadi, A. Agriculture Supply Chain Risks and COVID-19: Mitigation Strategies and Implications for the Practitioners. Int. J. Logist. Res. Appl. 2020, 1–27. [Google Scholar] [CrossRef]
- Bahn, R.A.; Yehya, A.A.K.; Zurayk, R. Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the Mena Region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- Aamer, A.M.; Al-Awlaqi, M.A.; Affia, I.; Arumsari, S.; Mandahawi, N. The Internet of Things in the Food Supply Chain: Adoption Challenges. Benchmarking 2021, 28, 2521–2541. [Google Scholar] [CrossRef]
- Kittipanya-Ngam, P.; Tan, K.H. A Framework for Food Supply Chain Digitalization: Lessons from Thailand. Prod. Plan. Control 2020, 31, 158–172. [Google Scholar] [CrossRef]
- Hennelly, P.A.; Srai, J.S.; Graham, G.; Fosso Wamba, S. Rethinking Supply Chains in the Age of Digitalization. Prod. Plan. Control 2020, 31, 93–95. [Google Scholar] [CrossRef] [Green Version]
- Annosi, M.C.; Brunetta, F.; Bimbo, F.; Kostoula, M. Digitalization within Food Supply Chains to Prevent Food Waste. Drivers, Barriers and Collaboration Practices. Ind. Mark. Manag. 2021, 93, 208–220. [Google Scholar] [CrossRef]
- Fosso Wamba, S. Humanitarian Supply Chain: A Bibliometric Analysis and Future Research Directions. Ann. Oper. Res. 2020, 1–27. [Google Scholar] [CrossRef]
- Fosso Wamba, S.; Queiroz, M.M. Responsible Artificial Intelligence as a Secret Ingredient for Digital Health: Bibliometric Analysis, Insights, and Research Directions. Inf. Syst. Front. 2021, 1–16. [Google Scholar] [CrossRef]
- Fosso Wamba, S.; Bawack, R.E.; Guthrie, C.; Queiroz, M.M.; Carillo, K.D.A. Are We Preparing for a Good AI Society? A Bibliometric Review and Research Agenda. Technol. Forecast. Soc. Chang. 2021, 164, 120482. [Google Scholar] [CrossRef]
- Yan, J.; Tseng, F.-M.; Lu, L.Y.Y. Developmental Trajectories of New Energy Vehicle Research in Economic Management: Main Path Analysis. Technol. Forecast. Soc. Chang. 2018, 137, 168–181. [Google Scholar] [CrossRef]
Country | Number of Publications |
---|---|
United States | 509 |
United Kingdom | 270 |
China | 179 |
Italy | 166 |
India | 152 |
Australia | 113 |
Canada | 110 |
Netherlands | 106 |
Germany | 100 |
Spain | 84 |
France | 69 |
Brazil | 65 |
Belgium | 56 |
South Africa | 46 |
Switzerland | 46 |
Greece | 43 |
Sweden | 42 |
Denmark | 41 |
Kenya | 40 |
Malaysia | 40 |
Institution | Number of Publications |
---|---|
Wageningen University & Research | 68 |
Michigan State University | 25 |
Universiteit Gent | 19 |
Cornell University | 18 |
Imperial College London | 18 |
University of Minnesota Twin Cities | 17 |
University of Saskatchewan | 16 |
Texas A&M University | 16 |
INRAE | 15 |
Universität Bonn | 14 |
Alma Mater Studiorum Università di Bologna | 14 |
Journal | Number of Publications |
---|---|
Journal of Cleaner Production | 88 |
Sustainability | 85 |
PLoS ONE | 29 |
British Food Journal | 25 |
International Journal of Environmental Research and Public Health | 22 |
Science of the Total Environment | 22 |
Computers and Electronics in Agriculture | 19 |
Food Policy | 16 |
Biomass and Bioenergy | 14 |
IEEE Access | 14 |
International Journal of Supply Chain Management | 14 |
Journal of Environmental Management | 14 |
Resources Conservation and Recycling | 14 |
Trends in Food Science and Technology | 14 |
Agricultural Systems | 13 |
International Food and Agribusiness Management Review | 13 |
International Journal of Production Economics | 13 |
Renewable and Sustainable Energy Reviews | 13 |
BMC Public Health | 12 |
Nutrients | 12 |
Author | Number of Publications |
---|---|
Hobbs, J.E. | 8 |
Mangla, S.K. | 7 |
Beulens, A.J.M. | 6 |
Kamble, S.S. | 6 |
Rahimifard, S. | 6 |
Shah, N. | 6 |
Barrangou, R. | 5 |
Engelseth, P. | 5 |
Freidberg, S. | 5 |
Gunasekaran, A. | 5 |
Luthra, S. | 5 |
Mishra, N. | 5 |
Raut, R.D. | 5 |
Reardon, T. | 5 |
Sarkis, J. | 5 |
Singh, A. | 5 |
Keyword | Frequency |
---|---|
Sustainability | 143 |
SC (Supply Chain) | 116 |
Agriculture | 82 |
FSC (Food Supply Chain) | 81 |
IoT (Internet of Things) | 70 |
Food Security | 67 |
Blockchain | 63 |
Food Waste | 60 |
SCM (Supply Chain Management) | 58 |
LCA (Lifecycle Assessment) | 56 |
GIS (Geographic Information System) | 55 |
Food Safety | 48 |
Value Chain | 47 |
Innovation | 46 |
Food Industry | 46 |
Traceability | 44 |
Logistics | 43 |
Coronavirus | 40 |
ICT (Information Communication Technologies) | 32 |
Circular Economy | 32 |
Cluster | Theme | Most Frequent Keywords |
---|---|---|
1 | ICT for agriculture and food security | Agriculture; food security; value-chain; innovation; coronavirus; ICT; LR (Logistic Regression); climate change; SDGs (Sustainable Development Goals); technology; food system; technology adoption; precision agriculture |
2 | Food waste and circular economy | Sustainability; SC; food waste; LCA; logistics; circular economy; food; biomass; biofuel; bioeconomy; bioenergy; biofinery; environment; food loss |
3 | IoT and blockchain in FSCs | FSC; IoT; blockchain; SCM; food safety; traceability; big data; RFID (Radio Frequency Identification); Industry 4.0; ML (Machine Learning); AI (Artificial Intelligence); simulation; transparency; WSN (Wireless Sensor Networks); cold chain; integration |
4 | GIS and consumer perceptions | GIS; diet; obesity; adolescent; children; risk factor; social media; fast-food; nutrition; stakeholder; food insecurity; perception; vegetable; built environment; physical activity |
5 | Indian and Chinese AFSCs | AFSC (Agri-food Supply Chain); India; agribusiness; China; case study; SME (Small and Medium Enterprises); consumer; decision making; biotechnology; IT (Information Technology); risk; Brazil; agricultural product; e-commerce; entrepreneurship |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejeb, A.; Rejeb, K.; Abdollahi, A.; Zailani, S.; Iranmanesh, M.; Ghobakhloo, M. Digitalization in Food Supply Chains: A Bibliometric Review and Key-Route Main Path Analysis. Sustainability 2022, 14, 83. https://doi.org/10.3390/su14010083
Rejeb A, Rejeb K, Abdollahi A, Zailani S, Iranmanesh M, Ghobakhloo M. Digitalization in Food Supply Chains: A Bibliometric Review and Key-Route Main Path Analysis. Sustainability. 2022; 14(1):83. https://doi.org/10.3390/su14010083
Chicago/Turabian StyleRejeb, Abderahman, Karim Rejeb, Alireza Abdollahi, Suhaiza Zailani, Mohammad Iranmanesh, and Morteza Ghobakhloo. 2022. "Digitalization in Food Supply Chains: A Bibliometric Review and Key-Route Main Path Analysis" Sustainability 14, no. 1: 83. https://doi.org/10.3390/su14010083
APA StyleRejeb, A., Rejeb, K., Abdollahi, A., Zailani, S., Iranmanesh, M., & Ghobakhloo, M. (2022). Digitalization in Food Supply Chains: A Bibliometric Review and Key-Route Main Path Analysis. Sustainability, 14(1), 83. https://doi.org/10.3390/su14010083