Review of Effects of Dam Construction on the Ecosystems of River Estuary and Nearby Marine Areas
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Effects of Dam Construction on Sediment Flux into the Ocean
3.2. Effects of Dam Construction on Nutrient Flux to the Sea
3.3. Effects of Dam Construction on Ecosystems of the Estuary and Adjacent Coastal Area
4. Management Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ICOLD (International Commission on Large Dams). World Register of Dams. 2021. Available online: http://www.icold-cigb.org (accessed on 26 March 2022).
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Van Cappellen, P.; Maavara, T. Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 2016, 16, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Yao, P.; Li, D.; Yu, Z. Effects of river damming and delta erosion on organic carbon burial in the Changjiang Estuary and adjacent East China Sea inner shelf. Sci. Total Environ. 2021, 793, 148610. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Wu, H.; Yang, S.; Zhang, J. Longshore suspended sediment transport and its implications for submarine erosion off the Yangtze River estuary. Estuar. Coast. Shelf Sci. 2017, 190, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Luo, X.; Temmerman, S.; Kirwan, W.; Bouma, T.; Xu, K.; Zhang, S.; Fan, J.; Shi, B.; Yang, H.; et al. Role of deltafront erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline. Limnol. Oceanogr. 2020, 65, 1990–2009. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhao, C.; He, C.; Li, P.; Wang, Y.; Pang, Y.; Shi, Q.; He, D. Characterization of dissolved organic matter processing between surface sediment porewater and overlying bottom water in the Yangtze River Estuary. Water Res. 2022, 215, 118260. [Google Scholar] [CrossRef]
- Zhang, D.; Xie, W.; Shen, J.; Guo, L.; Chen, Y.; He, Q. Sediment dynamics in the mudbank of the Yangtze River Estuary under regime shift of source and sink. Int. J. Sediment Res. 2022, 37, 97–109. [Google Scholar] [CrossRef]
- Wu, H.; Zeng, G.; Liang, J.; Chen, J.; Xu, J.; Dai, J.; Sang, L.; Li, X.; Ye, S. Responses of landscape pattern of China’s two largest freshwater lakes to early dry season after the impoundment of Three-Gorges Dam. Int. J. Appl. Earth Obs. 2017, 56, 36–43. [Google Scholar] [CrossRef]
- Wu, H.; Zeng, G.; Liang, J.; Guo, S.; Dai, J.; Lu, L.; Wei, Z.; Xu, P.; Li, F.; Yuan, Y.; et al. Effect of early dry season induced by the Three Gorges Dam on the soil microbial biomass and bacterial community structure in the Dongting Lake wetland. Ecol. Indicat. 2015, 53, 129–136. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, Y.; Chen, X.; Li, F.; Deng, Z. The impact of Three Gorges Dam on the downstream eco-hydrological environment and vegetation distribution of East Dongting Lake. Ecohydrology 2015, 8, 738–746. [Google Scholar] [CrossRef]
- Yang, S.L.; Milliman, J.D.; Li, P.; Xu, K. 50,000 dams later: Erosion of the Yangtze River and its delta. Global Planet. Chang. 2010, 75, 14–20. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Chen, H.; Wu, Y.; Xiong, H.; Zhang, Z. Nutrients in the Changjiang and its tributaries. Biogeochemistry 2003, 62, 1–18. [Google Scholar] [CrossRef]
- Wu, H.; Zeng, G.; Liang, J.; Zhang, J.; Cai, Q.; Huang, L.; Li, X.; Zhu, H.; Hu, C.; Shen, S. Changes of soil microbial biomass and bacterial community structure in Dongting Lake: Impacts of 50,000 dams of Yangtze River. Ecol. Eng. 2013, 57, 72–78. [Google Scholar] [CrossRef]
- Wei, W.; Dai, Z.; Mei, X.; Liu, J.P.; Gao, S.; Li, S. Shoal morphodynamics of the Changjiang (Yangtze) estuary: Influences from river damming, estuarine hydraulic engineering and reclamation projects. Mar. Geol. 2017, 386, 32–43. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, T.; Zhou, Y.; Cao, Z.; Zhang, G.; Wang, N.; Jiang, Q. Influence of the Three Gorges Dam on schistosomiasis control in the middle and lower reaches of the Yangtze River. Global Health J. 2019, 3, 9–15. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Pearson, A.J.; Pizzuto, J.E.; Vargas, R. Influence of run of river dams on floodplain sediments and carbon dynamics. Geoderma 2016, 272, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Donald, D.B.; Parker, B.R.; Davies, J.M.; Leavitt, P.R. Nutrient sequestration in the Lake Winnipeg watershed. J. Great Lakes Res. 2015, 41, 630–642. [Google Scholar] [CrossRef]
- Iyakaremye, V.; Zeng, G.; Yang, X.; Zhang, G.; Ullah, I.; Gahigi, A.; Vuguziga, F.; Asfaw, T.G.; Ayugi, B. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Sci. Total Environ. 2021, 790, 148162. [Google Scholar] [CrossRef]
- Ullah, I.; Saleem, F.; Iyakaremye, V.; Yin, J.; Ma, X.; Syed, S.; Hina, S.; Asfaw, T.G.; Omer, A. Projected changes in socioeconomic exposure to heatwaves in South Asia under changing climate. Earth’s Future 2021, 10, e2021EF002240. [Google Scholar] [CrossRef]
- Kharazi, P.; Arab khazaeli, E.; Heshmatpour, A. Delineation of suitable sites for groundwater dams in the semi-arid environment in the northeast of Iran using GIS-based decision-making method. Groundwater Sustain. Dev. 2021, 15, 100746. [Google Scholar] [CrossRef]
- Alcérreca-Huerta, J.C.; Callejas-Jiménez, M.E.; Carrillo, L.; Castillo, M.M. Dam implications on salt-water intrusion and land use within a tropical estuarine environment of the Gulf of Mexico. Sci. Total Environ. 2019, 652, 1102–1112. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Li, W.; Castello, L.; Murphy, B.R.; Xie, S. Potential effects of dam cascade on fish: Lessons from the Yangtze River. Rev. Fish Biol. Fisheries 2015, 25, 569–585. [Google Scholar] [CrossRef]
- Dai, Z.; Du, J.; Zhang, X.; Su, N.; Li, J. Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) estuary in recent decades (1955–2008). Environ. Sci. Technol. 2011, 45, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Besset, M.; Anthony, E.J.; Bouchette, F. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review. Earth-Sci. Rev. 2019, 193, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chen, J.; Xu, J.; Zeng, G.; Sang, L.; Liu, Q.; Yin, Z.; Dai, J.; Yin, D.; Liang, J.; et al. Effects of dam construction on biodiversity: A review. J. Cleaner Prod. 2019, 221, 480–489. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, K.; Yu, Y.; Yang, B. Mapping of water footprint research: A bibliometric analysis during 2006–2015. J. Cleaner Prod. 2017, 149, 70–79. [Google Scholar] [CrossRef]
- Rodrigues, M.; Mendes, L. Mapping of the literature on social responsibility in the mining industry: A systematic literature review. J. Cleaner Prod. 2018, 181, 88–101. [Google Scholar] [CrossRef]
- Chong, X.; Vericat, D.; Batalla, R.J.; Teo, F.Y.; Lee, K.S.P.; Gibbins, C.N. A review of the impacts of dams on the hydromorphology of tropical rivers. Sci. Total Environ. 2021, 794, 148686. [Google Scholar] [CrossRef]
- Nascimento do Vasco, A.; de Oliveira Aguiar Netto, A.; Gonzaga da Silva, M. The influence of dams on ecohydrological conditions in the São Francisco River Basin. Brazil. Ecohydrol. Hydrobiol. 2019, 19, 556–565. [Google Scholar] [CrossRef]
- Amenuvor, M.; Gao, W.; Li, D.; Shao, D. Effects of dam regulation on the hydrological alteration and morphological evolution of the Volta River Delta. Water 2020, 12, 646. [Google Scholar] [CrossRef] [Green Version]
- Mei, X.; Dai, Z.; Darby, S.E.; Zhang, M.; Cai, H.; Wang, J.; Wei, W. Landward shifts of the maximum accretion zone in the tidal reach of the Changjiang estuary following construction of the Three Gorges Dam. J. Hydrol. 2021, 592, 125789. [Google Scholar] [CrossRef]
- Chen, N.; Chen, Y. Advances in the study of biodiversity of phytoplankton and red ride species in China (II): The East China Sea. Oceanol. Limnol. Sin. 2021, 52, 363–418. (In Chinese) [Google Scholar] [CrossRef]
- Talukdar, S.; Pal, S.; Chakraborty, A.; Mahato, S. Damming effects on trophic and habitat state of riparian wetlands and their spatial relationship. Ecol. Indic. 2020, 118, 106757. [Google Scholar] [CrossRef]
- Sakho, I.; Dupont, J.P.; Cisse, M.T.; Janyani, S.E.; Loum, S. Hydrological responses to rainfall variability and dam construction: A case study of the upper Senegal River basin. Environ. Earth Sci. 2017, 76, 253. [Google Scholar] [CrossRef]
- Grumbine, R.E.; Pandit, M.K. Threats from India’s Himalaya Dams. Science 2013, 339, 6115. [Google Scholar] [CrossRef]
- Liu, C.; He, Y.; Li, Z.; Chen, J.; Li, Z. Key drivers of changes in the sediment loads of Chinese rivers discharging to the oceans. Int. J. Sediment Res. 2021, 36, 747–755. [Google Scholar] [CrossRef]
- Cattanéo, F.; Guillard, J.; Diouf, S.; O’Rourke, J.; Grimardias, D. Mitigation of ecological impacts on fish of large reservoir sediment management through controlled flushing–The case of the Verbois dam (Rhône River, Switzerland). Sci. Total Environ. 2021, 756, 144053. [Google Scholar] [CrossRef]
- Bobrovitskaya, N.N.; Kokorev, A.V.; Lemeshko, N.A. Regional patterns in recent trends in sediment yields of Eurasian and Siberian rivers. Global Planet Chang. 2003, 39, 127–146. [Google Scholar] [CrossRef]
- Duarte, G.; Segurado, P.; Haidvogl, G.; Pont, D.; Ferreira, M.T.; Branco, P. Damn those damn dams: Fluvial longitudinal connectivity impairment for European diadromous fish throughout the 20th century. Sci. Total Environ. 2021, 761, 143293. [Google Scholar] [CrossRef]
- El Aoula, R.; Mhammdi, N.; Dezileau, L.; Mahe, G.; Kolker, A.S. Fluvial sediment transport degradation after dam construction in North Africa. J. Afr. Earth Sci. 2021, 182, 104255. [Google Scholar] [CrossRef]
- Bussi, G.; Darby, S.E.; Whitehead, P.G.; Jin, L.; Dadson, S.J.; Voepel, H.E.; Vasilopoulos, G.; Hackney, C.R.; Hutton, C.; Berchoux, T.; et al. Impact of dams and climate change on suspended sediment flux to the Mekong delta. Sci. Total Environ. 2021, 755, 142468. [Google Scholar] [CrossRef] [PubMed]
- Ounissi, M.; Bouchareb, N. Nutrient distribution and fluxes from three Mediterranean coastal rivers (NE Algeria) under large damming. Comptes Rendus Geosci. 2013, 345, 81–92. [Google Scholar] [CrossRef]
- North, R.; Johansson, J.; Vandergucht, D.; Doig, L.; Liber, K.; Lindenschmidt, K.; Baulch, H.; Hudson, J. Evidence for internal phosphorus loading in a large prairie reservoir (Lake Diefenbaker, Saskatchewan). J. Great Lakes Res. 2015, 41 (Suppl. S2), 91–99. [Google Scholar] [CrossRef]
- Ding, S.; Chen, P.; Liu, S.; Zhang, G.; Zhang, J.; Dan, S.F. Nutrient dynamics in the Changjiang and retention effect in the Three Gorges Reservoir. J. Hydrol. 2019, 574, 96–109. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, S.; Wu, Y.; Liu, X.; Lin, R.; Liu, Z. Influence of exposure time on phosphorus composition and bioavailability in wetland sediments from Poyang lake, since the operation of the Three Gorges Dam. Environ. Pollut. 2020, 263, 114591. [Google Scholar] [CrossRef]
- Maavara, T.; Dürr, H.H.; Van Cappellen, P. Worldwide retention of nutrient silicon by river damming: From sparse data set to global estimate. Global Biogeochem. Cycles 2014, 28, 842–855. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Cao, Z.; Grasse, P.; Dai, M.; Gao, L.; Kuhnert, H.; Gledhill, M.; Chiessi, C.M.; Doering, K.; Frank, M. Dissolved silicon isotope dynamics in large river estuaries. Geochim. Cosmochim. Acta 2020, 273, 367–382. [Google Scholar] [CrossRef]
- Maavara, T.; Hood, J.L.A.; North, R.L.; Doig, L.E.; Parsons, C.T.; Johansson, J.; Liber, K.; Hudson, J.J.; Lucas, B.T.; Vandergucht, D.M.; et al. Reactive silicon dynamics in a large prairie reservoir (Lake Diefenbaker, Saskatchewan). J. Great Lakes Res. 2015, 41 (Suppl. S2), 100–109. [Google Scholar] [CrossRef]
- Humborg, C.; Pastuszak, M.; Aigars, J.; Siegmund, H.; Mörth, C.M.; Ittekkot, V. Decreased silica land-sea fluxes through damming in the Baltic Sea catchment-significance of particle trapping and hydrological alterations. Biogeochemistry 2006, 77, 265–281. [Google Scholar] [CrossRef]
- Conley, D.J.; Humborg, C.; Smedberg, E.; Rahm, L.; Papush, L.; Danielsson, A.; Clarke, A.; Pastuszak, M.; Aigars, J.; Ciuffa, D.; et al. Past, present and future state of the biogeochemical Si cycle in the Baltic Sea. J. Marine Syst. 2008, 73, 338–346. [Google Scholar] [CrossRef]
- Liang, C.; Xian, W. Changjiang nutrient distribution and transportation and their impacts on the estuary. Cont. Shelf Res. 2018, 165, 137–145. [Google Scholar] [CrossRef]
- Friedl, G.; Wuest, A. Disrupting biogeochemical cycles-Consequences of damming. Aquat. Sci. 2002, 64, 55–65. [Google Scholar] [CrossRef]
- Lum, W.M.; Benico, G.; Doan-Nhu, H.; Furio, E.; Leaw, C.P.; Leong, S.C.Y.; Lim, P.T.; Lim, W.A.; Lirdwitayaprasit, T.; Lu, S.; et al. The harmful raphidophyte Chattonella (Raphidophyceae) in Western Pacific: Its red tides and associated fisheries damage over the past 50 years (1969–2019). Harmful Algae 2021, 107, 102070. [Google Scholar] [CrossRef] [PubMed]
- Tumer, R.E. Element ratios and aquatic food webs. Estuaries Coasts 2002, 25, 694–703. [Google Scholar] [CrossRef]
- Bombino, G.; Boix-Fayos, C.; Gurnell, A.M.; Tamburino, V.; Zema, D.A.; Zimbone, S.M. Check dam influence on vegetation species diversity in mountain torrents of the Mediterranean environment. Ecohydrology 2014, 7, 678–691. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Willison, J.H.M.; Zhang, Y.; Liu, H. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China’s Three Gorges Reservoir. PLoS ONE 2016, 11, e0147452. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Wang, Y.; Jia, Y.; Lu, C.; Lei, G.; Wen, L. Vegetation cover dynamics and resilience to climatic and hydrological disturbances in seasonal floodplain: The effects of hydrological connectivity. Front. Plant Sci. 2017, 8, 2196. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, H.; Guo, W. The impacts of water level fluctuations of East Dongting Lake on habitat suitability of migratory birds. Ecol. Indic. 2021, 132, 108277. [Google Scholar] [CrossRef]
- Silverthorn, V.M.; Bishop, C.A.; Elliott, J.E.; Morrissey, C.A. An assessment of run-of-river hydroelectric dams on mountain stream ecosystems using the American dipper as an avian indicator. Ecol. Indic. 2018, 93, 942–951. [Google Scholar] [CrossRef]
- Wu, H.; Dai, J.; Sun, S.; Du, C.; Long, Y.; Chen, H.; Yu, G.; Ye, S.; Chen, J. Responses of habitat suitability for migratory birds to increased water level during middle of dry season in the two largest freshwater lake wetlands of China. Ecol. Indic. 2021, 121, 107065. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Zeng, G.; Xu, J.; Sang, L.; Liu, Q.; Dai, J.; Xiong, W.; Yuan, Z.; Wang, Y.; et al. Effects of early dry season on habitat suitability for migratory birds in China’s two largest freshwater lake wetlands after the impoundment of Three Gorges Dam. J. Environ. Inform. 2019, 36, 89–92. [Google Scholar] [CrossRef]
- Morais, P.; Chicharo, M.A.; Chicharo, L. Changes in a temperate estuary during the filling of the biggest European dam. Sci. Total Environ. 2009, 407, 2245–2259. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.G.C.; de Freitas, H.C.P.; Zacardi, D.M.; Faria-Junior, C.H. Effects of river dams on the fish guilds in the northwest region of the Brazilian Amazon. Fish Res. 2021, 243, 106091. [Google Scholar] [CrossRef]
- Mie Sein, Z.M.; Ullah, I.; Saleem, F.; Zhi, X.; Syed, S.; Azam, K. Interdecadal Variability in Myanmar Rainfall in the Monsoon Season (May–October) Using Eigen Methods. Water 2021, 13, 729. [Google Scholar] [CrossRef]
- Mie Sein, Z.M.; Zhi, F.; Ullah, I.; Azam, K.; Ngoma, H.; Saleem, F.; Xing, Y.; Iyakaremye, V.; Syed, S.; Hina, S.; et al. Recent variability of sub-seasonal monsoon precipitation and its potential drivers in Myanmar using in–situ observation during 1981–2020. Int. J. Climatol. 2021, 42, 3341–3359. [Google Scholar] [CrossRef]
- Hina, S.; Saleem, F.; Arshad, A.; Hina, A.; Ullah, I. Droughts over Pakistan: Possible cycles, precursors and associated mechanisms. Geomat. Nat. Haz. Risk 2021, 12, 1638–1668. [Google Scholar] [CrossRef]
- Nixon, S.W. Replacing the Nile: Are Anthropogenic Nutrients Providing the Fertility Once Brought to the Mediterranean by a Great River? AMBIO A J. Hum. Environ. 2003, 32, 30–39. [Google Scholar] [CrossRef]
- Gierszewski, P.J.; Habel, H.; Szmańda, J.; Luc, M. Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Sci. Total Environ. 2020, 710, 136202. [Google Scholar] [CrossRef]
- Peng, F.; Shi, X.; Li, K.; Wang, Y.; Feng, J.; Li, R.; Liang, R. How to comprehensively evaluate river discharge under the influence of a dam. Ecol. Inf. 2022, 69, 101637. [Google Scholar] [CrossRef]
- Manh, N.V.; Dung, N.V.; Hung, N.N.; Kummu, M.; Merz, B.; Apel, H. Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. Glob. Planet Chang. 2015, 127, 22–23. [Google Scholar] [CrossRef] [Green Version]
- Kondlf, G.M.; Rubin, Z.K.; Minear, J.T. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 2014, 50, 5158–5169. [Google Scholar] [CrossRef]
- Lowe, V.; Frid, C.L.J.; Venarsky, M.; Burford, M.A. Responses of a macrobenthic community to seasonal freshwater flow in a wet-dry tropical estuary. Estuarine Coastal Shelf Sci. 2022, 265, 107736. [Google Scholar] [CrossRef]
- Lerman, A. Surficial Weathering Fluxes and Their Geochemical Controls. In Material Fluxes on the Surface of the Earth; The National Academies Press: Washington, DC, USA, 1994; pp. 28–37. [Google Scholar]
- Li, S.; Xu, Y.; Ni, M. Changes in sediment, nutrients and major ions in the world largest reservoir: Effects of damming and reservoir operation. J. Clean. Prod. 2021, 318, 128601. [Google Scholar] [CrossRef]
- Wu, X.; Bi, N.; Xu, J.; Nittrouer, J.A.; Yang, Z.; Saito, Y.; Wang, H. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976–2013): Dominant roles of riverine discharge and sediment grain size. Geomorphology 2017, 292, 115–127. [Google Scholar] [CrossRef]
- Lyu, Y.; Fagherazzi, S.; Tan, G.; Zheng, S.; Feng, Z.; Han, S.; Shu, C. Hydrodynamic and geomorphic adjustments of channel bars in the Yichang-Chenglingji Reach of the Middle Yangtze River in response to the Three Gorges Dam operation. Catena 2020, 193, 104628. [Google Scholar] [CrossRef]
- Wang, B.; Brockman, U. Potential impacts of Three Gorges Dam in China on the ecosystem of East China Sea. Acta Oceanol. Sin. 2008, 27, 67–76. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, L.; Zhang, W.; Li, X.; Xu, Q. Spatiotemporal variations in characteristic discharge in the Yangtze River downstream of the Three Gorges Dam. Sci. Total Environ. 2021, 785, 147343. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Zhang, C.; Shi, X.; Zhu, C.; Xie, L.; Han, X.; Xin, Y.; Wang, J. Nutrient composition and distributions in coastal waters impacted by the Changjiang plume. Acta Oceanol. Sin. 2008, 27, 111–125. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Saito, Y.; Milliman, J.D.; Xu, K.; Qiao, S.; Shi, G. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour. Res. 2006, 42, W04407. [Google Scholar] [CrossRef]
- Lai, X.; Yin, D.; Finlayson, B.L.; Wei, T.; Li, M.; Yuan, W.; Yang, S.; Dai, Z.; Gao, S.; Chen, Z. Will river erosion below the Three Gorges Dam stop in the middle Yangtze? J. Hydrol. 2017, 554, 24–31. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Fan, Y.; Zhang, J. Impact of water and sediment discharges on subaqueous delta evolution in Yangtze Estuary from 1950 to 2010. Water Sci. Eng. 2014, 7, 331–343. [Google Scholar] [CrossRef]
- Yang, S.; Belkin, I.M.; Belkina, A.I.; Zhao, Q.; Zhu, J.; Ding, P. Delta response to decline in sediment supply from the Yangtze River: Evidence of the recent four decades and expectations for the next half-century. Estuar. Coast. Shelf Sci. 2003, 57, 689–699. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Chen, D.; Xu, K.; Wei, T.; Gao, J.; Zhao, Y.; Chen, Z.; Masabate, W. Plume front and suspended sediment dispersal off the Yangtze (Changjiang) River mouth, China during non-flood season. Estuar. Coast. Shelf Sci. 2006, 71, 60–67. [Google Scholar] [CrossRef]
- Wang, H.; Yan, H.; Zhou, F.; Li, B.; Zhuang, W.; Shen, Y. Changes in nutrient transport from the Yangtze River to the East China Sea linked to the Three-Gorges Dam and water transfer project. Environ. Pollut. 2020, 256, 113376. [Google Scholar] [CrossRef]
- Suwarno, D.; Löhr, A.; Kroeze, C.; Widianarko, B.; Strokal, M. The effects of dams in rivers on N and P export to the coastal waters in Indonesia in the future. Sustain. Water Qual. Ecol. 2014, 3–4, 55–66. [Google Scholar] [CrossRef]
- Grabb, K.C.; Ding, S.; Ning, X.; Liu, S.M.; Qian, B. Characterizing the impact of Three Gorges Dam on the Changjiang (Yangtze River): A story of nitrogen biogeochemical cycling through the lens of nitrogen stable isotopes. Environ. Res. 2021, 195, 110759. [Google Scholar] [CrossRef]
- Tong, Y.; Zhao, Y.; Zhen, G.; Chi, J.; Liu, X.; Lu, Y.; Wang, X.; Yao, R.; Chen, J.; Zhang, W. Nutrient loads flowing into coastal waters from the main rivers of china (2006–2012). Sci. Rep. 2015, 5, 16678. [Google Scholar] [CrossRef]
- Liu, X.C.; Shen, H.T. Estimation of dissolved inorganic nutrients fluxes from the Changjiang River into estuary. Sci. China 2001, 44, 135–141. [Google Scholar] [CrossRef]
- Wang, B. Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuar. Coast. Shelf Sci. 2006, 69, 471–477. [Google Scholar] [CrossRef]
- Chai, C.; Yu, Z.; Shen, Z.; Song, X.; Cao, X.; Yao, Y. Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Sci. Total Environ. 2009, 407, 4687–4695. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, I.; Bio, A.; Bastos, L.; Avilez-Valente, P. Estuarine hydrodynamic patterns and hydrokinetic energy production: The Douro estuary case study. Energy 2021, 222, 119972. [Google Scholar] [CrossRef]
- Damodararao, K.; Singh, S.K. Substantial submarine groundwater discharge in the estuaries of the east coast of India and its impact on marine strontium budget. Geochim. Cosmochim. Acta 2022, 324, 66–85. [Google Scholar] [CrossRef]
- Huang, F.; Lin, X.; Yin, K. Effects of algal-derived organic matter on sediment nitrogen mineralization and immobilization in a eutrophic estuary. Ecol. Indic. 2022, 138, 108813. [Google Scholar] [CrossRef]
- Ye, F.; Huang, X.; Shi, Z.; Chen, B. The spatial distribution of benthic foraminifera in the Pearl River Estuary, South China and its environmental significance. Mar. Pollut. Bull. 2021, 173, 113055. [Google Scholar] [CrossRef]
- Kumar, B.S.K.; Bhaskararao, D.; Krishna, P.; Lakshmi, C.N.V.; Surendra, T.; Krishna, R.M. Impact of nutrient concentration and composition on shifting of phytoplankton community in the coastal waters of the Bay of Bengal. Reg. Stud. Mar. Sci. 2022, 51, 102228. [Google Scholar] [CrossRef]
- Bharathi, M.D.; Venkataramana, V.; Sarma, V.V.S.S. Phytoplankton community structure is governed by salinity gradient and nutrient composition in the tropical estuarine system. Conti. Shelf Res. 2022, 234, 104643. [Google Scholar] [CrossRef]
- Senneville, S.; Schloss, I.R.; St-Onge Drouin, S.; Bélanger, S.; Winkler, G.; Dumont, D.; Johnston, P.; St-Onge, I. Moderate effect of damming the Romaine River (Quebec, Canada) on coastal plankton dynamics. Estuar. Coast. Shelf Sci. 2018, 203, 29–43. [Google Scholar] [CrossRef]
- Lin, S.; Ji, N.; Luo, H. Recent progress in marine harmful algal bloom research. Oceanol. Limnol. Sin. 2019, 50, 495–510. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, W.; Zeng, Y.; Liang, D.; Zhang, X.; Li, B.; Xia, Y.; Wu, S. Three Gorges Dam alters the footprint of particulate heavy metals in the Yangtze Estuary. Sci. Total Environ. 2022, 803, 150111. [Google Scholar] [CrossRef]
- Beja, P.; Santos, C.D.; Santana, J.; Ramos-Pereira, M.J.; Marques, J.T.; Queiroz, H.L.; Palmeirim, J.M. Seasonal patterns of spatial variation in understory bird assemblages across a mosaic of flooded and unflooded Amazonian forests. Biodivers Conserv. 2010, 19, 129–152. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Y.; Guan, L.; Lu, C.; Lei, G.; Wen, L.; Liu, G. Optimising hydrological conditions to sustain wintering waterbird populations in Poyang Lake National Natural Reserve: Implications for dam operations. Freshw. Biol. 2013, 58, 2366e2379. [Google Scholar] [CrossRef]
- Yao, S.; Li, X.; Liu, C.; Zhang, J.; Li, Y.; Gan, T.; Liu, B.; Kuang, W. New assessment indicator of habitat suitability for migratory bird in wetland based on hydrodynamic model and vegetation growth threshold. Ecol. Indic. 2020, 117, 106556. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, J.; Chen, C.; Ding, P. Impacts of fluvial flood on physical and biogeochemical environments in estuary–shelf continuum in the East China Sea. J. Hydrol. 2021, 598, 126441. [Google Scholar] [CrossRef]
- Pérez-Asensioa, J.N.; Rodríguez-Ramírez, A. Benthic Foraminiferal Salinity index in marginal-marine environments: A case study from the Holocene Guadalquivir estuary, SW Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 560, 110021. [Google Scholar] [CrossRef]
- Conceição, L.P.; de Jesus Affe, H.M.; da Silva, D.M.L.; de Castro Nunes, J.M. Spatio-temporal variation of the phytoplankton community in a tropical estuarine gradient, under the influence of river damming. Reg. Stud. Mar. Sci. 2021, 43, 101642. [Google Scholar] [CrossRef]
- Loveridge, A.; Pitt, K.A.; Lucas, C.H.; Warnken, J. Extreme changes in salinity drive population dynamics of Catostylus mosaicus medusae in a modified estuary. Mar. Environ. Res. 2021, 168, 105306. [Google Scholar] [CrossRef] [PubMed]
- Yunev, O.A.; Velikova, V.; Carstensen, J. Effects of changing nutrient inputs on the ratio of small pelagic fish stock and phytoplankton biomass in the Black Sea. Estuar. Coast. Shelf Sci. 2017, 197, 173–184. [Google Scholar] [CrossRef]
- Chen, N.; Cui, Z.; Xu, Q. Advances in the study of biodiversity of phytoplankton and red ride species in China (IV): The Changjiang Estuary. Oceanol. Limnol. Sin. 2021, 52, 402–452. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, Y.; Zhang, J.; Du, J.; Zhang, G. Reconstruction of anthropogenic eutrophication in the region off the Changjiang Estuary and central Yellow Sea: From decades to centuries. Cont. Shelf Res. 2014, 72, 152–162. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Li, F.; Tan, L.; Wang, J. Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea. Sci. Total Environ. 2017, 574, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, K.; Watanabe, M.; Chen, Z. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuar. Coast. Shelf Sci. 2007, 71, 3–12. [Google Scholar] [CrossRef]
- Landsberg, J.H.; Flewelling, L.J.; Naar, J. Karenia brevis red tides, brevetoxins in the food web, and impacts on natural resources: Decadal advancements. Harmful Algae 2009, 8, 598–607. [Google Scholar] [CrossRef]
- Lu, D.; Qi, Y.; Gu, H.; Dai, X.; Wang, H.; Gao, Y.; Shen, P.; Zhang, Q.; Yu, R.; Lu, S. Causative species of harmful algal blooms in Chinese coastal waters. Algol. Stud. 2014; 145–146, 145–168. [Google Scholar] [CrossRef]
- Mardones, J.I.; Dorantes-Aranda, J.J.; Nichols, P.D.; Hallegraeff, G.M. Fish gill damage by the dinoflagellate Alexandrium catenella from Chilean fjords: Synergistic action of ROS and PUFA. Harmful Algae 2015, 49, 40–49. [Google Scholar] [CrossRef]
- Visser, P.M.; Ibelings, B.W.; Bormans, M.; Huisman, J. Artificial mixing to control cyanobacterial blooms: A review. Aquat. Ecol. 2016, 50, 423–441. [Google Scholar] [CrossRef] [Green Version]
- Garnier, J.; Beusen, A.; Thieu, V.; Billen, G.; Bouwman, L. N:P:Si nutrient export ratios and ecologicalconsequences in coastal seas evaluated by the ICEP approach. Glob. Biogeochem. Cycles 2010, 24, GB0A05. [Google Scholar] [CrossRef]
- Tang, L.; Mo, K.; Zhang, J.; Wang, J.; Chen, Q.; He, S.; Zhu, C.; Lin, Y. Removing tributary low–head dams can compensate for fish habitat losses in dammed rivers. J. Hydrol. 2021, 598, 126204. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Liu, J.; Zhang, S.; Bryan, B. Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China’s Three Gorges Dam. J. Clean. Prod. 2020, 256, 120446. [Google Scholar] [CrossRef]
- Tonra, M.C.; Fradkin, K.S.; Morley, S.A.; Duda, J.J.; Marra, P.P. The rapid return of marine–derived nutrients to a freshwater food web following dam removal. Biol. Conserv. 2015, 192, 130–134. [Google Scholar] [CrossRef]
Characteristics | Effects on the Downstream River and Coastal Water | Reference |
---|---|---|
Reduction of river flow | Reduced flow by 21–90% in downstream area. | [31,36,37] |
Reduction of sediment transport | Reduced sediment transport by 75–92% in downstream area. | [32,38,39] |
Changes in sediment dynamics and geomorphic processes | Retreatment of the estuarine turbidity maximum zone and erosion that degrades the underwater deltas in estuaries. | [26,40,41,42,43] |
Nitrogen and phosphorus nutrient flux | Intercepted about 42–93% of river nutrients, especially phosphorus. | [44,45,46,47] |
Silicon nutrient flux | Affected river flow velocity, less silicon supplemented from the continent, and the amount of silicon land–sea fluxes decreased by 50–80%. | [48,49,50,51,52] |
Nutrient ratios | Reduced silicon:nitrogen ratios sharply from 6.23 to 0.74. | [25,53] |
Phytoplankton community | Impacted the phytoplankton composition and increased the outbreak numbers of harmful red tides. | [54,55] |
Plant | Decreased functional richness and species diversity in downstream areas. | [56,57,58,59] |
Bird | Provided positive and negative influences on the habitat suitability for birds. | [60,61,62,63] |
Fish | Caused habitat fragmentation and affected fish populations, species, and sizes. | [35,64,65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Fang, C.; Wang, Y.; Lou, X.; Su, Y.; Huang, D. Review of Effects of Dam Construction on the Ecosystems of River Estuary and Nearby Marine Areas. Sustainability 2022, 14, 5974. https://doi.org/10.3390/su14105974
Zhang X, Fang C, Wang Y, Lou X, Su Y, Huang D. Review of Effects of Dam Construction on the Ecosystems of River Estuary and Nearby Marine Areas. Sustainability. 2022; 14(10):5974. https://doi.org/10.3390/su14105974
Chicago/Turabian StyleZhang, Xuan, Changling Fang, Yuan Wang, Xiaoyi Lou, Ying Su, and Dongmei Huang. 2022. "Review of Effects of Dam Construction on the Ecosystems of River Estuary and Nearby Marine Areas" Sustainability 14, no. 10: 5974. https://doi.org/10.3390/su14105974
APA StyleZhang, X., Fang, C., Wang, Y., Lou, X., Su, Y., & Huang, D. (2022). Review of Effects of Dam Construction on the Ecosystems of River Estuary and Nearby Marine Areas. Sustainability, 14(10), 5974. https://doi.org/10.3390/su14105974