Comparison of Extraction Techniques for the Recovery of Sugars, Antioxidant and Antimicrobial Compounds from Agro-Industrial Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Enzyme and Chemicals
2.1.2. Agro-Industrial Residues
2.2. Methods
2.2.1. Characterization of Residues, Hydrolysates, and Extracts
2.2.2. Extraction Techniques
2.2.3. Phenolic Compounds Quantification
2.2.4. Flavonoids Quantification
2.2.5. Anthocyanin Quantification
2.2.6. Antioxidant Activity
2.2.7. DPPH Free Radical-Scavenging Capacity
2.2.8. Antimicrobial Activity
2.2.9. HPLC Analysis of Extracts
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. Agro-Industrial Residues Characterization
3.2. Hydrolysates and Extracts Characterization
3.2.1. Sugars Content
3.2.2. Phenolic Content
3.2.3. Flavonoid Content
3.2.4. Anthocyanin Content
3.2.5. Identification of Phenolic Compounds
3.2.6. Antioxidant Activity
3.2.7. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. World Food and Agriculture—Statistical Yearbook 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Girotto, F.; Alibardi, L.; Cossu, R. Food Waste Generation and Industrial Uses: A Review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Lizárraga-Velázquez, C.E.; Leyva-López, N.; Hernández, C.; Gutiérrez-Grijalva, E.P.; Salazar-Leyva, J.A.; Osuna-Ruíz, I.; Martínez-Montaño, E.; Arrizon, J.; Guerrero, A.; Benitez-Hernández, A.; et al. Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes 2020, 8, 1566. [Google Scholar] [CrossRef]
- Casas-Godoy, L.; González-Escobar, J.L.; Mathis, A.G.; Barrera-Martínez, I. Revalorization of Untreated Brewer’s Spent Grain: Novel and Versatile Feedstock to Produce Cellulases, Lipases and Yeast Biomass in a Biorefinery Approach. Biomass Convers. Biorefin. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Usla, H. Campo Mexicano Muestra ′El Músculo’ en 2020 Con Aumento de Producción Pese a la Pandemia. Available online: https://www.elfinanciero.com.mx/economia/campo-mexicano-muestra-el-musculo-en-2020-con-aumento-de-produccion-a-pesar-de-pandemia/ (accessed on 15 January 2022).
- FAO. Mexico Wastes 20 Million Tons of Food per Year. Available online: https://www.fao.org/in-action/agronoticias/detail/en/c/1129783/ (accessed on 18 January 2022).
- SADER Ay Jalisco… ¿Cuánta Es Tu Producción? Available online: https://www.gob.mx/agricultura/articulos/ay-jalisco-cuanta-es-tu-produccion (accessed on 20 January 2022).
- SIAP. Atlas-Agroalimentario 2012–2018; SIAP: Mexico City, Mexico, 2018. [Google Scholar]
- Łaba, W.; Piegza, M.; Kawa-Rygielska, J. Evaluation of Brewer’s Spent Grain as a Substrate for Production of Hydrolytic Enzymes by Keratinolytic Bacteria. J. Chem. Technol. Biotechnol. 2017, 92, 1389–1396. [Google Scholar] [CrossRef]
- Cooray, S.T.; Lee, J.J.L.; Chen, W.N. Evaluation of Brewers’ Spent Grain as a Novel Media for Yeast Growth. AMB Express 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Canedo, M.S.; de Paula, F.G.; da Silva, F.A.; Vendruscolo, F. Protein Enrichment of Brewery Spent Grain from Rhizopus oligosporus by Solid-State Fermentation. Bioprocess Biosyst. Eng. 2016, 39, 1105–1113. [Google Scholar] [CrossRef]
- Niehus, X.; Crutz-Le Coq, A.M.; Sandoval, G.; Nicaud, J.M.; Ledesma-Amaro, R. Engineering Yarrowia lipolytica to Enhance Lipid Production from Lignocellulosic Materials. Biotechnol. Biofuels 2018, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Mikes, F.; Bühler, S.; Matsakas, L. Valorization of Brewers’ Spent Grain for the Production of Lipids by Oleaginous Yeast. Molecules 2018, 23, 3052. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Nuñez, D.; Arellano-Plaza, M.; Gschaedler, A.; Arrizon, J.; Amaya-Delgado, L. A Comparative Study of Lignocellulosic Ethanol Productivities by Kluyveromyces marxianus and Saccharomyces cerevisiae. Clean Technol. Environ. Policy 2017, 20, 1491–1499. [Google Scholar] [CrossRef]
- Marhuenda, J.; Alemán, M.D.; Gironés-Vilaplana, A.; Pérez, A.; Caravaca, G.; Figueroa, F.; Mulero, J.; Zafrilla, P. Phenolic Composition, Antioxidant Activity, and in vitro Availability of Four Different Berries. J. Chem. 2016, 2016, 5194901. [Google Scholar] [CrossRef] [Green Version]
- Smolskaitė, L.; Venskutonis, P.R.; Talou, T. Comprehensive Evaluation of Antioxidant and Antimicrobial Properties of Different Mushroom Species. LWT 2015, 60, 462–471. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Pereira, L.; Bilbao, A.; Vilches, P.; Angulo, I.; Lluis, J.; Fite, B.; Paseiro-Losada, P.; Cruz, J.M. Brewery Waste as a Potential Source of Phenolic Compounds: Optimisation of the Extraction Process and Evaluation of Antioxidant and Antimicrobial Activities. Food Chem. 2014, 145, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Xiros, C.; Topakas, E.; Katapodis, P.; Christakopoulos, P. Evaluation of Fusarium oxysporum as an Enzyme Factory for the Hydrolysis of Brewer’s Spent Grain with Improved Biodegradability for Ethanol Production. Ind. Crops Prod. 2008, 28, 213–224. [Google Scholar] [CrossRef]
- González-García, Y.; Grieve, J.; Meza-Contreras, J.C.; Clifton-García, B.; Silva-Guzman, J.A. Tequila Agave Bagasse Hydrolysate for the Production of Polyhydroxybutyrate by Burkholderia sacchari. Bioengineering 2019, 6, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdez-Vazquez, I.; Alatriste-Mondragón, F.; Arreola-Vargas, J.; Buitrón, G.; Carrillo-Reyes, J.; León-Becerril, E.; Mendez-Acosta, H.O.; Ortíz, I.; Weber, B. A Comparison of Biological, Enzymatic, Chemical and Hydrothermal Pretreatments for Producing Biomethane from Agave Bagasse. Ind. Crops Prod. 2020, 145, 112160. [Google Scholar] [CrossRef]
- Oszmiański, J.; Nowicka, P.; Teleszko, M.; Wojdyło, A.; Cebulak, T.; Oklejewicz, K. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits. Int. J. Mol. Sci. 2015, 16, 14540–14553. [Google Scholar] [CrossRef] [Green Version]
- de Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the Bioactive Compounds, Antioxidant Activity and Chemical Composition of Brazilian Blackberry, Red Raspberry, Strawberry, Blueberry and Sweet Cherry Fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Saad, N.; Louvet, F.; Tarrade, S.; Meudec, E.; Grenier, K.; Landolt, C.; Ouk, T.S.; Bressollier, P. Enzyme-Assisted Extraction of Bioactive Compounds from Raspberry (Rubus idaeus L.) Pomace. J. Food Sci. 2019, 84, 1371–1381. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of Aoac International; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food. Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total Phenolics, Flavonoids, Antioxidant Capacity in Rice Grain and Their Relations to Grain Color, Size and Weight. J. Cereal Sci. 2009, 49, 106–111. [Google Scholar] [CrossRef]
- Moreira, M.M.; Morais, S.; Carvalho, D.O.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. Brewer’s Spent Grain from Different Types of Malt: Evaluation of the Antioxidant Activity and Identification of the Major Phenolic Compounds. Food Res. Int. 2013, 54, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Bobinaitė, R.; Viškelis, P.; Šarkinas, A.; Venskutonis, P.R. Phytochemical Composition, Antioxidant and Antimicrobial Properties of Raspberry Fruit, Pulp and Marc Extracts. CyTA J. Food 2013, 11, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Perez, M.M.; Torres-Mendoza, D.; Vasquez, R.; Rios, N.; Cubilla-Rios, L. Exploring the Antibacterial Activity of Pestalotiopsis spp. Under Different Culture Conditions and Their Chemical Diversity Using LC-ESI-Q-TOF-MS. J. Fungi 2020, 6, 140. [Google Scholar] [CrossRef] [PubMed]
- Kestur, G.S.; Flores-Sahagun, T.H.S.; Dos Santos, L.P.; Dos Santos, J.; Mazzaro, I.; Mikowski, A. Characterization of Blue Agave Bagasse Fibers of Mexico. Compos. Appl. Sci. Manuf. 2013, 45, 153–161. [Google Scholar] [CrossRef]
- Pedro Silva, J.; Sousa, S.; Rodrigues, J.; Antunes, H.; Porter, J.J.; Gonçalves, I.; Ferreira-Dias, S. Adsorption of Acid Orange 7 Dye in Aqueous Solutions by Spent Brewery Grains. Sep. Purif. Technol. 2004, 40, 309–315. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Muir, J.G.; Rose, R.; Rosella, O.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R. Measurement of Short-Chain Carbohydrates in Common Australian Vegetables and Fruits by High-Performance Liquid Chromatography (HPLC). J. Agric. Food. Chem. 2009, 57, 554–565. [Google Scholar] [CrossRef]
- Moraes, D.P.; Lozano-Sánchez, J.; Machado, M.L.; Vizzotto, M.; Lazzaretti, M.; Leyva-Jimenez, F.J.J.; da Silveira, T.L.; Ries, E.F.; Barcia, M.T. Characterization of a New Blackberry Cultivar Brs Xingu: Chemical Composition, Phenolic Compounds and Antioxidant Capacity in vitro and in vivo. Food Chem. 2020, 322, 126783. [Google Scholar] [CrossRef]
- Hassimotto, N.M.A.; de Mota, R.V.; Cordenunsi, B.R.; Lajolo, F.M. Physico-Chemical Characterization and Bioactive Compounds of Blackberry Fruits (Rubus sp.) Grown in Brazil. Food Sci. Technol. 2008, 28, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Cunha, M.A.A.D.; Lima, K.P.D.; Santos, V.A.Q.; Heinz, O.L.; Schmidt, C.A.P. Blackberry Vinegar Produced by Successive Acetification Cycles: Production, Characterization and Bioactivity Parameters. Braz. Arch. Biol. Technol. 2016, 59, 1–10. [Google Scholar] [CrossRef]
- Arreola-Vargas, J.; Flores-Larios, A.; González-Álvarez, V.; Corona-González, R.I.; Méndez-Acosta, H.O. Single and Two-Stage Anaerobic Digestion for Hydrogen and Methane Production from Acid and Enzymatic Hydrolysates of Agave tequilana Bagasse. Int. J. Hydrog. Energy 2016, 41, 897–904. [Google Scholar] [CrossRef]
- Montiel Corona, V.; Razo-Flores, E. Continuous Hydrogen and Methane Production from Agave tequilana Bagasse Hydrolysate by Sequential Process to Maximize Energy Recovery Efficiency. Bioresour. Technol. 2018, 249, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Rosales, J.d.J.; Olmos-Hernández, D.K.; Palomo-Briones, R.; Montiel-Corona, V.; Mari, A.G.; Razo-Flores, E. Improvement of Continuous Hydrogen Production Using Individual and Binary Enzymatic Hydrolysates of Agave Bagasse in Suspended-Culture and Biofilm Reactors. Bioresour. Technol. 2019, 283, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Sibhatu, H.K.; Jabasingh, S.A.; Yimam, A.; Ahmed, S. Ferulic Acid Production from Brewery Spent Grains, an Agro-Industrial Waste. LWT 2021, 135, 110009. [Google Scholar] [CrossRef]
- Górnaś, P.; Dwiecki, K.; Siger, A.; Tomaszewska-Gras, J.; Michalak, M.; Polewski, K. Contribution of Phenolic Acids Isolated from Green and Roasted Boiled-Type Coffee Brews to Total Coffee Antioxidant Capacity. Eur. Food Res. Technol. 2015, 242, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry Behind Antioxidant Capacity Assays. J. Agric. Food. Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Bonifácio-Lopes, T.; Vilas Boas, A.A.; Coscueta, E.R.; Costa, E.M.; Silva, S.; Campos, D.; Teixeira, J.A.; Pintado, M. Bioactive Extracts from Brewer’s Spent Grain. Food Funct. 2020, 11, 8963–8977. [Google Scholar] [CrossRef]
- Socaci, S.A.; Fărcaş, A.C.; Diaconeasa, Z.M.; Vodnar, D.C.; Rusu, B.; Tofană, M. Influence of the Extraction Solvent on Phenolic Content, Antioxidant, Antimicrobial and Antimutagenic Activities of Brewers’ Spent Grain. J. Cereal Sci. 2018, 80, 180–187. [Google Scholar] [CrossRef]
- Junior, T.K.; de Moura, C.; do Carmo, M.A.V.; Azevedo, L.; Esmerino, L.A.; Tardivo, R.C.; Kilpeläinen, P.; Granato, D. Chemical Composition, Antioxidant, Antimicrobial and Cytotoxic/Cytoprotective Activity of Non-Polar Extracts of Grape (Vitis labrusca cv. Bordeaux) and Blackberry (Rubus fruticosus) Seeds. Molecules 2021, 26, 4057. [Google Scholar] [CrossRef]
- Boeing, J.S.; Barizao, E.O.; BC, E.S.; Montanher, P.F.; de Cinque Almeida, V.; Visentainer, J.V. Evaluation of Solvent Effect on the Extraction of Phenolic Compounds and Antioxidant Capacities from the Berries: Application of Principal Component Analysis. Chem. Cent. J. 2014, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Patel, J.D.; Mumper, R.J. Characterization of Blackberry Extract and Its Antiproliferative and Anti-Inflammatory Properties. J. Med. Food 2007, 10, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Grabek-Lejko, D.; WÛjtowicz, K. Comparison of Antibacterial and Antioxidant Properties of Fruits and Leaves of Blackberry (Rubus plicatus) and Raspberry (Rubus idaeus). J. Microbiol. Biotechnol. Food Sci. 2014, 3, 514–518. [Google Scholar]
- Jara-Palacios, M.J.; Santisteban, A.; Gordillo, B.; Hernanz, D.; Heredia, F.J.; Escudero-Gilete, M.L. Comparative Study of Red Berry Pomaces (Blueberry, Red Raspberry, Red Currant and Blackberry) as Source of Antioxidants and Pigments. Eur. Food Res. Technol. 2019, 245, 1–9. [Google Scholar] [CrossRef]
- Krzepiłko, A.; Prażak, R.; Święciło, A. Chemical Composition, Antioxidant and Antimicrobial Activity of Raspberry, Blackberry and Raspberry-Blackberry Hybrid Leaf Buds. Molecules 2021, 26, 327. [Google Scholar] [CrossRef]
- Yang, J.W.; Choi, I.S. Comparison of the Phenolic Composition and Antioxidant Activity of Korean Black Raspberry, Bokbunja, (Rubus coreanus Miquel) with Those of Six Other Berries. CyTA J. Food 2017, 15, 110–117. [Google Scholar]
- Sariburun, E.; Şahin, S.; Demir, C.; Türkben, C.; Uylaşer, V. Phenolic Content and Antioxidant Activity of Raspberry and Blackberry Cultivars. J. Food Sci. 2010, 75, C328–C335. [Google Scholar] [CrossRef]
- Frum, A.; Georgescu, C.; Gligor, F.G.; Dobrea, C.; Tița, O. Identification and Quantification of Phenolic Compounds from Red Currant (Ribes rubrum L.) and Raspberries (Rubus idaeus L.). Int. J. Pharmacol. Phytochem. Ethnomed. 2017, 6, 30–37. [Google Scholar]
- Papaioanou, M.; Chronopoulou, E.; Ciobotari, G.; Efrose, R.; Sfichi-Duke, L.; Chatzikonstantinou, M.; Pappa, E.; Ganopoulos, I.; Madesis, P.; Nianiou-Obeidat, I.; et al. Cosmeceutical Properties of Two Cultivars of Red Raspberry Grown under Different Conditions. Cosmetics 2018, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Cantun, D.; Ramos-Cassellis, M.E.; Marin-Castro, M.A.; Castelan-Vega, R.D.C. Secondary Metabolites and Antioxidant Activity of the Solid-State Fermentation in Apple (Pirus malus L.) and Agave Mezcalero (Agave angustifolia H.). Bagasse. J. Fungi 2020, 6, 137. [Google Scholar] [CrossRef]
- Apolinario, A.C.; do Nascimento, M.L.; de Luna Vieira, J.P.; Melo Cde, O.; Santos, F.F.; de Lima Damasceno, B.P.; Converti, A.; Pessoa, A.; da Silva, J.A. Physico-Chemical Quality Parameters of Herbal Products from Agave sisalana. Nat. Prod. Res. 2014, 28, 1992–1999. [Google Scholar] [CrossRef]
- Obón, J.M.; Díaz-García, M.C.; Castellar, M.R. Red Fruit Juice Quality and Authenticity Control by HPLC. J. Food Compos. Anal. 2011, 24, 760–771. [Google Scholar] [CrossRef]
- Ahumada-Santos, Y.P.; Montes-Avila, J.; Uribe-Beltrán, M.d.J.; Díaz-Camacho, S.P.; López-Angulo, G.; Vega-Aviña, R.; López-Valenzuela, J.Á.; Heredia, J.B.; Delgado-Vargas, F. Chemical Characterization, Antioxidant and Antibacterial Activities of Six Agave Species from Sinaloa, Mexico. Ind. Crops Prod. 2013, 49, 143–149. [Google Scholar] [CrossRef]
- Verni, M.; Pontonio, E.; Krona, A.; Jacob, S.; Pinto, D.; Rinaldi, F.; Verardo, V.; Diaz-de-Cerio, E.; Coda, R.; Rizzello, C.G. Bioprocessing of Brewers’ Spent Grain Enhances Its Antioxidant Activity: Characterization of Phenolic Compounds and Bioactive Peptides. Front. Microbiol. 2020, 11, 1831. [Google Scholar] [CrossRef] [PubMed]
- Mertoglu, K.; Eskimez, I.; Polat, M.; Okatan, V.; Korkmaz, N.; Gulbandilar, A.; Bulduk, I. Determination of Anti-Microbial and Phyto-Chemical Characteristics of Some Blackberry Cultivars. Fresenius Environ. Bull. 2021, 30, 1789–1795. [Google Scholar]
Component (%) | Blue Agave Bagasse (BAB) | Brewer’s Spent Grain (BSG) | Blackberry (BB) | Raspberry (RB) |
---|---|---|---|---|
Moisture | ||||
Fresh † | 9.05 | 72.70 | 79.26 | 88.16 |
Dried ‡ | NM | 4.41 | 2.7 | 6.85 |
Ash | 12.83 | 2.05 | 0.6 | 0.42 |
Fats (ether extract) | 0.13 | 5.46 | 0.51 | 0.32 |
Protein (N × 6.25) | 0.63 | 18.56 | 2.01 | 1.39 |
Total sugars | 71.29 | 62.30 | 17.67 | 9.71 |
Reducing sugars | 51.70 | 33.44 | 8.71 | 4.66 |
Soluble lignin | 8.89 | 3.03 | ND | ND |
Extract | BAB | BSG | BB | RB |
---|---|---|---|---|
Total sugars (g/L) | ||||
Aqueous | 2.95 ± 0.97 a | 26.09 ±2.97 a | 46.35 ± 3.23 a | 43.32 ± 2.01 b |
Enzymatic | 19.85 ± 2.48 b | 33.33 ±2.6 b | 55.11 ± 6.56 a | 44.28 ± 1.17 b |
Chemical and Enzymatic | 65.75 ± 3.17 c | 60.99 ± 2.58 c | 147.44 ± 7.77 c | 47.14 ± 1.86 c |
Hydroalcoholic | 1.53 ± 0.01 a | 32.07 ± 0.86 b | 67.89 ± 0.54 b | 22.05 ± 0.82 a |
Reducing sugars (g/L) | ||||
Aqueous | 0.68 ± 0.05 a | 24.94 ± 2.18 b | 26.09 ± 0.27 a | 15.16 ± 0.84 a |
Enzymatic | 14.01 ± 0.56 b | 27.28 ± 0.27 b | 38.57 ± 0.85 b | 15.79 ± 0.27 a |
Chemical and Enzymatic | 51.51 ± 2.97 c | 33.46 ± 0.36 c | 39.75 ± 2.62 b | 22.34 ± 0.20 c |
Hydroalcoholic | 0.75 ± 0.01 a | 17.89 ± 0.79 a | 48.79 ± 0.39 c | 17.80 ± 0.77 b |
Total Anthocyanin (mg CGE/100gresidue) | BAB | BSG | BB | RB |
---|---|---|---|---|
Aqueous | 0.07 ± 0.01 a | 0.08 ± 0.01 a | 1.01 ± 0.08 a | 41.49 ± 1.0 b |
Enzymatic | 0.22 ± 0.06 b | 0.22 ± 0.03 a | 0.80 ± 0.09 a | 37.12 ± 3.13 b |
Chemical and Enzymatic | 0.06 ± 0.00 a | 1.39 ± 0.03 d | 2.09 ± 0.33 a | 0.04 ± 0.02 a |
Hydroalcoholic | 0.22 ± 0.01 b | 1.23 ± 0.14 c | 96.32 ± 5.42 b | 74.36 ± 3.67 c |
Catechin | Epicatechin | Rutin | Ferulic Acid | Caffeic Acid | Gallic Acid | 4-HBA | p-Coumaric Acid | C3G | P3G | Kaempferol | |
---|---|---|---|---|---|---|---|---|---|---|---|
(μg/gresidue) | |||||||||||
BAB | |||||||||||
AQ | 17.6 ± 2.9 | N.D. | N.D. | N.D. | 4.8 ± 0.3 | 3.1 ± 0.1 | 7.7 ± 0.1 | 10.8 ± 1.8 | N.D. | N.D. | N.D. |
E | 21.2 ± 0.5 | N.D. | N.D. | N.D. | 7.1 ± 0.3 | 3.2 ± 0.3 | 8.5 ± 0.1 | 10.9 ± 0.1 | N.D. | N.D. | 3.3 ± 0.1 |
CE | 83.8 ± 7.3 | N.D. | N.D. | N.D. | 7.4 ± 0.4 | 110.5 ± 7.7 | 9.2 ± 0.3 | 12.1 ± 0.2 | N.D. | N.D. | N.D. |
ETOH | 19.5 ± 1.6 | N.D. | N.D. | N.D. | 4.9 ± 0.6 | 54.6 ± 3.9 | 7.9 ± 0.1 | 10.2 ± 0.1 | N.D. | N.D. | 4.1 ± 0.2 |
BSG | |||||||||||
AQ | 8.8 ± 0.2 | N.D. | N.D. | N.D. | 4.0 ± 0.1 | 3.0 ± 0.6 | 7.3 ± 0.1 | 10.9 ± 0.1 | N.D. | N.D. | 3.8 ± 0.2 |
E | 18.7 ± 3.7 | N.D. | N.D. | 1.5 ± 0.1 | 4.7 ± 0.2 | 2.8 ± 0.1 | 9.6 ± 0.1 | 30.6 ± 3.5 | N.D. | N.D. | 3.2 ± 0.2 |
CE | 9.9 ± 1.1 | N.D. | 229.6 ± 16.5 | N.D. | 10.5 ± 1.0 | 40.5 ± 3.8 | 118.0 ± 18.5 | 59.7 ± 6.9 | N.D. | N.D. | 3.6 ± 0.2 |
ETOH | 14.2 ± 3.5 | N.D. | N.D. | N.D. | 3.8 ± 0.2 | 15.4 ± 1.5 | 7.9 ± 0.1 | 14.1 ± 1.9 | N.D. | N.D. | 3.9 ± 0.1 |
BB | |||||||||||
AQ | 12.9 ± 2.7 | N.D. | N.D. | N.D. | 33.9 ± 0.1 | 12.2 ± 1.5 | 73.0 ± 0.1 | 95.1 ± 2.1 | N.D. | N.D. | N.D. |
E | 8.0 ± 1.4 | N.D. | N.D. | N.D. | 33.9 ± 0.1 | N.D. | 74.1 ± 1.1 | 100.1 ± 0.2 | N.D. | N.D. | N.D. |
CE | 26.1 ± 0.9 | N.D. | N.D. | N.D. | 40.2 ± 1.3 | 293.8 ± 22.6 | 77.3 ± 1.2 | 95.1 ± 0.6 | N.D. | N.D. | N.D. |
ETOH | 48.9 ± 3.7 | 1171.1 ± 58.3 | 71.3 ± 15.0 | N.D. | 75.7 ± 5.8 | N.D. | 162.4 ± 1.9 | 223.3 ± 19.1 | 4894.8 ± 334.2 | 322.7 ± 16.1 | N.D. |
RB | |||||||||||
AQ | 35.0 ± 0.9 | N.D. | N.D. | N.D. | 3.9 ± 0.3 | 1.9 ± 0.6 | 77.2 ± 4.4 | 95.9 ± 3.1 | 318.6 ± 12.1 | 300.2 ± 7.6 | N.D. |
E | 35.1 ± 1.3 | N.D. | N.D. | N.D. | 42.5 ± 1.8 | 5.3 ± 0.2 | 81.0 ± 1.4 | 97.0 ± 1.6 | 105.4 ± 23.2 | 312.5 ± 9.5 | N.D. |
CE | 38.9 ± 3.3 | N.D. | N.D. | 52.2 ± 5.4 | 47.4 ± 1.1 | 138.5 ± 6.4 | 77.2 ± 0.2 | 97.6 ± 0.2 | N.D. | N.D. | N.D. |
ETOH | 132.4 ± 11.0 | N.D. | N.D. | N.D. | 67.4 ± 0.3 | N.D. | 136.9 ± 0.2 | 197.6 ± 11.0 | 658.8 ± 60.2 | 515.9 ± 41.2 | N.D. |
BAB | BSG | BB | RB | |
---|---|---|---|---|
ABTS (µM TE/g) | ||||
Aqueous | 17.83 ± 1.49 a | 10.89 ± 0.18 a | 34.28 ± 1.35 b | 45.99 ± 2.90 a |
Enzymatic | 20.96 ± 4.75 a | 14.04 ± 0.79 a | 23.62 ± 0.66 a | 39.72 ± 1.45 a |
Chemical and Enzymatic | 29.81 ± 2.31 b | 29.36 ± 5.10 b | 181.67 ± 5.54 d | 146.59 ± 10.15 c |
Hydroalcoholic | 19.67 ± 1.28 a | 11.03 ± 0.77 a | 82.47 ± 3.80 c | 77.96 ± 3.096 b |
DPPH (µM TE/g) | ||||
Aqueous | 3.75 ± 0.34 a | 1.57 ± 0.06 a | 7.81 ± 0.19 b | 8.55 ±0.09 c |
Enzymatic | 4.10 ± 0.96 a | 3.72 ± 0.22 c | 6.36 ± 0.27 a | 7.63 ± 0.28 b |
Chemical and Enzymatic | 5.35 ±0.17 b | 4.99 ± 0.57 d | 8.24 ± 0.17 b | 4.74 ± 0.29 a |
Hydroalcoholic | 4.04 ± 0.19 a | 2.38 ± 0.25 b | 16.93 ±0.37 c | 15.27 ± 0.11 d |
Strain | Inhibition Halo (mm) | ||||
---|---|---|---|---|---|
BAB | BSG | BB | RB | Control | |
S. cerevisiae | 0 | 0 | 0 | 0 | 0 |
C. albicans | 0 | 1.06 ± 0.04 | 0.91 ± 0.05 | 0.65 ± 0.03 | 4.46 ± 0.09 |
K. ohmeri | 0 | 0 | 0 | 0 | 0 |
S. aureus | 0 | 0.68 ± 0.03 | 0.41 ± 0.01 | 0.77 ± 0.01 | 1.30 ± 0.02 |
S. saprohyticus | 0.70 ± 0.02 | 0.93 ± 0.02 | 0.71 ± 0.03 | 0.69 ± 0.01 | 1.17 ± 0.06 |
B. cereus | 0 | 1.88 ± 0.06 | 1.55 ± 0.03 | 0 | 0 |
S. sonnei | 0.37 ± 0.03 | 0.74 ± 0.02 | 0.56 ± 0.04 | 0.48 ± 0.03 | 0.63 ± 0.05 |
S. marcescens | 0.29 ± 0.02 | 0.31 ± 0.02 | 0.54 ± 0.02 | 0.51 ± 0.04 | 0.75 ± 0.06 |
E. coli | 0.48 ± 0.02 | 0.58 ± 0.03 | 0.67 ± 0.04 | 0.77 ± 0.01 | 1.27 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas-Godoy, L.; Campos-Valdez, A.R.; Alcázar-Valle, M.; Barrera-Martínez, I. Comparison of Extraction Techniques for the Recovery of Sugars, Antioxidant and Antimicrobial Compounds from Agro-Industrial Wastes. Sustainability 2022, 14, 5956. https://doi.org/10.3390/su14105956
Casas-Godoy L, Campos-Valdez AR, Alcázar-Valle M, Barrera-Martínez I. Comparison of Extraction Techniques for the Recovery of Sugars, Antioxidant and Antimicrobial Compounds from Agro-Industrial Wastes. Sustainability. 2022; 14(10):5956. https://doi.org/10.3390/su14105956
Chicago/Turabian StyleCasas-Godoy, Leticia, Amador Roberto Campos-Valdez, Montserrat Alcázar-Valle, and Iliana Barrera-Martínez. 2022. "Comparison of Extraction Techniques for the Recovery of Sugars, Antioxidant and Antimicrobial Compounds from Agro-Industrial Wastes" Sustainability 14, no. 10: 5956. https://doi.org/10.3390/su14105956
APA StyleCasas-Godoy, L., Campos-Valdez, A. R., Alcázar-Valle, M., & Barrera-Martínez, I. (2022). Comparison of Extraction Techniques for the Recovery of Sugars, Antioxidant and Antimicrobial Compounds from Agro-Industrial Wastes. Sustainability, 14(10), 5956. https://doi.org/10.3390/su14105956