Effect of Acid–Base Modified Biochar on Chlortetracycline Adsorption by Purple Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Preparation of Acid-Base Modified APBC
2.3. Preparation of Amended Soil Samples
2.4. CTC Adsorption Experiments
2.4.1. CTC Concentration Gradient
2.4.2. Influence of Environmental Factors
2.4.3. Experimental Methods
2.5. Data Processing
2.5.1. Calculation of Equilibrium Adsorption Amount of CTC
2.5.2. Fitting of CTC Adsorption Isotherms
2.5.3. Calculation of Thermodynamic Parameters
3. Results and Discussion
3.1. Isothermal Sorption Characteristics of CTC on Different Amended Soils
3.2. Effect of Temperature on CTC Adsorption by Different Soil Samples
3.3. Influence of Ionic Strength on CTC Adsorption
3.4. Effect of pH on CTC Adsorption by Different Soil Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gustafson, R.H.; Bowen, R.E. Antibiotic use in animal agriculture. J. Appl. Microbiol. 2010, 83, 531–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arpana, S.C. A review of global initiatives to fight antibiotic resistance and recent antibiotics’ discovery. Acta Pharm. Sin. B 2016, 6, 552–556. [Google Scholar]
- Sola, A. Abuse of antibiotics in perinatology: Negative impact for health and the economy. NeoReviews 2020, 21, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Wegener, H.C.; Aarestrup, F.M.; Jensen, L.B.; Harmerum, A.M.; Bager, F. Use of antimicrobial growth promoters in food animals and enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerg. Infect. Dis. 1999, 5, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Hsu, B.M.; Ji, W.T.; Chang, T.Y.; Kao, P.M.; Tseng, S.F.; Shen, T.Y.; Shih, F.C.; Fan, C.W.; Liu, J.H. A potential association between antibiotic abuse and existence of related resistance genes in different aquatic environments. Water Air Soil Pollut. 2015, 226, 2235. [Google Scholar] [CrossRef]
- Heilig, S.; Lee, P.; Breslow, L. Curtailing antibiotic use in agriculture: It is time for action: This use contributes to bacterial resistance in humans. West. J. Med. 2002, 176, 9–23. [Google Scholar] [CrossRef]
- Wang, R.; Wei, Y.S. Pollution and control of tetracyclines and heavy metals residues in animal manure. J. Agro-Environ. Sci. 2013, 32, 1705–1719. [Google Scholar]
- Masse, D.I.; Saady, N.M.; Gilbert, Y. Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals 2014, 4, 146–163. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, X.; Liang, W.; Gong, W.; Liu, J.; Fu, W.; Ming, C. Seasonal variation and sediment–water exchange of antibiotics in a shallower large lake in North China. Sci. Total Environ. 2014, 476–477, 266–275. [Google Scholar] [CrossRef]
- Lee, E.; Lee, H.; Lee, C. Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. J. Ind. Eng. Chem. 2011, 17, 468–473. [Google Scholar] [CrossRef]
- Peng, P.; Wang, Y.; Liu, L. The excretion and environmental effects of amoxicillin, ciprofloxacin, and doxycyclin residues in layer chicken manure. Poult. Sci. 2016, 95, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; Li, C.H.; Huang, S.W.; Gao, W.; Tang, J.W. Optimization of residual tetracyclines analysis in soils and manure using SPE-HPLC and pilot survey in Tianjin. Plant Nutr. Fertil. Sci. 2013, 19, 713–726. [Google Scholar]
- Wang, L.; Liu, S.L.; Dai, G.S.; Chen, J.J. Analysis of residue of tetracyclines antibiotics in livestock manures and soil in Erhai-Lake basin. J. Anhui Agric. Sci. 2017, 45, 70–72. [Google Scholar]
- Zhang, S.Q.; Zhang, F.D.; Liu, X.M.; Wang, Y.J.; He, X.S. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots. Plant Nutr. Fertil. Sci. 2005, 11, 116–123. [Google Scholar]
- Russell, J.N.; Yost, C.K. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere 2020, 263, 128177. [Google Scholar] [CrossRef]
- Luo, B.; Huang, G.; Yao, Y.; An, C.; Li, W.; Zheng, R.; Zhao, K. Comprehensive evaluation of adsorption performances of carbonaceous materials for sulfonamide antibiotics removal. Environ. Sci. Pollut. Res. 2021, 28, 2400–2414. [Google Scholar] [CrossRef]
- Skoczko, I.; Szatyłowicz, E. Removal of heavy metal ions by filtration on activated alumina-assisted magnetic field. Desalin. Water Treat. 2018, 117, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.P.; Fang, R.; Shi, J.J.; Zhang, X.Z.; Tan, Z.Z.; Meng, Y.Y. Adsorption performance of tetracycline on nitric acid-modified rape biochar. Environ. Sci. Technol. 2019, 32, 17–23. [Google Scholar]
- Das, S.K.; Ghosh, G.K.; Avasthe, R.K.; Sinha, K. Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. J. Environ. Manag. 2021, 278, 111501. [Google Scholar] [CrossRef]
- Tian, R.; Li, C.; Xie, S.; You, F.; Cao, Z.; Xu, Z.; Yu, G.; Wang, Y. Preparation of biochar via pyrolysis at laboratory and pilot scales to remove antibiotics and immobilize heavy metals in livestock feces. J. Soils Sediments 2019, 19, 2891–2902. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R.K.; Sinha, K. Morpho-mineralogical exploration of crop, weed and tree derived biochar. J. Hazard. Mater. 2020, 407, 124370. [Google Scholar] [CrossRef] [PubMed]
- Gai, X.P.; Wang, H.Y.; Liu, J.; Zhai, L.M.; Liu, S.; Ren, T.Z.; Liu, H.B.; Coles, J.A. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 2017, 9, e113888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, X.R.; Wang, Y.Y.; Liu, W.J.; Wang, Y.K.; Jiang, H. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem. Eng. J. 2014, 248, 168–174. [Google Scholar] [CrossRef]
- Liang, J.; Fang, Y.; Luo, Y.; Zeng, G.M.; Deng, J.Q. Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride. Environ. Sci. Pollut. Res. Int. 2019, 26, 5892–5903. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiong, Y.; Wang, Y.; Li, Q. Long period exposure to serious cadmium pollution benefits an invasive plant (Alternanthera philoxeroides) competing with its native congener (Alternanthera sessilis). Sci. Total Environ. 2021, 786, 147456. [Google Scholar] [CrossRef]
- Shen, S.; Guo, W.; Li, X. Above-and belowground herbivory alters the outcome of intra-and interspecific competition between invasive and native alternanthera species. Biol. Invasions 2022, 24, 801–813. [Google Scholar] [CrossRef]
- Wei, H.; He, M.Y.; Lu, X.M.; Ding, J.Q. Differences in interactions of aboveground and belowground herbivores on the invasive plant Alternanthera philoxeroides and native host A. sessilis. Biol. Invasions 2016, 18, 3437–3447. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, Z.; Zhang, X.; Chen, X.; Yue, D.; Yin, Q.; Xiao, L.; Yang, L. Biochar from Alternanthera philoxeroides could remove Pb(II) efficiently. Bioresour. Technol. 2014, 171, 227–232. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Ding, Y.; Zeng, G.; Xu, Y.; Zeng, W.; Zheng, B. Removal of metformin hydrochloride by Alternanthera philoxeroides biomass derived porous carbon materials treated with hydrogen peroxide. RSC Adv. 2016, 6, 79275–79284. [Google Scholar] [CrossRef]
- Du, Y.D.; Zhang, X.Q.; Shu, L.; Feng, Y.; Kong, Q. Safety evaluation and ibuprofen removal via an Alternanthera philoxeroides-based biochar. Environ. Sci. Pollut. Res. 2020, 28, 40568–40586. [Google Scholar] [CrossRef] [PubMed]
- Pils, J.R.V.; Laird, D.A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ. Sci. Technol. 2007, 41, 1928–1933. [Google Scholar] [CrossRef] [PubMed]
- Li, W.B.; Meng, Z.F.; Wu, Q.; Bai, D.; Xu, S.E.; Yu, L. Modification mechanism of amphoteric modifier BS–12 on two different clays. Fresenius Environ. Bull. 2016, 25, 3993–4003. [Google Scholar]
- Mitchell, L.A.; Levan, M.D. Development of adsorption equilibrium relations for mixtures from pure component isotherms and henry’s law behavior with components in excess. Ind. Eng. Chem. Res. 2014, 53, 15531–15537. [Google Scholar] [CrossRef]
- Li, W.B.; Chen, X.Y.; Deng, H.Y.; Wang, D.; Jiang, J.C.; Zeng, Y.Z.; Kang, L.; Meng, Z.F. Effects of exogenous biochar on tetracycline adsorption by different riverbank soils from Sichuan and Chongqing section of Jialing River. Chin. J. Soil Sci. 2020, 51, 487–495. [Google Scholar]
- Zhang, X.; Lin, X.; He, Y.; Chen, Y.; Luo, X. Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. Int. J. Biol. Macromol. 2019, 124, 418–428. [Google Scholar] [CrossRef]
- Zou, Y.; Deng, H.Y.; Li, M.; Zhao, Y.H.; Li, W.B. Enhancing tetracycline adsorption by riverbank soils by application of biochar-based composite materials. Desalin. Water Treat. 2020, 207, 332–340. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, Q.; Pan, M.M.; Dai, L.C. Interaction between chlortetracycline and calcium-rich biochar: Enhanced removal by adsorption coupled with flocculation. Chem. Eng. J. 2020, 382, 122705. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J. Removal of chlortetracycline from water by immobilized bacillus subtilis on honeysuckle residue derived biochar. Water Air Soil Pollut. 2021, 232, 236. [Google Scholar] [CrossRef]
- Li, Z.; Chang, P.H.; Jean, J.S.; Jiang, W.T.; Wang, C.J. Interaction between tetracycline and smectite in aqueous solution. J. Colloid Interface Sci. 2010, 341, 311–319. [Google Scholar] [CrossRef]
- Zhang, H.J.; Song, Y.M.; Li, W.W.; Wang, S.J.; Qi, Z.C. Removal of tetracycline from aqueous solution by biochars: A review. Chem. Res. 2019, 30, 646–652. [Google Scholar]
- Cao, J.; Xiong, Z.; Lai, B. Effect of initial pH on the tetracycline (TC) removal by zero-valent iron: Adsorption, oxidation and re duction. Chem. Eng. J. 2018, 343, 492–499. [Google Scholar] [CrossRef]
- Nie, T.; Hao, P.; Zhao, Z.; Zhou, W.; Zhu, L. Effect of oxidation-induced aging on the adsorption and co-adsorption of tetracycline and Cu2+ onto biochar. Sci. Total Environ. 2019, 673, 522–532. [Google Scholar] [CrossRef] [PubMed]
Soil Sample | pH | CEC (mmol/kg) | TOC Content (g/kg) | Specific Surface Area (m2/g) | Copper Content (mg/kg) |
---|---|---|---|---|---|
HC | 8.16 | 120.72 | 15.75 | 90.34 | 18.84 |
JL | 7.70 | 204.08 | 12.28 | 130.21 | 16.32 |
CX | 6.56 | 100.69 | 25.83 | 89.34 | 24.74 |
Soil Sample | Freundlich | Langmuir | Henry | |||||
---|---|---|---|---|---|---|---|---|
KF | 1/n | R2 | qm | KL | R2 | KH | R2 | |
HC | 101.1779 | 0.8124 | 0.9935 | 2482.7106 | 0.0361 | 0.9927 | 64.0721 | 0.9871 |
2% CmHC | 106.3882 | 0.8527 | 0.9955 | 2920.7151 | 0.0346 | 0.9984 | 75.8736 | 0.9896 |
5% CmHC | 114.1008 | 0.8750 | 0.9858 | 3322.1241 | 0.0338 | 0.9919 | 86.9406 | 0.9822 |
10% CmHC | 149.6066 | 0.8740 | 0.9941 | 3631.2122 | 0.0414 | 0.9971 | 116.7659 | 0.9895 |
JL | 83.3789 | 0.8061 | 0.9946 | 2062.6285 | 0.0355 | 0.9967 | 50.6241 | 0.9858 |
2% CmJL | 95.7305 | 0.8176 | 0.9911 | 2522.3476 | 0.0335 | 0.9917 | 61.0033 | 0.9854 |
5% CmJL | 99.9351 | 0.8609 | 0.9930 | 3058.8482 | 0.0309 | 0.9951 | 72.3188 | 0.9884 |
10% CmJL | 132.8579 | 0.8436 | 0.9977 | 3375.9697 | 0.0368 | 0.9973 | 94.5804 | 0.9929 |
CX | 77.5658 | 0.7873 | 0.9793 | 2054.6277 | 0.0307 | 0.9797 | 65.2785 | 0.9701 |
2% CmCX | 84.9150 | 0.8547 | 0.9918 | 2791.8392 | 0.0280 | 0.9946 | 68.8163 | 0.9790 |
5% CmCX | 94.5608 | 0.8803 | 0.9814 | 3157.2924 | 0.0292 | 0.9879 | 75.1827 | 0.9913 |
10% CmCX | 144.9343 | 0.8480 | 0.9798 | 3264.2293 | 0.0432 | 0.9859 | 87.8175 | 0.9892 |
Soil Sample | ΔG (J/mol) | ΔG (J/mol) | ΔG (J/mol) | ΔG (J/mol) | ΔH (kJ/mol) | ΔS (J/(mol·K)) |
---|---|---|---|---|---|---|
10 °C | 20 °C | 30 °C | 40 °C | |||
HC | −2696.6208 | −2882.9380 | −3236.1411 | −3304.5867 | 12.2921 | 9.5671 |
2% CmHC | −2559.1470 | −2826.8265 | −3129.9363 | −3205.6770 | 17.6599 | 9.1005 |
5% CmHC | −2526.3663 | −2839.9716 | −3066.5362 | −3274.4035 | 20.6898 | 8.9954 |
10% CmHC | −2897.4033 | −3489.4288 | −3582.5319 | −3686.2068 | 39.0583 | 10.3707 |
JL | −1873.6183 | −2170.5904 | −3196.0392 | −3387.9110 | 19.5924 | 6.6862 |
2% CmJL | −1750.2651 | −1986.0698 | −3044.0393 | −3159.6986 | 15.5570 | 6.2363 |
5% CmJL | −1941.0039 | −2034.6786 | −2840.9820 | −2933.8534 | 6.1801 | 6.8769 |
10% CmJL | −2353.2497 | −2590.8644 | −3285.9009 | −3355.7905 | 15.6764 | 8.3663 |
CX | −1718.1698 | −2145.8742 | −2823.7779 | −3077.0638 | 28.2173 | 6.1677 |
2% CmCX | −1368.3151 | −1723.2368 | −2596.8412 | −2691.0929 | 23.4156 | 4.9152 |
5% CmCX | −1594.8004 | −1952.0872 | −2699.9444 | −2863.3427 | 23.5716 | 5.7156 |
10% CmCX | −2662.5929 | −3010.3943 | −3689.7226 | −3743.7253 | 22.9458 | 9.4845 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Fang, X.; Chen, L.; Tang, B.; Song, F.; Li, W. Effect of Acid–Base Modified Biochar on Chlortetracycline Adsorption by Purple Soil. Sustainability 2022, 14, 5892. https://doi.org/10.3390/su14105892
Liu Z, Fang X, Chen L, Tang B, Song F, Li W. Effect of Acid–Base Modified Biochar on Chlortetracycline Adsorption by Purple Soil. Sustainability. 2022; 14(10):5892. https://doi.org/10.3390/su14105892
Chicago/Turabian StyleLiu, Zhifeng, Xun Fang, Lingyuan Chen, Bo Tang, Fengmin Song, and Wenbin Li. 2022. "Effect of Acid–Base Modified Biochar on Chlortetracycline Adsorption by Purple Soil" Sustainability 14, no. 10: 5892. https://doi.org/10.3390/su14105892
APA StyleLiu, Z., Fang, X., Chen, L., Tang, B., Song, F., & Li, W. (2022). Effect of Acid–Base Modified Biochar on Chlortetracycline Adsorption by Purple Soil. Sustainability, 14(10), 5892. https://doi.org/10.3390/su14105892