Evaluation of Energy Potential from Coffee Pulp in a Hydrothermal Power Market through System Dynamics: The Case of Colombia
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Causal Loop Model
3.2. Modeling
3.2.1. Biochemical Methane Potential from Coffee Pulp (in
3.2.2. Projections of System Variables
- Cherry coffee production (tons/month). The projection of this variable considered a continuous production cycle throughout the year based on a cultivated land of around 880 thousand hectares in 20 regions of Colombia. Using historical information for the last 65 years, the projection of cherry coffee production was made from the application of the ARIMA model, following the Box–Jenkins methodology for the estimation [88]. First, a differentiation of the annual time series was carried out to establish data stationarity. Then, a conditional media model was estimated, and it was determined that ARIMA (1, 1, 0) had the best fit for the time series. The standardized residuals obtained from this model did not present an autocorrelation between them, as shown in Figure 4.
- The El Niño phenomenon. This variable depicts the months where the El Niño phenomenon will take place within the study period (2021–2030). Although a defined forecast does not exist to establish climatic phenomenon occurrences, according to the International Research Institute (IRI), El Niño occurs with a frequency of every 2 to 7 years [89]. In addition, some researchers have determined a behavior pattern that points out that strong El Niño events have a longer duration versus those of lower intensity [90].For this analysis, the occurrence and intensity of the El Niño phenomena registered in the last 10 years were assessed. It was assumed that within the analysis period, El Niño will take place in two events, with moderate and strong intensities, respectively. The first of them will be in 2023–2024, with behavior similar to that registered in 2018–2019. The second will occur from the beginning of 2028 to the first quarter of 2029, with duration and behavior similar to those presented during 2015–2016. Thus, a 4-year period was considered between one El Niño phenomenon and another. This is consistent with the research carried out regarding the frequency of this climatic phenomenon.
- Projected energy demand (GWh/month). This variable indicates the amount of GWh of monthly demand in the country. The figures of this variable were based on the projection of the Unidad de Planeación Minero-Energética (UPME), the mine and energy planning unit in Colombia, and considered the monthly variation in energy demand in different moments of the year, according to its historical behavior.On the other hand, this study did not consider any effect of the El Niño phenomenon on the level of energy demand during the study period, since no significant effects of El Niño on energy demand are observed in the history from recent years (see Section 3.1).
- Installed capacity for solar, wind, and hydro energy (GW). The projection of the installed capacity for the 3 technologies was calculated considering the current projects in phase 2 (with prefeasibility studies) or 3 (with the execution schedule and environmental licenses) that were registered in the UPME at the time of the estimates. From this information, the monthly details of the amount of GW that would come into operation for each year of the study period (new solar, wind, and hydro projects) were obtained, increasing the installed capacity of the country for each type of technology. In the case of hydropower, the Hidroituango project was also considered. Hidroituango is a mega hydroelectric project—the largest hydropower project in Colombia—that expects to increase the hydropower capacity by 2.4 GW [76], which represents 13.72% of the total capacity currently installed. In this research, it was assumed that Hidroituango will start operation in 2022 and 2023, with 0.8 GW and 1.6 GW of installed capacity, respectively. These assumptions were considered due to the importance of Hidroituango for energy supply in Colombia, especially during severe drought events.The amount of monthly electricity production for each technology (GWh/month) was calculated based on (i) installed capacity, (ii) capacity factor, and (iii) hours per month. The impacts of the El Niño phenomenon on solar and wind generation were not considered, since there is no historical information available for Colombia to carry out such estimates.
- El Niño’s effect on hydroelectric power. This variable represents the percentage reduction in the hydroelectric potential during El Niño events and depicts the vulnerability of the electricity generation matrix in Colombia. To this end, the behaviors recorded by the Oceanic Niño Index (ONI) during 2015–2016 and 2018–2019 were assessed. ONI is a measure of ENSO that establishes that El Niño conditions exist when the oceanic temperature is at least 0.5 °C above the normal median temperature for more than 3 consecutive months. ONI data were collected from the Climate Predictor Center [91]. Then, a comparison between the decline in hydropower electricity production in Colombia and the ONI for each month of El Niño in 2015–2016 and 2018–2019 was carried out. It was found that for a strong El Niño, the share of hydrogeneration in the total energy produced dropped to 50% of the electricity mix at that moment. Based on this analysis, the effect of El Niño on hydroelectric power was projected for the years evaluated by the study.A duration of 7 months was defined for El Niño of the 2023–2024 period (moderate intensity), and 15 months was defined for the 2028–2029 period (strong intensity). Additionally, this study considered that the effects of El Niño reach the highest levels in December and the first quarter of the following year for the indicated periods, according to the behavior recorded by the ONI and other investigations [9,90,92] for this climatic phenomenon.
3.3. Main Equations of SD Model
3.4. Model Assumptions and Limitations
- Cherry coffee production was forecasted according to historical information on national coffee production for the last 65 years.
- It was assumed that 80% of the coffee pulp obtained would be used for energy generation.
- In this work, two El Niño events were modeled. The duration, frequency, and intensity were based on previous studies associated with this climatic phenomenon (see Section 3.2.2).
- The model considered the monthly behavior of the energy demand, according to UPME estimates (see Section 3.2.2).
- The electricity production from renewable sources was modeled, considering the projections of installed capacity and the capacity factor of each technology. For simplicity, the model did not include the monthly variation of wind and solar generation associated with the fluctuation of each resource.
- The effects of the El Niño phenomenon were considered to evaluate the energy supply in climatic vulnerability scenarios and were mainly represented by the implications for the hydropower electricity potential. Impacts on the NCRE electricity production and the energy demand were not included in the model (see Section 3.1 and Section 3.2.2).
- The model represents the Colombian electricity generation system, where the amount of power generated is produced to supply the energy demand. Therefore, there was no excess in the energy generated by any of the technologies evaluated in the model (see Section 3.2 and Table 2).
- The model does not consider increases in the installed capacity from fossil sources.
4. Results
4.1. Energy Potential from Coffee Pulp
4.2. Climate Vulnerability in a Hydrothermal Market
5. Discussion
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hürlimann, C. Valuation of Renewable Energy Investments Practices among German and Swiss Investment Professionals; Springer Gabler: Berlin, Germany, 2019; pp. 1–458. [Google Scholar]
- Xm. Reporte Integral de Sostenibilidad, Operación y Mercado 2020. Available online: https://informeanual.xm.com.co/2020/informe/pages/xm/24-capacidad-efectiva-neta.html (accessed on 30 January 2022).
- International Energy Agency (IEA) Colombia. Available online: https://www.iea.org/countries/colombia (accessed on 28 November 2021).
- Gaona, E.E.; Trujillo, C.L.; Guacaneme, J.A. Rural Microgrids and Its Potential Application in Colombia. Renew. Sustain. Energy Rev. 2015, 51, 125–137. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.; Poganietz, W.R. Evaluating the Complementarity of Solar, Wind and Hydropower to Mitigate the Impact of El Niño Southern Oscillation in Latin America. Renew. Energy 2021, 174, 453–467. [Google Scholar] [CrossRef]
- Jaramillo-Robledo, Á.; Arcila-Pulgarín, J. Variabilidad Climática En La Zona Cafetera Colombiana Asociada Al Evento de El Niño y Su Efecto En La Caficultura. Av. Técnicos Cenicafé 2009, 390, 1–8.
- Gómez-Navarro, T.; Ribó-Pérez, D. Assessing the Obstacles to the Participation of Renewable Energy Sources in the Electricity Market of Colombia. Renew. Sustain. Energy Rev. 2018, 90, 131–141. [Google Scholar] [CrossRef]
- Arango, S.; Larsen, E.R. The Environmental Paradox in Generation: How South America Is Gradually Becoming More Dependent on Thermal Generation. Renew. Sustain. Energy Rev. 2010, 14, 2956–2965. [Google Scholar] [CrossRef]
- Henao, F.; Viteri, J.P.; Rodríguez, Y.; Gómez, J.; Dyner, I. Annual and Interannual Complementarities of Renewable Energy Sources in Colombia. Renew. Sustain. Energy Rev. 2020, 134, 110318. [Google Scholar] [CrossRef]
- Perez, A.; Garcia-Rendon, J.J. Integration of Non-Conventional Renewable Energy and Spot Price of Electricity: A Counterfactual Analysis for Colombia. Renew. Energy 2021, 167, 146–161. [Google Scholar] [CrossRef]
- Martínez-Ruiz, Y.; Manotas-Duque, D.F.; Ramírez-Malule, H. Evaluation of Investment Projects in Photovoltaic Solar Energy Using the DNPV Methodology. Int. J. Energy Econ. Policy 2021, 11, 180–185. [Google Scholar] [CrossRef]
- Caicedo, C. Colombia’s Prospects for Renewables. Available online: https://ihsmarkit.com/research-analysis/colombias-prospects-for-renewables.html (accessed on 5 December 2021).
- Departamento Nacional de Planeación Energy Supply Situation in Colombia. 2017. Available online: https://www.dnp.gov.co/Crecimiento-Verde/Documents/ejes-tematicos/Energia/MCV—EnergySupplySituationvf.pdf (accessed on 1 December 2021).
- Sistema de Información Eléctrico Colombiano (SIEL) Informe de Registro de Proyectos de Generación de Energía Eléctrica. Available online: http://www.siel.gov.co/Inicio/Generación/InscripcióndeproyectosdeGeneración/tabid/113/Default.aspx (accessed on 25 April 2021).
- Sagastume Gutiérrez, A.; Cabello Eras, J.J.; Hens, L.; Vandecasteele, C. The Energy Potential of Agriculture, Agroindustrial, Livestock, and Slaughterhouse Biomass Wastes through Direct Combustion and Anaerobic Digestion. The Case of Colombia. J. Clean. Prod. 2020, 269, 1–17. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.A.; Morini, M.; Pinelli, M.; Spina, P.R.; Venturini, M.; Finkenrath, M.; Poganietz, W.R. Methodology for Biomass Energy Potential Estimation: Projections of Future Potential in Colombia. Renew. Energy 2014, 69, 488–505. [Google Scholar] [CrossRef] [Green Version]
- Montenegro Orozco, K.T.; Rojas Carpio, A.S.; Cabeza Rojas, I.; Hernández Pardo, M.A. Potencial de Biogás de Los Residuos Agroindustriales Generados En El Departamento de Cundinamarca. Rev. ION 2016, 29, 23–37. [Google Scholar] [CrossRef]
- Shilpi, S.; Lamb, D.; Bolan, N.; Seshadri, B.; Choppala, G.; Naidu, R. Waste to Watt: Anaerobic Digestion of Wastewater Irrigated Biomass for Energy and Fertiliser Production. J. Environ. Manag. 2019, 239, 73–83. [Google Scholar] [CrossRef]
- Carlini, M.; Monarca, D.; Castellucci, S.; Mennuni, A.; Casini, L.; Selli, S. Beer Spent Grains Biomass for Biogas Production: Characterization and Anaerobic Digestion-Oriented Pre-Treatments. Energy Rep. 2021, 7, 921–929. [Google Scholar] [CrossRef]
- Gallego Fernández, L.M.; Portillo Estévez, E.; Navarrete, B.; González Falcón, R. Estimation of Methane Production through the Anaerobic Digestion of Greenhouse Horticultural Waste: A Real Case Study for the Almeria Region. Sci. Total Environ. 2021, 807, 151012. [Google Scholar] [CrossRef] [PubMed]
- Claudio, C.C.; Perazzini, M.T.B.; Perazzini, H. Modeling and Estimation of Moisture Transport Properties of Drying of Potential Amazon Biomass for Renewable Energy: Application of the Two-Compartment Approach and Diffusive Models with Constant or Moisture-Dependent Coefficient. Renew. Energy 2022, 181, 304–316. [Google Scholar] [CrossRef]
- Poomsawat, S.; Poomsawat, W. Analysis of Hydrochar Fuel Characterization and Combustion Behavior Derived from Aquatic Biomass via Hydrothermal Carbonization Process. Case Stud. Therm. Eng. 2021, 27, 101255. [Google Scholar] [CrossRef]
- Glushkov, D.O.; Nyashina, G.S.; Anand, R.; Strizhak, P.A. Composition of Gas Produced from the Direct Combustion and Pyrolysis of Biomass. Process Saf. Environ. Prot. 2021, 156, 43–56. [Google Scholar] [CrossRef]
- Abdel Daiem, M.M.; Said, N. Energetic, Economic, and Environmental Perspectives of Power Generation from Residual Biomass in Saudi Arabia. Alex. Eng. J. 2021, 61, 3351–3364. [Google Scholar] [CrossRef]
- Ramos-Hernández, R.; Sánchez-Ramírez, C.; Mota-López, D.R.; Sandoval-Salas, F.; García-Alcaraz, J.L. Evaluation of Bioenergy Potential from Coffee Pulp Trough System Dynamics. Renew. Energy 2021, 165, 863–877. [Google Scholar] [CrossRef]
- Federación Nacional de Cafeteros de Colombia Producción de Café de Colombia Aumenta 30% En Marzo. Available online: https://federaciondecafeteros.org/wp/listado-noticias/produccion-de-cafe-de-colombia-aumenta-30-en-marzo/ (accessed on 25 November 2021).
- Salazar-Gallego, F.A. Café de Colombia, Análisis de Los Principales Productores de Café Del Mundo. Bachelor’s Thesis, Universidad Pontificia Bolivariana, Salazar Gallego, FA, USA, 2021. [Google Scholar]
- Federación Nacional de Cafeteros de Colombia Estadísticas Cafeteras—Precios, Áreas y Producción Del Café. Available online: https://federaciondecafeteros.org/wp/estadisticas-cafeteras/ (accessed on 8 March 2021).
- Federación Nacional de Cafeteros de Colombia Producción de Café de Colombia En 2020 Fue de 13,9 Millones de Sacos. Available online: https://federaciondecafeteros.org/wp/listado-noticias/produccion-de-cafe-de-colombia-en-2020-fue-de-139-millones-de-sacos/ (accessed on 25 November 2021).
- Rodríguez Valencia, N.; Zambrano Franco, D. Los Subproductos Del Café: Fuente de Energía Renovable. Av. Técnicos Cenicafé 2010, 393, 1–8. [Google Scholar]
- Mendoza Martinez, C.L.; Saari, J.; Melo, Y.; Cardoso, M.; de Almeida, G.M.; Vakkilainen, E. Evaluation of Thermochemical Routes for the Valorization of Solid Coffee Residues to Produce Biofuels: A Brazilian Case. Renew. Sustain. Energy Rev. 2021, 137, 110585. [Google Scholar] [CrossRef]
- Duarte, A.; Uribe, J.C.; Sarache, W.; Calderón, A. Economic, Environmental, and Social Assessment of Bioethanol Production Using Multiple Coffee Crop Residues. Energy 2021, 216, 119170. [Google Scholar] [CrossRef]
- Cubero-Abarca, R.; Moya, R.; Valaret, J.; Filho, M.T. Use of Coffee (Coffea Arabica) Pulp for the Production of Briquettes and Pellets for Heat Generation. Cienc. e Agrotecnologia 2014, 38, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Mendoza Martinez, C.L.; Alves Rocha, E.P.; Oliveira Carneiro, A.d.C.; Borges Gomes, F.J.; Ribas Batalha, L.A.; Vakkilainen, E.; Cardoso, M. Characterization of Residual Biomasses from the Coffee Production Chain and Assessment the Potential for Energy Purposes. Biomass Bioenergy 2019, 120, 68–76. [Google Scholar] [CrossRef]
- Nava-Valente, N.; Del Ángel-Coronel, O.A.; Atenodoro-Alonso, J.; López-Escobar, L.A. Effect of Thermal and Acid Pre-Treatment on Increasing Organic Loading Rate of Anaerobic Digestion of Coffee Pulp for Biogas Production. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Manasa, V.; Padmanabhan, A.; Anu Appaiah, K.A. Utilization of Coffee Pulp Waste for Rapid Recovery of Pectin and Polyphenols for Sustainable Material Recycle. Waste Manag. 2021, 120, 762–771. [Google Scholar] [CrossRef]
- Zinla, D.; Gbaha, P.; Koffi, P.M.E.; Koua, B.K. Characterization of Rice, Coffee and Cocoa Crops Residues as Fuel of Thermal Power Plant in Côte d’Ivoire. Fuel 2021, 283, 119250. [Google Scholar] [CrossRef]
- Garcia-Freites, S.; Welfle, A.; Lea-Langton, A.; Gilbert, P.; Thornley, P. The Potential of Coffee Stems Gasification to Provide Bioenergy for Coffee Farms: A Case Study in the Colombian Coffee Sector. Biomass Convers. Biorefin. 2020, 10, 1137–1152. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.A.; Ortega-Jimenez, C.H. Power Generation with Biomass from Coffee: A Literature Review, Current Trend and Scope for Future Research. MATEC Web Conf. 2019, 293, 05002. [Google Scholar] [CrossRef]
- Algarín, C.R.; Llanos, A.P.; Castro, A.O. An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. Int. J. Energy Econ. Policy 2017, 7, 38–47. [Google Scholar]
- Zhang, Y.; Zhao, X.; Ren, L.; Liang, J.; Liu, P. The Development of China’s Biomass Power Industry under Feed-in Tariff and Renewable Portfolio Standard: A System Dynamics Analysis. Energy 2017, 139, 947–961. [Google Scholar] [CrossRef]
- Remón, J.; Ravaglio-Pasquini, F.; Pedraza-Segura, L.; Arcelus-Arrillaga, P.; Suelves, I.; Pinilla, J.L. Caffeinating the Biofuels Market: Effect of the Processing Conditions during the Production of Biofuels and High-Value Chemicals by Hydrothermal Treatment of Residual Coffee Pulp. J. Clean. Prod. 2021, 302, 127008. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Serna-Jiménez, J.A.; Martínez, K. Coffee By-Products: Nowadays and Perspectives. In Coffee—Production and Research; BoD—Books on Demand: Norderstedt, Germany, 2020; pp. 1–18. Available online: https://www.intechopen.com/chapters/69900 (accessed on 2 December 2021).
- Pereira, L.L.; Guarçoni, R.C.; Pinheiro, P.F.; Osório, V.M.; Pinheiro, C.A.; Moreira, T.R.; ten Caten, C.S. New Propositions about Coffee Wet Processing: Chemical and Sensory Perspectives. Food Chem. 2020, 310, 125943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Contreras, G.F.; Cai, Z.; Moccand, C.; Weckx, S.; De Vuyst, L. Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Front. Microbiol. 2019, 10, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, É.M.; de Macedo, L.M.; Tundisi, L.L.; Ataide, J.A.; Camargo, G.A.; Alves, R.C.; Oliveira, M.B.P.P.; Mazzola, P.G. Coffee By-Products in Topical Formulations: A Review. Trends Food Sci. Technol. 2021, 111, 280–291. [Google Scholar] [CrossRef]
- Ancy Jenifer, A.; Vasanthy, M.; Thamarai selvi, C.; Ravindran, B.; Chung, W.J.; Chang, S.W. Treatment of Coffee Cherry Pulping Wastewater by Using Lectin Protein Isolated from Ricinus communis L. Seed. J. Water Process Eng. 2021, 39, 101742. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef]
- Yadira, P.S.B.; Sergio, S.T.; Fernando, S.E.L.; Sebastian, P.J.; Eapen, D. Bioethanol Production from Coffee Mucilage. Energy Procedia 2014, 57, 950–956. [Google Scholar] [CrossRef] [Green Version]
- García, C.A.; Peña, Á.; Betancourt, R.; Cardona, C.A. Energetic and Environmental Assessment of Thermochemical and Biochemical Ways for Producing Energy from Agricultural Solid Residues: Coffee Cut-Stems Case. J. Environ. Manag. 2018, 216, 160–168. [Google Scholar] [CrossRef]
- Chala, B.; Oechsner, H.; Latif, S.; Müller, J. Biogas Potential of Coffee Processing Waste in Ethiopia. Sustainability 2018, 10, 2678. [Google Scholar] [CrossRef] [Green Version]
- Dal-Bó, V.; Lira, T.; Arrieche, L.; Bacelos, M. Process Synthesis for Coffee Husks to Energy Using Hierarchical Approaches. Renew. Energy 2019, 142, 195–206. [Google Scholar] [CrossRef]
- Santos da Silveira, J.; Durand, N.; Lacour, S.; Belleville, M.P.; Perez, A.; Loiseau, G.; Dornier, M. Solid-State Fermentation as a Sustainable Method for Coffee Pulp Treatment and Production of an Extract Rich in Chlorogenic Acids. Food Bioprod. Process. 2019, 115, 175–184. [Google Scholar] [CrossRef]
- Prakash, I.; Shankar, S.R.; Sneha, H.P.; Kumar, P.; Om, H.; Basavaraj, K.; Murthy, P.S. Metabolomics and Volatile Fingerprint of Yeast Fermented Robusta Coffee: A Value Added Coffee. LWT 2022, 154, 112717. [Google Scholar] [CrossRef]
- Tayibi, S.; Monlau, F.; Bargaz, A.; Jimenez, R.; Barakat, A. Synergy of Anaerobic Digestion and Pyrolysis Processes for Sustainable Waste Management: A Critical Review and Future Perspectives. Renew. Sustain. Energy Rev. 2021, 152, 111603. [Google Scholar] [CrossRef]
- He, Z.W.; Yang, W.J.; Ren, Y.X.; Jin, H.Y.; Tang, C.C.; Liu, W.Z.; Yang, C.X.; Zhou, A.J.; Wang, A.J. Occurrence, Effect, and Fate of Residual Microplastics in Anaerobic Digestion of Waste Activated Sludge: A State-of-the-Art Review. Bioresour. Technol. 2021, 331, 125035. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Sossa, J.P.; Murillo-Roos, M.; Uribe, L.; Uribe-Lorio, L.; Marsh, T.; Larsen, N.; Chen, R.; Miranda, A.; Solís, K.; Rodriguez, W.; et al. Effects of Coffee Processing Residues on Anaerobic Microorganisms and Corresponding Digestion Performance. Bioresour. Technol. 2017, 245, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Widjaja, T.; Iswanto, T.; Altway, A.; Shovitri, M.; Juliastuti, S.R. Methane Production from Coffee Pulp by Microorganism of Rumen Fluid and Cow Dung in Co-Digestion. Chem. Eng. Trans. 2017, 56, 1465–1470. [Google Scholar] [CrossRef]
- Corro, G.; Pal, U.; Bañuelos, F.; Rosas, M. Generation of Biogas from Coffee-Pulp and Cow-Dung Co-Digestion: Infrared Studies of Postcombustion Emissions. Energy Convers. Manag. 2013, 74, 471–481. [Google Scholar] [CrossRef]
- Sumardiono, S.; Jos, B.; Dewanti, A.A.E.; Mahendra, I.; Cahyono, H. Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid-and Solid-State Anaerobic Digestions. Energies 2021, 14, 4664. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S. Critical Review on Life Cycle Assessment of Conventional and Innovative Waste-to-Energy Technologies. Sci. Total Environ. 2019, 672, 708–721. [Google Scholar] [CrossRef]
- Poblete, I.B.S.; Araujo, O.d.Q.F.; de Medeiros, J.L. Dynamic Analysis of Sustainable Biogas-Combined-Cycle Plant: Time-Varying Demand and Bioenergy with Carbon Capture and Storage. Renew. Sustain. Energy Rev. 2020, 131, 109997. [Google Scholar] [CrossRef]
- Liu, T.; McConkey, B.; Huffman, T.; Smith, S.; MacGregor, B.; Yemshanov, D.; Kulshreshtha, S. Potential and Impacts of Renewable Energy Production from Agricultural Biomass in Canada. Appl. Energy 2014, 130, 222–229. [Google Scholar] [CrossRef]
- Borges, C.P.; Sobczak, J.C.; Silberg, T.R.; Uriona-Maldonado, M.; Vaz, C.R. A Systems Modeling Approach to Estimate Biogas Potential from Biomass Sources in Brazil. Renew. Sustain. Energy Rev. 2021, 138, 110518. [Google Scholar] [CrossRef]
- Pham, Y.; Reardon-Smith, K.; Deo, R.C. Evaluating Management Strategies for Sustainable Crop Production under Changing Climate Conditions: A System Dynamics Approach. J. Environ. Manag. 2021, 292, 112790. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Flórez, G.; Correa, L.F.G.; Urrea, N.T.; Gómez, J.C.O. Simulación Dinámica de Una Alternativa de Generación de Energía a Partir de Residuos. Mutis 2017, 7, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Oviedo-Ocaña, E.R.; Dominguez, I.; Torres-Lozada, P.; Marmolejo-Rebellón, L.F.; Komilis, D.; Sanchez, A. A Qualitative Model to Evaluate Biowaste Composting Management Systems Using Causal Diagrams: A Case Study in Colombia. J. Clean. Prod. 2016, 133, 201–211. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Golroudbary, S.R.; Shiwakoti, N.; Kraslawski, A.; Stasinopoulos, P. An Investigation of the Environmental Sustainability of Palm Biomass Supply Chains via Dynamic Simulation Modeling: A Case of Malaysia. J. Clean. Prod. 2019, 237, 117740. [Google Scholar] [CrossRef]
- Dasgupta, T. Energy Modeling of Urban Municipal Solid Waste Management System to the City of Lake, Bhopal. Int. J. Sci. Eng. Technol. 2014, 3, 1031–1035. [Google Scholar]
- Arias-Gaviria, J.; Carvajal-Quintero, S.X.; Arango-Aramburo, S. Understanding Dynamics and Policy for Renewable Energy Diffusion in Colombia. Renew. Energy 2019, 139, 1111–1119. [Google Scholar] [CrossRef]
- Sani, K.; Siallagan, M.; Putro, U.S.; Mangkusubroto, K. Indonesia Energy Mix Modelling Using System Dynamics. Int. J. Sustain. Energy Plan. Manag. 2018, 18, 29–52. [Google Scholar] [CrossRef]
- Hsiao, C.T.; Liu, C.S.; Chang, D.S.; Chen, C.C. Dynamic Modeling of the Policy Effect and Development of Electric Power Systems: A Case in Taiwan. Energy Policy 2018, 122, 377–387. [Google Scholar] [CrossRef]
- Flynn, H.; Breger, D.; Belden, A.; Bier, A.; Laurent, C.; Andrews, N.; Rickerson, W. System Dynamics Modeling of the Massachusetts SREC Market. Sustainability 2010, 2, 2746–2761. [Google Scholar] [CrossRef] [Green Version]
- Zapata, S.; Castaneda, M.; Aristizabal, A.J.; Dyner, I. Renewables for Supporting Supply Adequacy in Colombia. Energy 2022, 239, 122157. [Google Scholar] [CrossRef]
- Henao, F.; Dyner, I. Renewables in the Optimal Expansion of Colombian Power Considering the Hidroituango Crisis. Renew. Energy 2020, 158, 612–627. [Google Scholar] [CrossRef]
- De Jong, P.; Sánchez, A.S.; Esquerre, K.; Kalid, R.A.; Torres, E.A. Solar and Wind Energy Production in Relation to the Electricity Load Curve and Hydroelectricity in the Northeast Region of Brazil. Renew. Sustain. Energy Rev. 2013, 23, 526–535. [Google Scholar] [CrossRef]
- Viviescas, C.; Lima, L.; Diuana, F.A.; Vasquez, E.; Ludovique, C.; Silva, G.N.; Huback, V.; Magalar, L.; Szklo, A.; Lucena, A.F.P.; et al. Contribution of Variable Renewable Energy to Increase Energy Security in Latin America: Complementarity and Climate Change Impacts on Wind and Solar Resources. Renew. Sustain. Energy Rev. 2019, 113, 109232. [Google Scholar] [CrossRef]
- Federación Nacional de Cafeteros de Colombia Estadísticas Cafeteras—Exportaciones de Café Colombiano. Available online: https://federaciondecafeteros.org/wp/exportacion/ (accessed on 30 November 2021).
- Xm. Históricos de Demanda. Available online: https://www.xm.com.co/consumo/historicos-de-demanda (accessed on 27 April 2022).
- Xm. Indicadores. Available online: https://www.xm.com.co/portal-de-indicadores (accessed on 27 April 2022).
- Chludziński, D.; Duda, M. Technological Solutions Applied in Biogas Plants—A Case Study. E3S Web Conf. 2018, 49, 00012. [Google Scholar] [CrossRef]
- Barragán-Escandón, A.; Olmedo Ruiz, J.M.; Curillo Tigre, J.D.; Zalamea-León, E.F. Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context. Sustainability 2020, 12, 2669. [Google Scholar] [CrossRef] [Green Version]
- National Renewable Energy Laboratory (NREL) Utility-Scale Energy Technology Capacity Factors. Available online: https://www.nrel.gov/analysis/tech-cap-factor.html (accessed on 27 April 2022).
- Samah, E. Measuring Small-Scale Biogas Capacity and Production; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2016. [Google Scholar]
- Thomsen, S.T.; Spliid, H.; Østergård, H. Statistical Prediction of Biomethane Potentials Based on the Composition of Lignocellulosic Biomass. Bioresour. Technol. 2014, 154, 80–86. [Google Scholar] [CrossRef]
- Unidad de Planeación Minero Energética (UPME) Proyección de Demanda de Energía Eléctrica y Gas Natural 2021–2035. Available online: https://www1.upme.gov.co/DemandayEficiencia/Paginas/Proyecciones-de-demanda.aspx (accessed on 27 April 2022).
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- International Research Institute (IRI) IRI ENSO Forecast. Available online: https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/ (accessed on 30 July 2021).
- Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD). Fenómeno El Niño; Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD): Bogotá, Colombia, 2016. [Google Scholar]
- Climate Predictor Center Cold & Warm Episodes by Season. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 30 June 2021).
- Ramírez-Builes, V.H.; Jaramillo-Robledo, Á. Relación Entre El Índice Oceánico de El Niño y La Lluvia, En La Región Andina Central de Colombia. Cenicafé 2009, 60, 161–172. [Google Scholar]
- Cáceres-Martínez, L.E. Technical Evaluation of Available Residual Biomass in Colombia for Its Thermochemical Conversion in Fluidized Bed Reactors; Universidad Nacional de Colombia: Bogotá, Colombia, 2018. [Google Scholar]
- Pupo-Roncallo, O.; Campillo, J.; Ingham, D.; Hughes, K.; Pourkashanian, M. Large Scale Integration of Renewable Energy Sources (RES) in the Future Colombian Energy System. Energy 2019, 186, 115805. [Google Scholar] [CrossRef]
Technology | Installed Capacity (GW) | Share (%) |
---|---|---|
Hydraulic | 11.94 | 68.3% |
Wind | 0.02 | 1.3% |
Solar | 0.06 | |
Biomass | 0.14 | |
Thermal | 5.32 | 30.4% |
Total | 17.48 |
Variable | Units | Equation |
---|---|---|
Coffee Pulp Inventory | Tons/Month | INTEG (Pulped-Coffee pulp energy pn-Other uses) |
Biomethane Production | /Month | “Biochemical Methane Potential (BMP)” *Coffee pulp energy pn |
Coffee Pulp Power Generation | GWh/Month | Biomethane for energy production* “Low Heating Value (LHV CH4)”*cf biomass *Energy generation efficiency |
Hydropower Electricity Potential | GWh/Month | Installed capacity Hydro*Hours per month*cf hydro*(1 − (“The El Niño phenomenon” *Niño effect on hydroelectric power)) |
Hydropower electricity Production | GWh/Month | IF THEN ELSE (Energy demand>Hydropower electricity potential, Hydropower electricity potential, Energy demand) |
Solar Electricity Production | GWh/Month | Installed capacity Solar*Hours per month* cf solar |
Wind Electricity Production | GWh/Month | Installed capacity Wind*Hours per month* cf wind |
Indicator | Units | Equation |
Energy Share | % | Electricity production of /Projected energy demand |
Time (Month) | Month-Year | Intensity of El Niño | Coffee Pulp Share | NCREs Share | Hydro Share | Thermal Share |
---|---|---|---|---|---|---|
33 | Sep-23 | Moderate | 0.22% | 20.00% | 76.71% | 3.30% |
34 | Oct-23 | Moderate | 0.20% | 19.46% | 74.71% | 5.83% |
35 | Nov-23 | Moderate | 0.17% | 19.76% | 73.52% | 6.72% |
36 | Dec-23 | Moderate | 0.15% | 19.44% | 69.12% | 11.44% |
37 | Jan-24 | Moderate | 0.20% | 21.37% | 74.64% | 3.99% |
38 | Feb-24 | Moderate | 0.24% | 24.21% | 75.79% | 0.00% |
39 | Mar-24 | Moderate | 0.27% | 23.98% | 76.02% | 0.00% |
85 | Jan-28 | Strong | 0.22% | 24.40% | 73.99% | 1.61% |
86 | Feb-28 | Strong | 0.26% | 24.97% | 75.03% | 0.00% |
87 | Mar-28 | Strong | 0.20% | 23.74% | 72.02% | 4.25% |
88 | Apr-28 | Strong | 0.20% | 24.63% | 74.75% | 0.62% |
89 | May-28 | Strong | 0.20% | 23.77% | 69.86% | 6.37% |
90 | Jun-28 | Strong | 0.16% | 24.22% | 71.33% | 4.45% |
91 | Jul-28 | Strong | 0.13% | 23.64% | 69.71% | 6.65% |
92 | Aug-28 | Strong | 0.14% | 23.23% | 68.46% | 8.31% |
93 | Sep-28 | Strong | 0.16% | 23.71% | 64.49% | 11.80% |
94 | Oct-28 | Strong | 0.20% | 23.11% | 62.71% | 14.18% |
95 | Nov-28 | Strong | 0.20% | 23.45% | 52.42% | 24.13% |
96 | Dec-28 | Strong | 0.18% | 23.11% | 51.69% | 25.20% |
97 | Jan-29 | Strong | 0.16% | 23.54% | 52.73% | 23.73% |
98 | Feb-29 | Strong | 0.21% | 24.55% | 66.66% | 8.79% |
99 | Mar-29 | Strong | 0.23% | 23.25% | 68.18% | 8.57% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Ruiz, Y.; Manotas-Duque, D.F.; Osorio-Gómez, J.C.; Ramírez-Malule, H. Evaluation of Energy Potential from Coffee Pulp in a Hydrothermal Power Market through System Dynamics: The Case of Colombia. Sustainability 2022, 14, 5884. https://doi.org/10.3390/su14105884
Martínez-Ruiz Y, Manotas-Duque DF, Osorio-Gómez JC, Ramírez-Malule H. Evaluation of Energy Potential from Coffee Pulp in a Hydrothermal Power Market through System Dynamics: The Case of Colombia. Sustainability. 2022; 14(10):5884. https://doi.org/10.3390/su14105884
Chicago/Turabian StyleMartínez-Ruiz, Yessenia, Diego Fernando Manotas-Duque, Juan Carlos Osorio-Gómez, and Howard Ramírez-Malule. 2022. "Evaluation of Energy Potential from Coffee Pulp in a Hydrothermal Power Market through System Dynamics: The Case of Colombia" Sustainability 14, no. 10: 5884. https://doi.org/10.3390/su14105884
APA StyleMartínez-Ruiz, Y., Manotas-Duque, D. F., Osorio-Gómez, J. C., & Ramírez-Malule, H. (2022). Evaluation of Energy Potential from Coffee Pulp in a Hydrothermal Power Market through System Dynamics: The Case of Colombia. Sustainability, 14(10), 5884. https://doi.org/10.3390/su14105884